
Modeling and Verifying Ad Hoc Routing

Protocols ⋆

Mathilde Arnaud1,2, Véronique Cortier2, and Stéphanie Delaune1

1 LSV, ENS Cachan & CNRS & INRIA, France
2 LORIA, CNRS & INRIA Nancy Grand Est, France

Abstract. Mobile ad hoc networks consist of mobile wireless devices
which autonomously organize their infrastructure. In such a network,
a central issue, ensured by routing protocols, is to find a route from
one device to another. Those protocols use cryptographic mechanisms
in order to prevent a malicious node from compromising the discovered
route.
We present a calculus for modeling and reasoning about security pro-
tocols, including in particular secured routing protocols. Our calculus
extends standard symbolic models to take into account the characteris-
tics of routing protocols and to model wireless communication in a more
accurate way. Then, by using constraint solving techniques, we propose a
decision procedure for analyzing routing protocols for a bounded number
of sessions and for a fixed network topology. We demonstrate the usage
and usefulness of our approach by analyzing the protocol SRP applied to
DSR .

1 Introduction

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organize their communication infrastructure: each node assumes the function
of a router and relays packets on paths to other nodes. Finding these paths
in an a priori unknown and constantly changing network topology is a crucial
functionality of any ad hoc network. Specific protocols, called routing protocols,
are designed to ensure this functionality known as route discovery.

Prior research in ad hoc networking has generally studied the routing prob-
lem in a non-adversarial setting, assuming a trusted environment. Thus, many
of the currently proposed routing protocols for mobile ad hoc networks are as-
sumed to be employed in a friendly environment (e.g. [13, 7]). Recent research
has recognized that this assumption is unrealistic [6, 10, 4]. It is important to
prevent malicious nodes from compromising the discovered routes. Since then,
secure versions of routing protocols have been developed to ensure that mobile
ad hoc networks can work even in an adversarial setting [18, 6, 11]. Those pro-
tocols use cryptographic mechanisms such as encryption, signature, MAC, to
prevent a malicious node to insert and delete nodes inside a path.

⋆ This work has been partially supported by the ANR project SeSur AVOTÉ.



Formal modeling and analysis techniques are well-adapted for checking cor-
rectness of security protocols. Formal methods have for example been proved
successful for authentication or key establishment security protocols and a mul-
titude of effective frameworks have been proposed (e.g. [16, 12, 2] to cite only a
few). However, there are very few attempts to use formal methods in the context
of mobile ad hoc networks. They indeed involve several subtleties (like a differ-
ent intruder model or a particular network topology) that cannot be reflected in
existing work.

Our contributions. The first main contribution of this paper is the proposition
of a calculus, inspired from CBS# [10], which allows mobile wireless networks
and their security properties to be formally described and analyzed. We model
cryptography as a black box (the perfect cryptography assumption), thus the
attacker cannot break cryptography, e.g. decrypt a message without having the
appropriate decryption key. To model routing protocols in an accurate way, some
features need to be taken into account. Among them:

– Network topology : nodes can only communicate (in a direct way) with their
neighbor.

– Broadcast communication: the main mode of communication is broadcasting
and only adjacent nodes receive messages

– Internal states : nodes are not memory-less but store some information in
routing tables with impact on future actions.

There are also some implications for the attacker model. Indeed, in most
existing formal approaches, the attacker controls the entire network. This ab-
straction is reasonable for reasoning about classical protocols. However, in the
context of routing protocols, this attacker model is too strong and leads to a
number of false attacks. The constraints on communication also apply to the
attacker. Our attacker can only intercept messages at his location.

Our second main contribution is to provide a decision procedure for analyzing
routing protocols for a bounded number of sessions and for a fixed topology. We
first show how the analysis of routing protocols can be reduced to (generalized)
constraint systems solving. We then adapt and generalize existing techniques [5]
for solving our more general constraint systems. We demonstrate the usage and
usefulness of our model and techniques by analyzing SRP (Secure Routing Pro-
tocol) [11] applied on the protocol DSR (Dynamic Routing Protocol) [8]. This
allows us to retrieve an attack presented first in [4].

Related work. Recently, several frameworks have been proposed to model wireless
communication and/or routing protocols in a more accurate way (e.g. [15, 17,
10]). However, these models do not take into account several features that seem
crucial to model routing protocols (e.g. neighborhood of two nodes). Moreover,
in [17], they only provide a semi-decision procedure (no decidability result).
In [10], it seems that they only perform their analysis for a particular scenario of
attacker, given as a fixed process. In this work, we consider a bounded number



of sessions but we do not need to specify what are the different steps performed
by the attacker to mount an attack.

2 Models for protocols

2.1 Messages

Cryptographic primitives are represented by function symbols. More specifically,
we consider a signature (S,F) made of a set of sorts S and function symbols F
together with arities of the form ar(f) = s1 × . . . × sk → s. We consider an
infinite set of variables X and infinite set of names N that typically represent
nonces or agent names. In particular, we consider a special sort loc for the nodes
of the network. We assume that names and variables are given with sorts. We
also assume an infinite subset Nloc of names of sort loc. The set of terms of sort s
is defined inductively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where ti is a term of some sort si and ar(f) = s1 × . . . × sk → s. We assume a
special sort terms that subsumes all the other sorts and such that any term is
of sort terms. We write var(t) for the set of variables occurring in a term t. The
term t is said to be a ground term if var(t) = ∅.

Example 1. For example, we will consider the specific signature (S1,F1) defined
by S1 = {loc, lists, terms} and F1 = {hmac, 〈〉, ::,⊥}, with the following arities:
hmac : terms × terms → terms, 〈〉 : terms × terms → terms, :: : loc × lists → lists,
⊥ :→ lists. The sort lists represents lists of terms of sort loc. The symbol ::
is the list constructor. ⊥ is a constant representing an empty list. The term
hmac(m, k) represents the keyed hash message authentication code computed
over message m with key k while 〈〉 is a pairing operator. We write 〈t1, t2, t3〉 for
the term 〈t1, 〈t2, t3〉〉, and [t1; t2; t3] for t1 :: (t2 :: (t3 :: ⊥)).

Substitutions are written σ = {t1/x1
, . . . , tn/xn

} with dom(σ) = {x1, . . . , xn}.
We only consider well-sorted substitutions, that is substitutions for which xi

and ti have the same sort. σ is ground if and only if all of the ti are ground. The
application of a substitution σ to a term t is written σ(t) or tσ. A most general
unifier of two terms t and u is a substitution denoted by mgu(t, u). We write
mgu(t, u) = ⊥ when t and u are not unifiable.

The ability of the intruder is modeled by a deduction relation ⊢⊆ 2terms ×
terms. The relation S ⊢ t represents the fact that the term t is computable
from the set of terms S. The deduction relation can be arbitrary in our model
thus is left unspecified. It is typically defined through a deduction system. For
example, for the term algebra (S1,F1) defined in Example 1, the deduction



system presented in Figure 1 reflects the ability for the intruder to concatenate
terms, to compute MAC when he knows the key, and to build lists. Moreover,
he is able to retrieve components of a pair or of a list.

u ∈ T
T ⊢ u

(A)
T ⊢ a T ⊢ l

T ⊢ a :: l
(LC)

T ⊢ a :: l
T ⊢ a

(LH)
T ⊢ a :: l

T ⊢ l
(LT)

T ⊢ u T ⊢ v
T ⊢ hmac(u, v)

(C)
T ⊢ u T ⊢ v

T ⊢ 〈u, v〉
(P)

T ⊢ 〈u, v〉

T ⊢ u
(UL)

T ⊢ 〈u, v〉

T ⊢ v
(UR)

Fig. 1. Deduction system for hmac and lists.

2.2 Process calculus

Several calculi already exist to model security protocols (e.g. [2, 1]). However,
for our purpose, a node, i.e. a process, has to perform some specific actions that
can not be easily modeled in such calculi. For instance, a node stores some infor-
mation, e.g. the content of its routing table. We also need to take into account
the network topology and to model broadcast communication. Such features can
not be easily modeled in these calculi. Actually, our calculus is inspired from
CBS# [10], which allows mobile wireless networks and their security properties
to be formally described and analyzed. However, we extend this calculus to be
able to check neighborhood properties.

The intended behavior of each node of the network can be modeled by a
process defined by the grammar given below. Our calculus is parametrized by a
set L of formulas.

P, Q ::= Processes
0 null process
out(u).P emission
in u[Φ].P reception, Φ ∈ L
store(u).P storage
read u then P else Q reading
if Φ then P else Q conditional, Φ ∈ L
P | Q parallel composition
!P replication
new m.P fresh name generation

The process out(u).P emits u and then behaves like P . The process in u[Φ].P
expects a message m of the form u such that Φ is true and then behaves like Pσ
where σ = mgu(m, u). If Φ is the true formula, we simply write in u.P . The
process store(u).P stores u in its storage list and then behaves like P . The
process read u then P else Q looks for a message of the form u in its storage list
and then, if such an element m is found, it behaves like Pσ where σ = mgu(m, u).
If no element of the form u is found, then it behaves like Q.



Secured routing protocols typically perform some checks on the route they
received before accepting a message. Thus we will typically consider the logic
Lroute defined by the following grammar:

Φ ::= Formula
check(a, b) neighborhood of two nodes
checkl(c, l) local neighborhood of a node in a list
route(l) validity of a route
loop(l) existence of a loop in a list
Φ1 ∧ Φ2 conjunction
Φ1 ∨ Φ2 disjunction
¬Φ negation

Given a graph G = (V, E), the semantics [[Φ]] of a formula Φ ∈ Lroute is
recursively defined by:

– [[check(a, b)]] = 1 iff (a, b) ∈ E, with a, b of sort loc,
– [[checkl(c, l)]] = 1 iff c is of sort loc, l is of sort lists, c appears exactly once

in l, and for any l′ sub-list of l,
• if l′ = a :: c :: l1, then (a, c) ∈ E.
• if l′ = c :: b :: l1, then (b, c) ∈ E.

– [[route(l)]] = 1 iff l is of sort lists and for every l′ sub-list of l, if l′ = a :: b :: l1,
then (a, b) ∈ E.

– [[loop(l)]] iff l is of sort lists and there exists an element appearing at least
twice in l,

– [[Φ1 ∧ Φ2]] = [[Φ1]] ∧ [[Φ2]], [[Φ1 ∨ Φ2]] = [[Φ1]] ∨ [[Φ2]], and [[¬Φ]] = ¬[[Φ]].

Example 2. Consider the secure routing protocol SRP introduced in [11], with the
assumption that each node knows who his neighbors are. SRP is not a routing
protocol by itself, it describes a generic way for securing source-routing protocols.
We study its application to the DSR protocol [8]. DSR is a protocol which is used
when an agent S (the source) wants to communicate with another agent D
(the destination), which is not his immediate neighbor. In an ad hoc network,
messages can not be sent directly to the destination, but have to travel along a
path of nodes.

To discover a route to the destination, the source constructs a request packet
and broadcasts it to its neighbors. The request packet contains its name S, the
name of the destination D, an identifier of the request id , a list containing the
beginning of a route to D, and a hmac computed over the content of the request
with a key KSD shared by S and D. It then waits for an answer containing a
route to D with a hmac matching this route, and checks that it is a plausible
route, i.e. checks that the route does not contain a loop and that his neighbor
in the route is indeed a neighbor of S in the network.

Consider the signature given in Example 1 and let S, D, req, rep, id , KSD be
names (S, D ∈ Nloc) and xL be a variable of sort lists. The process executed by
a node S initiating the search of a route towards a node D is:

Pinit(S, D) = new id .out(u1).in u2[ΦS ].0



where







u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)

The names of the intermediate nodes are accumulated in the route request
packet. Intermediate nodes relay the request over the network, except if they
have already seen it. An intermediate node also checks that the received request
is locally correct by verifying whether the head of the list in the request is one of
its neighbors. Below, V ∈ Nloc, xS , xD and xa are variables of sort loc whereas
xr is a variable of sort lists and xid , xm are variables of sort terms. The process
executed by an intermediary node V when forwarding a request is as follows:

Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2).0)

where















w1 = 〈req, xS , xD, xid , xa :: xr, xm〉
ΦV = check(V, xa)
t = 〈xS, xD, xid〉
w2 = 〈req, xS , xD, xid , V :: (xa :: xr), xm〉

When the request reaches the destination D, it checks that the request has a
correct hmac and that the first node in the route is one of his neighbors. Then,
D constructs a route reply, in particular it computes a new hmac over the route
accumulated in the request packet with KSD, and sends the answer back over
the network..

The process executed by the destination node D is the following:

Pdest(D, S) = in v1[ΦD].out(v2).0

where







v1 = 〈req, S, D, xid , xa :: xl, hmac(〈req, S, D, xid〉, KSD)〉
ΦD = check(D, xa)
v2 = 〈rep, D, S, xid , xa :: xl, hmac(〈D, S, xid , xa :: xr〉, KSD)〉

Then, the reply travels along the route back to S. The intermediary nodes
check that the route in the reply packet is locally correct (that is that they appear
once in the list and that the nodes before and after them are their neighbors)
before forwarding it. The process executed by an intermediary node V when
forwarding a reply is the following:

Prep(V ) = in w′[Φ′

V ].out(w′)

where

{

w′ = 〈rep, xD, xS , xid , xr, xm〉
Φ′

V = checkl(V, xr)

2.3 Execution model

Each process is located at a specified node of the network. Unlike classical Dolev-
Yao model, the intruder does not control the entire network but can only interact
with its neighbors. More specifically, we assume given a graph G = (V, E) with
V ⊆ Nloc, that represents the topology of the network. We assume that one
special node nI ∈ V is controlled by the intruder. This node is then called mali-
cious. A concrete configuration of the network is represented by a triplet (P;S; I)
where:



– P is a multiset of expressions of the form ⌊P ⌋n where null processes, i.e.
expressions of the form ⌊0⌋n are removed. ⌊P ⌋n represents the (ground)
process P located at the node n ∈ V . We will write ⌊P ⌋n ∪ P instead of
{⌊P ⌋n} ∪ P.

– S is a set of expressions of the form ⌊t⌋n with n ∈ V and t a ground term.
⌊t⌋n represents the fact that the node n has stored the term t.

– I is a set of terms representing the messages seen by the intruder.

Example 3. Consider the topology described below. A typical initial configura-
tion for the SRP protocol is

K0 = ⌊Pinit(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0

The nodes S and D want to communicate, ni is a malicious node whereas the
others, i.e. W and X are honest. We assume that each node has an empty storage
list and the initial knowledge of the intruder is I0.

W

X

nIS D

Each honest node broadcasts its message to all its neighbors. To capture more
malicious behaviors, we allow the node controlled by the intruder to send mes-
sages only to some specific neighbor. The communication system is formally de-
fined by the rules of Figure 2. They are parametrized by the underlying graph G.

The relation →∗ is the reflexive and transitive closure of →. We may write →G

instead of → when the underlying network topology G is not clear from the con-
text.

Example 4. Continuing Example 2, the following sequence of transitions is en-
abled from the initial configuration K0.

K0 →∗ ⌊in u2[ΦS ].0⌋S ∪ ⌊Pdest(D, S)⌋D; ∅; I0 ∪ {u1}

where







u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)

During this transition, S broadcasts a request to find a route to D to its
neighbors. The intruder nI is a neighbor of S, so he learns the request message.
Assuming that the intruder knows the names of its neighbors, i.e. W, X ∈ I0, he
can then build a fake message request:

m = 〈req, S, D, id, [X; W ; S], hmac(〈req, S, D, id, 〉, KSD)〉

and send it to D. Since (X, D) ∈ E, D accepts this message and the resulting
configuration of the transition is

⌊in u2[ΦS ].0⌋S ∪ ⌊out(v2σ).0⌋D; ∅; I0 ∪ {u1}

where

{

v2 = 〈rep, D, S, xid , xa :: xl, hmac(〈D, S, xid , xa :: xr〉, KSD)〉
σ = {id/xid

, X/xa
, [W ;S]/xL

}



{⌊in uj [Φj ].Pj⌋nj
| (n, nj) ∈ E ∧ [[Φjσj ]] = 1} → {⌊Pjσj⌋nj

} ∪ ⌊P ⌋n ∪ P;S; I′

∪ ⌊out(t).P ⌋n ∪ P;S; I
where σj = mgu(t, uj)



if (n, nI) ∈ E then I′ = I ∪ {t}
if (n, nI) /∈ E then I′ = I

⌊in u[Φ].P ⌋n ∪ P;S; I → ⌊Pσ⌋n ∪ P;S; I
if (nI , n) ∈ E, I ⊢ t, σ = mgu(t, u) and [[Φσ]] = 1

⌊store(t).P ⌋n ∪ P;S; I → ⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I

⌊read u then P else Q⌋n ∪ P; ⌊t⌋n ∪ S → ⌊Pσ⌋n ∪ P; ⌊t⌋n ∪ S; I
where σ = mgu(t, u)

⌊read u then P else Q⌋n ∪ P;S; I → ⌊Q⌋n ∪ P;S; I
if for all t such that ⌊t⌋n ∈ S, mgu(t, u) = ⊥

⌊if Φ then P else Q⌋n ∪ P;S; I → ⌊P ⌋n ∪ P;S; I if [[Φ]] = 1
⌊if Φ then P else Q⌋n ∪ P;S; I → ⌊Q⌋n ∪ P;S; I if [[Φ]] = 0

⌊P1 | P2⌋n ∪ P;S; I → ⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I
⌊!P ⌋n ∪ P;S; I → ⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I

where α is a renaming of the bound variables of P

⌊new m.P ⌋n ∪ P;S; I → ⌊P{m′

/m}⌋n ∪ P;S; I
where m′ is a fresh name

Fig. 2. Concrete transition system.

As usual, an attack is defined as a reachability property.

Definition 1. Let G be a graph. There is an attack on a configuration with
a hole (P[ ];S; I) for the network topology G and the formula Φ if there exist
n,P ′,S ′, I ′ such that (P[if Φ then out(error) else 0];S; I) →∗

G (⌊out(error)⌋n ∪
P ′,S ′, I ′) where error is a special symbol.

The usual secrecy property can be typically encoded by adding a witness process
in parallel. For example, the process W = in s. can only evolve if it receives the
secret s. Thus the secrecy preservation of s on a configuration (P;S; I) can be
defined by the (non) existence of an attack on the configuration (P∪⌊W ⌋nI

;S; I)
and the formula true.

Example 5. For SRP , the property we want to check is that the list of nodes
obtained by the source through the protocol represents a path in the graph.
We can easily encode this property by replacing the null process in Pinit(S, D)
by a hole, and testing the formula ¬route(xL). Let P ′

init(S, D) be the resulting
process. Then, we recover the attack mentioned in [4] with the topology given
in Example 3, and from the initial configuration:

K ′

0 = ⌊P ′

init(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0.



Indeed, we have that:

K ′

0 →∗ ⌊in u2[ΦS ].P ⌋S ∪ ⌊out(m′).0⌋D; ∅; I
→ ⌊in u2[ΦS ].P ⌋S ∪ ⌊0⌋D; ∅; I ′

→ ⌊if ¬route([X; W ; S]) then out(error).0 else 0⌋S ; ∅; I ′

→ ⌊out(error).0⌋S ; ∅; I ′

where







m′ = 〈rep, D, S, id, [X; W ; S], hmac(〈D, S, id, [X; W ; S]〉, KSD)〉
I = I0 ∪ {u1}, and
I ′ = I0 ∪ {u1} ∪ {m′}.

3 Symbolic semantics

It is difficult to directly reason with the transition system defined in Figure 2
since it is infinitely branching. Indeed, a potentially infinite number of distinct
messages can be sent at each step by the intruder node. That is why it is often
interesting to introduce a symbolic transition system where each intruder step
is captured by a single rule (e.g. [3]).

3.1 Constraint systems

As in [9, 5, 14], groups of executions can be represented using constraint systems.
However, compared to previous work, we have to enrich constraint systems in
order to cope with the formula that are checked upon the reception of a message
and also in order to cope with generalized disequality tests for reflecting cases
where agents reject messages of the wrong form.

Definition 2 (constraint system). A constraint system is a finite sequence C
of constraints of the form t = u (unification constraint), I  u (deduction
constraint), ∀X. t 6= u (disequality constraint), and Φ (formula of Lroute), where
t, u are terms, I is a non empty set of terms, and X is a set of variables.
Moreover, the sequence gives an order < on left hand sides of deduction and
unification constraints such that:

– If (I  u) ∈ C and (I ′
 u′) ∈ C, then either I ⊆ I′ and I ≤ I′, or I ′ ⊆ I

and I ′ ≤ I.
– If (T ⋆ u) ∈ C where ⋆ ∈ {=, } and x ∈ Var(T ), then

Tx = min<{T ′ | (T ′ ⋆ v) ∈ C, x ∈ Var(v), ⋆ ∈ {=, }}

exists and Tx < T .

The ordering condition ensures that variables are always introduced by an uni-
fication constraint or a deduction constraint, which is always the case when
modeling protocols. We denote by rvar(C) the set of variables introduced in C in
the right-hand-side of a unification constraint or a deduction constraint: rvar(C)
represents in fact all the free variables appearing in C.



A solution to a constraint system C is a ground substitution θ such that
dom(θ) = rvar(C) and for all T = U ∈ C, Tθ = Uθ; for all S  U ∈ C, Sθ ⊢ Uθ;
for all (∀X. T 6= U) ∈ C, then Tθ and Uθ are not unifiable (even renaming the
variables of X with fresh variables); and for all formula Φ, [[Φσ]] = 1.

Example 6. Let C = {I0 ∪ {u1}  v1; I0 ∪ {u1, v2}  u2; ΦS ; ¬route(xL)}

with























u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S, D, xid , xa :: xl, hmac(〈req, S, D, xid〉, KSD)〉
v2 = 〈rep, D, S, xid , xa :: xl, hmac(〈D, S, xid , xa :: xr〉, KSD)〉

We have that C is a constraint system, and σ = {id/xid
, X/xa

, [W ;S]/xL
} is a

solution of the constraint system C.

3.2 Transition system

Concrete executions can be finitely represented by executing the transitions sym-
bolically. A symbolic configuration is a quadruplet P;S; I, C where

– P is a multiset of expressions of the form ⌊P ⌋n where null processes are
removed. ⌊P ⌋n represents the process P located at the node n ∈ V ;

– S is a set of expressions of the form ⌊t⌋n with n ∈ V and t a term (not
necessarily ground).

– I is a set of terms representing the messages seen by the intruder.
– C is a constraint system.

Symbolic transitions are defined in Figure 3, they mimic concrete ones. In
particular, for the second rule, the set I of processes ready to input a message
is split into three sets: the set J of processes that accept the message T , the
set K of processes that reject the message T because T does not unify with
the expected pattern Uj , and the set L that reject the message T because the
condition φ is not fulfilled.

We can easily check that whenever P;S; I, C →s P ′;S ′; I ′, C′ where P;S; I, C
is a symbolic configuration then P ′;S ′; I ′, C′ is still a symbolic configuration, that
is C′ is a constraint system.

Example 7. For example, executing the same transitions as in Example 5 sym-
bolically, we reach the following configuration :

Ks = ⌊out(error).0⌋S ; ∅; I0 ∪ {u1, v2}; C

where C is the constraint system defined in Example 6.

3.3 Soundness and completeness

We show that our symbolic transition system reflects exactly the concrete tran-
sition system, i.e. each concrete execution of a process is captured by one of the



{⌊in ui[Φi].P
′

i ⌋ni
| i ∈ I}

→s
{⌊P ′

j⌋nj
| j ∈ J} ∪ ⌊P ⌋n

⌊out(t).P ⌋n ∪ P;S; I; C ∪ {⌊in uk[Φk].P ′

k⌋nk
| k ∈ K ∪ L} ∪ P;S; I′;

C ∪ {t = uj ; Φj | j ∈ J}
∪ {∀(Var(uk) r rvar(C)). t 6= uk | k ∈ K}
∪ {t = ulαl; ¬Φlαl | l ∈ L}

where ⌊P ′⌋n′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form in U ′[Φ′].Q′,
I = J ⊎ K ⊎ L, and αl is a renaming of Var(uk) r rvar(C) by fresh variables

if (n, nI) ∈ E then I′ = I ∪ {t} else I′ = I.
⌊in u[Φ].P ⌋n ∪ P;S; I; C →s ⌊P ⌋n ∪ P;S; I; C ∪ {I  u; Φ} if (nI , n) ∈ E

⌊store(t).P ⌋n ∪ P;S; I; C →s ⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I; C
⌊read u then P else Q⌋n ∪ P;S; I; C →s ⌊P ⌋n ∪ P;S; I; C ∪ {t = u} where ⌊t⌋n ∈ S
⌊read u then P else Q⌋n ∪ P;S; I; C →s ⌊Q⌋n ∪ P;S; I; C ∪ {∀X. t 6= u | ⌊t⌋n ∈ S}

where X = Var(u) r rvar(C)

⌊if Φ then P else Q⌋n ∪ P;S; I; C →s ⌊P ⌋n ∪ P;S; I; C ∪ {Φ}
⌊if Φ then P else Q⌋n ∪ P;S; I; C →s ⌊Q⌋n ∪ P;S; I; C ∪ {¬Φ}

⌊P1 | P2⌋n ∪ P;S; I; C →s ⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I; C
⌊!P ⌋n ∪ P;S; I; C →s ⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I; C

where α is a renaming of the bound variables of P

⌊new m.P ⌋n ∪ P;S; I; C →s ⌊P{m′

/m}⌋n ∪ P;S; I; C
where m′ is a fresh name

Fig. 3. Symbolic transition system.

symbolic execution. To do that, we explain how a concrete and a symbolic exe-
cution match each other, and by a case study, we show that the link is preserved
when taking a transition (see detailed proofs in Appendix ??).

Proposition 1. Let K = P[ ];S; I be a concrete configuration with a hole, and
Φ a formula. Then there is an attack on K and Φ if and only if
P[if Φ then out(error) else 0];S; I, ∅ →∗

s ⌊out(u).Ps⌋n ∪Ps;Ss; Is; C and the con-
straint system C ∪ {error = u} has a solution.

We deduce that checking for an attack can be reduced to checking the exis-
tence of a solution for reachable constraint systems.

Example 8. Consider our former example of an attack on SRP , with initial con-
figuration K0. We can reach the configuration Ks, and the constraint system
C ∪ {error = error} has a solution σ (cf. Example 6), so there is an attack on K0.

Note that our result holds for any signature, for any choice of predicates, and
for processes possibly with replication. Of course, it then remains to decide the
existence of a constraint system that has a solution.



4 Decidability result

In this section, we restrict ourselves to processes:

– without replication,

– where nodes can only perform neighborhood tests on themselves, i.e. when-
ever check(a, b) or checkl(a, l) appears in a process P , then P is encapsulated
in node a,

– defined over the signature considered in Example 1 and formula of the logic
Lroute restricted to formulas where the predicate route does not appear (In-
tuitively, nodes do not have the possibility to check the validity of an entire
route).

We also restrict ourselves to properties Φ ∈ Lroute such that, if Φ′ is the disjunc-
tive normal form of Φ, whenever the predicate route appears in Φ′, it is always
negated.

We also assume that the intruder is initially given an infinite number of names
that he can use as its will, in particular for possibly passing some disequality
constraints.

A concrete configuration (K = P[];S; I) is said initial if K is ground and if
Nloc ⊆ I.

Our second main contribution is to show that accessibility properties are
decidable for a class of processes that model secure routing protocols, for a
bounded number of sessions.

Theorem 1. Let G be a finite graph, K be an initial concrete configuration and
Φ a property. Deciding whether there is an attack on K and Φ for the topology
G is NP-complete.

Theorem 1 ensures in particular that we can decide whether a routing pro-
tocol like SRP can guaranty that any route accepted by the source is indeed a
route (a path) in the network. The proof of Theorem 1 involves several steps.

1. First, since processes contain no replication, Proposition 1 ensures that it
is sufficient to decide the existence of a solution for our class of constraint
systems.

2. It has been shown in [5] that the existence of a solution of a constraint
system (with only deduction constraints) can be reduced to the existence
of a solution of a solved constraint system, where right-hand-sides of the
constraints are variables only. We have extended this result to our generalized
notion of constraint systems, i.e. with disequality tests and formula of L1,
and for an intruder knowledge with an infinite number of names.

3. We then show how to decide the existence of a solution for a solved constraint
system. It is not straightforward like in [5] since we are left with (non solved)
disequality constraints and formula. The key step consists in showing that
we can bound (polynomially) the size of the lists in a minimal attack.



5 Conclusion

We have shown that, for general processes that can reflect a given network topol-
ogy, existence of attacks can be reduced to existence of constraint systems with
a solution. As an illustration, for a large class of processes without replication
that captures routing protocol like SRP applied on DSR, we have proved that
the existence of an attack is NP-complete. In particular, we generalize existing
works on solving constraint systems to properties like the validity of a route and
to protocols with broadcasting.

Our results hold for an arbitrary (but fixed and finite) graph. We believe that
we could adapt our techniques for deciding the existence of a network topology
that would lead to an attack but this is left as future work. We also plan to
consider how to model changes in the network topology in order to analyze the
security of route updates.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001.

2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th Conference on Computer and Communications Security (CCS’97),
pages 36–47. ACM Press, 1997.

3. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. Theoretical Computer Science, 290(1):695–740, 2002.

4. L. Buttyán and I. Vajda. Towards Provable Security for Ad Hoc Routing Protocols.
In SASN ’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks, pages 94–105, New York, NY, USA, 2004. ACM.

5. V. Cortier, H. Comon-Lundh, and E. Zalinescu. Deciding security properties for
cryptographic protocols. application to key cycles. ACM Transactions on Compu-
tational Logic (TOCL), 2009. To appear.

6. Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A Secure On-Demand Routing
Protocol for Ad Hoc Networks. Wireless Networks, 11:21–38, January 2005.

7. D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic Source Routing Protocol
for multi-hop wireless ad hoc networks. In Ad Hoc Networking, pages 139–172,
2001.

8. D. B. Johnson, D. A. Maltz, and J. Broch. Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. In In Ad Hoc Networking, edited
by Charles E. Perkins, Chapter 5, pages 139–172. Addison-Wesley, 2001.

9. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. of the 8th ACM Conference on Computer and Commu-
nications Security (CCS’01), 2001.

10. S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless
Networks. Theor. Comput. Sci., 367(1):203–227, 2006.

11. P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In
Proc. SCS Communication Networks and Distributed Systems Modelling Simula-
tion Conference (CNDS), 2002.



12. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6(1-2):85–128, 1998.

13. C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand distance vector routing.
In Proc. 2nd Workshop on Mobile Computing Systems and Applications (WMCSA
’99), pages 90–100, New Orleans, LA, USA, 1999.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of ses-
sions is NP-complete. In Proc. 14th Computer Security Foundations Workshop
(CSFW’01), pages 174–190. IEEE Comp. Soc. Press, 2001.

15. P. Schaller, B. Schmidt, D. Basin, and S. Capkun. Modeling and verifying physical
properties of security protocols for wireless networks. In Proc. 22nd Computer
Security Foundations Symposium (CSF’09). IEEE Comp. Soc. Press, 2009.

16. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(1), 1999.

17. S. Yang and J. S. Baras. Modeling vulnerabilities of ad hoc routing protocols. In
Proc. 1st ACM Workshop on Security of ad hoc and Sensor Networks (SASN’03),
pages 12–20, 2003.

18. M. G. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proc. 1st ACM
workshop on Wireless SEcurity (WiSE’02), pages 1–10, New York, NY, USA, 2002.
ACM.


