
Modeling and Verifying Ad Hoc Routing Protocols

Mathilde Arnaud∗†, Véronique Cortier∗ and Stéphanie Delaune†

∗ LORIA, CNRS & INRIA Nancy Grand Est, France

Email: cortier@loria.fr
† LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France

Email: arnaud@lsv.ens-cachan.fr, delaune@lsv.ens-cachan.fr

Abstract—Mobile ad hoc networks consist of mobile wireless
devices which autonomously organize their infrastructure. In
such networks, a central issue, ensured by routing protocols,
is to find a route from one device to another. Those protocols
use cryptographic mechanisms in order to prevent malicious
nodes from compromising the discovered route.

Our contribution is twofold. We first propose a calculus for
modeling and reasoning about security protocols, including in
particular secured routing protocols. Our calculus extends stan-
dard symbolic models to take into account the characteristics
of routing protocols and to model wireless communication in a
more accurate way. Our second main contribution is a decision
procedure for analyzing routing protocols for any network
topology. By using constraint solving techniques, we show that
it is possible to automatically discover (in NPTIME) whether
there exists a network topology that would allow malicious
nodes to mount an attack against the protocol, for a bounded
number of sessions. We also provide a decision procedure for
detecting attacks in case the network topology is given a priori.
We demonstrate the usage and usefulness of our approach by
analyzing the protocol SRP applied to DSR .

I. INTRODUCTION

Mobile ad hoc networks consist of mobile wireless de-

vices which autonomously organize their communication

infrastructure: each node provides the function of a router

and relays packets on paths to other nodes. Finding these

paths is a crucial functionality of any ad hoc network.

Specific protocols, called routing protocols, are designed to

ensure this functionality known as route discovery.

Prior research in ad hoc networking has generally studied

the routing problem in a non-adversarial setting, assuming a

trusted environment. Thus, many of the currently proposed

routing protocols for mobile ad hoc networks are assumed to

be used in a friendly environment (e.g. [22], [15]). Recent

research has recognized that this assumption is unrealistic

and that attacks can be mounted [13], [19], [9]. Since an

adversary can easily paralyse the operation of a whole net-

work by attacking the routing protocol, it is crucial to prevent

malicious nodes from compromising the discovered routes.

Since then, secured versions of routing protocols have been

developed to ensure that mobile ad hoc networks can work

even in an adversarial setting [27], [13], [20]. Those routing

This work has been partially supported by the ANR-07-SESU-002
AVOTÉ.

protocols use cryptographic mechanisms such as encryption,

signature, MAC, in order to prevent a malicious node to

insert and delete nodes inside a path.

Formal modeling and analysis techniques are well-adapted

for checking correctness of security protocols. Formal meth-

ods have for example been successfully used for authentica-

tion or key establishment security protocols and a multitude

of effective frameworks have been proposed (e.g. the Paul-

son inductive model [21], the strand spaces model [25], the

applied-pi calculus [1] or constraints systems [23] to cite

only a few). While secrecy and authentication properties

have been shown undecidable in the general case [12],

many decision procedures have been proposed. For exam-

ple, secrecy and authentication become NP-complete for a

bounded number of sessions [23] and Bruno Blanchet has

developed a procedure for security protocols encoded as

Horn clauses [7]. This yielded various efficient tools for

detecting flaws and proving security (e.g. ProVerif [8] or

Avispa [5]).

While key-exchange protocols are well-studied in tradi-

tional networks, there are very few attempts to develop

formal techniques allowing an automated analysis of secured

routing protocols. Up to our knowledge, tools that would

allow the security analysis of routing protocols are also

missing. Those protocols indeed involve several subtleties

that cannot be reflected in existing work. For example, the

underlying network topology is crucial to define who can

receive the messages sent by a node and the intruder is

localized to some specific nodes (possibly several nodes).

Moreover, the security properties include e.g. the validity of

a route, which differ from the usual secrecy and authenticity

properties.

Our contributions. The first main contribution of this paper

is the proposition of a calculus, inspired from CBS# [19],

which allows ad hoc networks and their security properties

to be formally described and analyzed. We do not take

mobility into account in the sense that the topology of the

network does not change during our analysis. We propose

in particular a logic to express the tests performed by the

nodes at each step. It allows for example checking whether a

route is “locally” valid, given the information known by the

node. We model cryptography as a black box (the perfect

cryptography assumption), thus the attacker cannot break

cryptography, e.g. decrypt a message without having the

appropriate decryption key. To model routing protocols in an

accurate way, some features need to be taken into account.

Among them:

• Network topology: nodes can only communicate (in a

direct way) with their neighbor.

• Broadcast communication: the main mode of communi-

cation is broadcasting and only adjacent nodes receive

messages.

• Internal states: nodes are not memory-less but store

some information in routing tables with impact on

future actions.

There are also some implications for the attacker model.

Indeed, in most existing formal approaches, the attacker

controls the entire network. This abstraction is reasonable

for reasoning about classical protocols. However, in the

context of routing protocols, this attacker model is too strong

and leads to a number of false attacks. The constraints on

communication also apply to the attacker. Our model reflects

the fact that a malicious node can interfere directly only with

his neighbors.

We would like to emphasize that our model is not strictly

dedicated to routing protocols but can be used to model

many other classes of protocols. In particular, by considering

a special network topology where the attacker is at the center

of the network, we retrieve the classical modeling where the

attacker controls all the communications. We thus can model

as usual all the key exchange and authenticity protocols

presented e.g. in the Clark & Jacob library [10]. Since we

also provide each node with a memory, our model can also

capture protocols where a state global to all sessions is

assumed for each agent. It is the case of protocols where an

agent should check that a key has not been already accepted

in a previous session, in order to protect the protocol against

replay attacks.

Our second main contribution is to provide two NP

decision procedures for analyzing routing protocols for a

bounded number of sessions. For a fixed set of roles and

sessions, our first decision procedure allows to discover

whether there exists a network topology and a malicious

behavior of some nodes that yield an attack. Using similar

ingredients, we can also decide whether there exists an

attack, for a network topology chosen by the user. Our two

procedures hold for any property that can be expressed in

our logic, which includes classical properties such as secrecy

as well as properties more specific to routing protocols such

as route validity.

The main ingredients of our decision procedures are as

follows. We first propose a symbolic semantics for our

execution model and show how the analysis of routing

protocols can be reduced to (generalized) constraint sys-

tems solving. We then adapt and generalize existing tech-

niques [11] for solving our more general constraint systems.

We show in particular that minimal attacks (whether the

underlying network topology is fixed or not) require at most

a polynomially bounded number of nodes. We demonstrate

the usage and usefulness of our model and techniques by

analyzing SRP (Secured Routing Protocol) [20] applied on

the protocol DSR (Dynamic Source Routing Protocol) [16].

This allows us to retrieve an attack presented first in [9].

Related work. Recently, some frameworks have been pro-

posed to model wireless communication and/or routing

protocols in a more accurate way. For example, Yang

and Baras [26] provide a first symbolic model for routing

protocols based on strand spaces, modeling the network

topology but not the cryptographic primitives that can be

used for securing communications. They also implement

a semi-decision procedure to search for attacks. Buttyán

and Vadja [9] provide a cryptographic model for routing

protocols, in a cryptographic setting. They provide a security

proof (by hand) for a fixed protocol. Ács [3] uses a similar

cryptographic model and provides proofs of security (or

insecurity) for several protocols, but his method is not

automatic. Nanz and Hankin [19] propose a process calculus

to model the network topology and broadcast communica-

tions. They analyze scenarios with special topologies and

attacker configuration by computing an over-approximation

of reachable states. Their analysis is safe in the sense that

it does not find flaws if the protocol is secure. The model

proposed in this paper is inspired from their work, adding in

particular a logic for specifying the tests performed at each

step by the nodes on the current route and to specify the

security properties. Schaller et al [24] propose a symbolic

model that allows an accurate representation of the physical

properties of the network, in particular the speed of the

communication. This allows in particular to study distance

bounding protocols. Several security proofs are provided for

some fixed protocols, formalized in Isabelle/HOL. However,

no generic procedure is proposed for proving security.

To our knowledge, our paper presents the first decidability

and complexity result for routing protocols, for arbitrary

intruders and network topologies. Moreover, since we reuse

existing techniques on solving constraint systems, our deci-

sion procedure seems amenable to implementation, re-using

existing tools (such as Avispa [5]).

Outline. Section II presents our formal model for rout-

ing protocol. It is illustrated with the modeling of

the SRP protocol. We then give an alternative symbolic

semantics in Section III, more amenable to automation,

and we show its correctness and completeness w.r.t. the

concrete semantics. Finally, we state our main decidability

result in Section IV and present a sketch of its proof. Some

concluding remarks can be found in Section V. Detailed

proofs of our result can be found in [6].

II. MODEL FOR PROTOCOLS

A. Messages

Cryptographic primitives are represented by function sym-

bols. More specifically, we consider a signature (S,F) made

of a set of sorts S and function symbols F together with

arities of the form ar(f) = s1 × . . . × sk → s. We consider

an infinite set of variables X and an infinite set of names N
that typically represent nonces or agent names. In particular,

we consider a special sort loc for the nodes of the network.

We assume that names and variables are given with sorts.

We also assume an infinite subset Nloc of names of sort loc.

The set of terms of sort s is defined inductively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where ar(f) = s1 × . . .× sk → s and ti is a term of some

sort si.

We assume a special sort terms that subsumes all the

other sorts and such that any term is of sort terms. We

write var(t) the set of variables occurring in a term t and

St(t) the syntactic subterms of t. The term t is said to be a

ground term if var(t) = ∅.

Example 1: For example, we will consider the specific

signature (S1,F1) defined by S1 = {loc, lists, terms} and

F1 = {hmac, 〈〉, ::,⊥, { } }, with the following arities:

• hmac : terms × terms → terms,

• 〈 , 〉 : terms × terms → terms,

• :: : loc × lists → lists,

• ⊥ :→ lists,

• { } : terms × terms → terms.

The sort lists represents lists of terms of sort loc. The

symbol :: is the list constructor. ⊥ is a constant representing

an empty list. The term hmac(m, k) represents the keyed

hash message authentication code computed over message m
with key k while 〈〉 is a pairing operator. The term {m}k

represents the message m encrypted by the key k. We write

〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉, and [t1; t2; t3] for t1 ::
(t2 :: (t3 :: ⊥)).

Substitutions are written σ = {t1/x1
, . . . , tn/xn

} with

dom(σ) = {x1, . . . , xn}. We only consider well-sorted

substitutions, that is substitutions for which xi and ti have

the same sort. The substitution σ is ground if and only if

all of the ti are ground. The application of a substitution σ
to a term t is written σ(t) or tσ. A most general unifier of

two terms t and u is a substitution denoted by mgu(t, u).
We write mgu(t, u) = ⊥ when t and u are not unifiable.

The ability of the intruder is modeled by a deduction

relation ⊢⊆ 2terms×terms. The relation T ⊢ t represents the

fact that the term t is computable from the set of terms T .

T ⊢ a T ⊢ l

T ⊢ a :: l

T ⊢ a :: l

T ⊢ a

T ⊢ a :: l

T ⊢ l

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ 〈u, v〉

T ⊢ v

T ⊢ u T ⊢ v

T ⊢ {u}v

T ⊢ {u}v T ⊢ v

T ⊢ u

T ⊢ u T ⊢ v

T ⊢ hmac(u, v)

u ∈ T

T ⊢ u

Figure 1. Example of deduction system.

The deduction relation can be arbitrary in our model thus is

left unspecified. It is typically defined through a deduction

system. For example, for the term algebra (S1,F1) defined

in Example 1, the deduction system presented in Figure 1

reflects the ability for the intruder to concatenate terms, to

compute MAC when he knows the key, to build lists, to

encrypt and decrypt when he knows the key. Moreover, he

is able to retrieve components of a pair or a list.

B. Process calculus

Several calculi already exist to model security protocols

(e.g. [2], [1]). However, modeling ad-hoc routing protocoles

require several features. For instance, a node of the network

may store some information, e.g. the content of its routing

table. We also need to take into account the network topol-

ogy and to model broadcast communication. Such features

can not be easily modeled in these calculi. Actually, our

calculus is inspired from CBS# [19], which allows mobile

wireless networks and their security properties to be formally

described and analyzed. However, we extend this calculus

to allow nodes to perform some sanity checks on the routes

they receive, such as neighborhood properties.

The intended behavior of each node of the network can be

modeled by a process defined by the grammar given below.

Our calculus is parametrized by a set L of formulas.

P, Q ::= Processes

0 null process

out(u).P emission

in u[Φ].P reception, Φ ∈ L
store(u).P storage

read u then P else Q reading

if Φ then P else Q conditional, Φ ∈ L
P | Q parallel composition

!P replication

new m.P fresh name generation

The process out(u).P emits u and then behaves like P .

The process in u[Φ].P expects a message m of the form u

such that Φ is true and then behaves like Pσ where σ is

such that m = uσ. If Φ is the true formula, we simply write

in u.P . The process store(u).P stores u in its storage list

and then behaves like P . The process read u then P else Q
looks for a message of the form u in its storage list and then,

if such an element m is found, it behaves like Pσ where σ
is such that m = uσ. If no element of the form u is found,

then it behaves like Q. Sometimes, for the sake of clarity,

we will omit the null process. We also omit the else part

when Q = 0. We write fv(P) for the set of free variables

of P . A process P is ground when fv(P) = ∅.

The store and read primitives are particularly important

when modeling routing protocols, in order to avoid multiple

answers to a single request or to allow nodes to store and

retrieve already known routes. These primitives can also be

used to represent other classes of protocols, where a global

state is assumed for each agent, in order to store some

information (black list, already used keys. etc.) throughout

the sessions.

Secured routing protocols typically perform some checks

on the message they received before accepting it. Thus

we will typically consider the logic Lroute defined by the

following grammar:

Φ ::= Formula

check(a, b) neighborhood of two nodes

checkl(c, l) local neighborhood of a

node in a list

route(l) validity of a route

loop(l) existence of a loop in a list

Φ1 ∧ Φ2 conjunction

Φ1 ∨ Φ2 disjunction

¬Φ negation

Given an undirected graph G = (V, E) with V ⊆ Nloc,

the semantics [[Φ]]G of a formula Φ ∈ Lroute is recursively

defined as follows:

• [[check(a, b)]]G = 1 iff (a, b) ∈ E with a, b of sort loc,

• [[checkl(c, l)]]G = 1 iff c is of sort loc, l is of sort lists,

c appears exactly once in l, and for any l′ sub-list of l,

– if l′ = a :: c :: l1, then (a, c) ∈ E.

– if l′ = c :: b :: l1, then (b, c) ∈ E.

• [[route(l)]]G = 1 iff l is of sort lists, l = a1 :: . . . :: an,

for every 1 ≤ i < n, (ai, ai+1) ∈ E, and for every

1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj .

• [[loop(l)]]G iff l is of sort lists and there exists an

element appearing at least twice in l,
• [[Φ1 ∧ Φ2]]G = [[Φ1]]G ∧ [[Φ2]]G,

• [[Φ1 ∨ Φ2]]G = [[Φ1]]G ∨ [[Φ2]]G, and

• [[¬Φ]]G = ¬[[Φ]]G.

C. Example: modeling the SRP protocol

We consider the secured routing protocol SRP introduced

in [20], assuming that each node already knows his neigh-

bors (running e.g. some neighbor discovery protocol).

SRP is not a routing protocol by itself, it describes a

generic way for securing source-routing protocols. We model

here its application to the DSR protocol [16]. DSR is a

protocol which is used when an agent S (the source) wants

to communicate with another agent D (the destination),

which is not his immediate neighbor. In an ad hoc network,

messages can not be sent directly to the destination, but have

to travel along a path of nodes.

To discover a route to the destination, the source con-

structs a request packet and broadcasts it to its neighbors.

The request packet contains its name S, the name of the

destination D, an identifier of the request id , a list containing

the beginning of a route to D, and a hmac computed over the

content of the request with a key KSD shared by S and D.

It then waits for an answer containing a route to D with a

hmac matching this route, and checks that it is a plausible

route by checking that the route does not contain a loop and

that his neighbor in the route is indeed a neighbor of S in

the network.

Consider the signature given in Example 1 and let

S, D, req, rep, id , KSD be names (S, D ∈ Nloc) and xL be

a variable of sort lists. The process executed by a source

node S initiating the search of a route towards a destination

node D is Pinit(S, D) = new id .out(u1).in u2[ΦS].0 where:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL).

The names of the intermediate nodes are accumulated in

the route request packet. Intermediate nodes relay the request

over the network, except if they have already seen it. An

intermediate node also checks that the received request is

locally correct by verifying whether the head of the list in

the request is one of its neighbors. Below, V ∈ Nloc, xS , xD

and xa are variables of sort loc whereas xr is a variable of

sort lists and xid , xm are variables of sort terms. The process

executed by an intermediary node V when forwarding a

request is as follows:

Preq(V) = in w1[ΦV].read t then 0 else (store(t).out(w2))

where

w1 = 〈req, xS , xD, xid , xa :: xr, xm〉
ΦV = check(V, xa)
t = 〈xS , xD, xid〉
w2 = 〈req, xS , xD, xid , V :: (xa :: xr), xm〉

When the request reaches the destination D, it checks

that the request has a correct hmac and that the first node in

the route is one of his neighbors. Then, the destination D
constructs a route reply, in particular it computes a new hmac

over the route accumulated in the request packet with KSD,

and sends the answer back over the network.

The process executed by the destination node D is:

Pdest(D, S) = in v1[ΦD].out(v2).0

where:

v1 = 〈req, S, D, xid , xa :: xl, hmac(〈req, S, D, xid〉, KSD)〉
ΦD = check(D, xa)
v2 = 〈rep, D, S, xid , xa :: xl,

hmac(〈rep, D, S, xid , xa :: xl〉, KSD)〉

Then, the reply travels along the route back to S. The

intermediate nodes check that the route in the reply packet

is locally correct (i.e. they check that their name appear

once in the list and that the nodes before and after them are

their neighbors) before forwarding it. The process executed

by an intermediate node V when forwarding a reply is the

following:

Prep(V) = in w′[Φ′

V].out(w′).0

where

{

w′ = 〈rep, xD, xS , xid , xr, xm〉
Φ′

V = checkl(V, xr)

D. Execution model

Each process is located at a specified node of the network.

Unlike classical Dolev-Yao model, the intruder does not

control the entire network but can only interact with his

neighbors. More specifically, we assume that the topology

of the network is represented by an undirected graph G =
(V, E) with V ⊆ Nloc, where an edge in the graph models

the fact that two nodes are neighbors. We also assume that

we have a set of nodes M ⊆ V that are controlled by the

attacker. These nodes are then called malicious. Our model

is not restricted to a single malicious node. Our results allow

us to consider the case of several compromised nodes that

collaborate by sharing their knowledge. However, it is well-

known that the presence of several colluding malicious nodes

often yields straightforward attacks [14], [17].

A (ground) concrete configuration of the network is a

triplet (P;S; I) where:

• P is a multiset of expressions of the form ⌊P ⌋n

where null processes, i.e. expressions of the form ⌊0⌋n

are removed. ⌊P ⌋n represents the (ground) process P
located at node n ∈ V . We will write ⌊P ⌋n∪P instead

of {⌊P ⌋n} ∪ P .

• S is a set of expressions of the form ⌊t⌋n with n ∈ V
and t a ground term. ⌊t⌋n represents the fact that the

node n has stored the term t.
• I is a set of ground terms representing the messages

seen by the intruder.

Example 2: Continuing our modeling of SRP , a possi-

ble initial configuration for the SRP protocol is

K0 = (⌊Pinit(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0)

where both the source node S and the destination node D
wish to communicate. A more realistic configuration would

include intermediary nodes but as shown in the next exam-

ples, this initial configuration is already sufficient to present

an attack. We assume that each node has an empty storage

list and that the initial knowledge of the intruder is given by

an infinite set of terms I0. A possible network configuration

is modeled by the graph G0 below. We assume that there

is a single malicious node, i.e. M0 = {nI}. The nodes W
and X are two extra (honest) nodes. We do not need to

assume that the intermediate nodes W and X execute the

routing protocol.

W

X

nIS D

Each honest node broadcasts its messages to all its

neighbors. To capture more malicious behaviors, we allow

the nodes controlled by the intruder to send messages

only to some specific neighbor. The communication system

is formally defined by the rules of Figure 2. They are

parameterized by the underlying graph G and the set of

malicious nodes M.

The relation →∗
G,M is the reflexive and transitive closure

of →G,M. We may write →, →G, →M instead of →G,M

when the underlying network topology G or the underlying

set M is clear from the context.

Note that in case we assume that there is a single

malicious node and each honest node is connected to it

(and only to it), we retrieve the model where the attacker is

assumed to control all the communications.

Example 3: Continuing the example developed in Sec-

tion II-C, the following sequence of transitions is enabled

from the initial configuration K0:

K0→
∗

G0,M0
(⌊in u2[ΦS].0⌋S ∪⌊Pdest(D, S)⌋D; ∅; I0∪{u1})

where u1, u2, ΦS have already been defined in the previous

section:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)

During this transition, S broadcasts to its neighbors a re-

quest for finding a route to D. The intruder nI is a neighbor

of S in G0, so he learns the request message. Assuming

that the intruder knows the names of his neighbors, i.e.

W, X ∈ I0, he can then build the following fake message

request:

m = 〈req, S, D, id, [X; W ; S], hmac(〈req, S, D, id〉, KSD)〉

and broadcast it. Since (X, D) ∈ E, the node D accepts this

message and the resulting configuration is

(⌊in u2[ΦS].0⌋S ∪ ⌊out(v2σ).0⌋D; ∅; I0 ∪ {u1})

COMM ({⌊in uj [Φj].Pj⌋nj
| mgu(t, uj) 6= ⊥, [[Φjσj]]G = 1,

→G,M
({⌊Pjσj⌋nj

} ∪ ⌊P ⌋n ∪ P;S; I ′)
(n, nj) ∈ E} ∪ ⌊out(t).P ⌋n ∪ P;S; I)

where σj = mgu(t, uj), I ′ = I ∪ {t} if (n, nI) ∈ E for some nI ∈ M and I ′ = I otherwise.

IN (⌊in u[Φ].P ⌋n ∪ P;S; I) →G,M (⌊Pσ⌋n ∪ P;S; I)
if (nI , n) ∈ E for some nI ∈ M, I ⊢ t, σ = mgu(t, u) and [[Φσ]]G = 1

STORE (⌊store(t).P ⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I)

READ-THEN (⌊read u then P else Q⌋n ∪ P; ⌊t⌋n ∪ S; I) →G,M (⌊Pσ⌋n ∪ P; ⌊t⌋n ∪ S; I)
where σ = mgu(t, u)

READ-ELSE (⌊read u then P else Q⌋n ∪ P;S; I) →G,M (⌊Q⌋n ∪ P;S; I)
if for all t such that ⌊t⌋n ∈ S, mgu(t, u) = ⊥

IF-ELSE (⌊if Φ then P else Q⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P;S; I) if [[Φ]]G = 1
IF-THEN (⌊if Φ then P else Q⌋n ∪ P;S; I) →G,M (⌊Q⌋n ∪ P;S; I) if [[Φ]]G = 0

PAR (⌊P1 | P2⌋n ∪ P;S; I) →G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I)
REPL (⌊!P ⌋n ∪ P;S; I) →G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I)

where α is a renaming of the bound variables of P

NEW (⌊new m.P ⌋n ∪ P;S; I) →G,M (⌊P{m′

/m}⌋n ∪ P;S; I)
where m′ is a fresh name

Figure 2. Concrete transition system.

where

v2 = 〈rep, D, S, xid , xa :: xl,
hmac(〈D, S, xid , xa :: xl〉, KSD)〉

σ = {id/xid
, X/xa

, [W ;S]/xl
}

As usual, an attack is defined as a reachability property.

Definition 1: Let G be a graph and M be a set of

nodes. There is an M-attack on a configuration with a hole

(P[];S; I) for the network topology G and the formula Φ
if there exist n,P ′,S ′, I ′ such that:

(P[if Φ then out(error)];S; I)
→∗

G,M (⌊out(error)⌋n ∪ P ′,S ′, I ′)

where error is a special symbol not occurring in the config-

uration (P[];S; I).

The usual secrecy property can be typically encoded

by adding a witness process in parallel. For example, the

process W = in s. can only evolve if it receives

the secret s. Thus the secrecy preservation of s on a

configuration (P;S; I) for a graph G = (V, E) can be

defined by the (non) existence of an {nI}-attack on the

configuration (P ∪ ⌊W ⌋n;S; I) and the formula true for

the graph G′ = (V ∪ {n}, E ∪ {(n, nI)}).

Example 4: For the SRP protocol, the property we want

to check is that the list of nodes obtained by the source

through the protocol represents a path in the graph. We can

easily encode this property by replacing the null process

in Pinit(S, D) by a hole, and checking whether the formula

¬route(xL) holds. Let P ′
init(S, D) be the resulting process.

P ′
init(S, D) = new id .out(u1).in u2[ΦS].P

where P = if ¬route(xL) then out(error). Then, we recover

the attack mentioned in [9] with the topology G0 given in

Example 2, and from the initial configuration:

K ′
0 = (⌊P ′

init(S, D)⌋S | ⌊Pdest(D, S)⌋D; ∅; I0).

Indeed, we have that:

K ′
0 →∗ (⌊in u2[ΦS].P ⌋S ∪ ⌊out(m′).0⌋D; ∅; I)
→ (⌊in u2[ΦS].P ⌋S ∪ ⌊0⌋D; ∅; I ′)
→ (⌊if¬route([X; W ; S]) then out(error)⌋S ; ∅; I ′)
→ (⌊out(error).0⌋S ; ∅; I ′)

where

m′ = 〈rep, D, S, id, [X; W ; S],
hmac(〈D, S, id, [X; W ; S]〉, KSD)〉

I = I0 ∪ {u1}, and

I ′ = I0 ∪ {u1} ∪ {m′}.

III. SYMBOLIC SEMANTICS

It is difficult to directly reason with the transition system

defined in Figure 2 since it is infinitely branching. Indeed, a

potentially infinite number of distinct messages can be sent

at each step by the intruder node. That is why it is often

interesting to introduce a symbolic transition system where

each intruder step is captured by a single rule (e.g. [4]).

A. Constraint systems

As in [18], [11], [23], groups of executions can be

represented using constraint systems. However, compared

to previous work, we have to enrich constraint systems

in order to cope with the formulas that are checked upon

the reception of a message and also in order to cope

with generalized disequality tests for reflecting cases where

agents reject messages of the wrong form.

Definition 2: A constraint system C is a finite conjunc-

tion of constraints of the form v = u (unification constraint),

I u (deduction constraint), ∀X. v 6= u (disequality

constraint), and Φ (formula of Lroute), where v, u are terms,

I is a non empty set of terms, and X is a set of variables.

Moreover, we assume that the constraints in C can be ordered

C1, . . . , Cn in such a way that the following properties hold:

• (monotonicity) If Ci = (Ii ui) and Cj = (Ij uj)
with i < j then Ii ⊆ Ij ;

• (origination) If Ci = (Ii ui) (resp. Ci = (vi = ui))
then for all x ∈ var(Ii) (resp. x ∈ var(vi)), there

exists j < i such that

– either Cj = (Ij uj) with x ∈ var(uj);
– or Cj = (vj = uj) with x ∈ var(uj).

Lastly, we assume that var(C) ⊆ rvar(C) where rvar(C)
represents the set of variables introduced in C in the right-

hand-side of a unification constraint or a deduction con-

straint.

The origination property ensures that variables are always

introduced by a unification constraint or a deduction con-

straint, which is always the case when modeling protocols.

Actually, the set rvar(C) represents all the free variables.

This means that all the variables are introduced in the

right-hand-side of a unification constraint or a deduction

constraint.

Note that our disequality constraints are rather general

since they do not simply allow to check that two terms are

different (u 6= v), but they also allow to ensure that no

unification was possible at a certain point of the execution,

which is a necessary check due to our broadcast primitive.

A solution to a constraint system C for a graph G is a

ground substitution θ such that dom(θ) = rvar(C) and:

• tθ = uθ for all t = u ∈ C;

• Tθ ⊢ uθ for all T u ∈ C;

• for all (∀X. t 6= u) ∈ C, then the terms tθ and uθ are

not unifiable (even renaming the variables of X with

fresh variables); and

• [[Φθ]]G = 1 for every formula Φ ∈ C.

Example 5: Consider the following set of constraints:

C =

{

I0 ∪ {u1} v1 ∧ ΦD ∧
I0 ∪ {u1, v2} u2 ∧ ΦS ∧ ¬route(xL)

}

with:

u1 = 〈req, S, D, id , S :: ⊥, hmac(〈req, S, D, id〉, KSD)〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, KSD)〉
ΦD = check(D, xa)
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S, D, xid , xa :: xl,

hmac(〈req, S, D, xid〉, KSD)〉
v2 = 〈rep, D, S, xid , xa :: xl,

hmac(〈rep, D, S, xid , xa :: xl〉, KSD)〉

We have that C is a constraint system, and the substitution

σ = {id/xid
, X/xa

, [W ;S]/xl
, [X;W ;S]/xL

}

is a solution of the constraint system C for graph G0.

B. Transition system

Concrete executions can be finitely represented by execut-

ing the transitions symbolically. A symbolic configuration is

a quadruplet (P;S; I; C) where

• P is a multiset of expressions of the form ⌊P ⌋n

where null processes are removed. ⌊P ⌋n represents the

process P located at node n ∈ V ;

• S is a set of expressions of the form ⌊t⌋n with n ∈ V
and t a term (not necessarily ground).

• I is a set of terms (not necessarily ground) representing

the messages seen by the intruder.

• C is a constraint system such that T ⊆ I for every

constraint T u ∈ C.

Such a configuration is ground when:

fv(P) ∪ var(S) ∪ var(I) ⊆ rvar(C).

Symbolic transitions are defined in Figure 3, they mimic

concrete ones. In particular, for the second rule, the set I of

processes ready to input a message is split into three sets:

the set J of processes that accept the message t, the set K
of processes that reject the message t because t does not

unify with the expected pattern uj , and the set L that reject

the message t because the condition φ is not fulfilled.

Whenever (P;S; I; C) →s
G,M (P ′;S ′; I ′; C′) where

(P;S; I; C) is a (ground) symbolic configuration then

(P ′;S ′; I ′; C′) is still a (ground) symbolic configuration.

Example 6: Executing the same transitions as in Exam-

ple 4 symbolically, we reach the following configuration:

Ks = (⌊out(error).0⌋S ; ∅; I0 ∪ {u1, v2}; C)

where C, u1, v2 are defined as in Example 5.

C. Soundness and completeness

We show that our symbolic transition system reflects

exactly the concrete transition system, i.e. each concrete

execution of a process is captured by one of the sym-

bolic executions. More precisely, a concrete configuration

COMMs (⌊out(t).P ⌋n ∪ {⌊in ui[Φi].P
′
i ⌋ni

| i ∈ I}
→s

G,M

(⌊P ⌋n ∪ {⌊in uk[Φk].P ′
k⌋nk

| k ∈ K ∪ L}
∪P;S; I; C) ∪{⌊P ′

j⌋nj
| j ∈ J} ∪ P;S; I ′; C′)

where:

• ⌊P ′⌋n′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form in u′[Φ′].Q′,

• I = J ⊎ K ⊎ L and (ni, n) ∈ E for every i ∈ I ,

• C′ = C ∧ {t = uj ∧Φj | j ∈ J} ∧ {∀(var(uk) r rvar(C)) . t 6= uk | k ∈ K} ∧ {t = ulαl ∧¬Φlαl | l ∈ L}
where αl is a renaming of var(ul) r rvar(C) by fresh variables,

• I ′ = I ∪ {t} when (n, nI) ∈ E for some nI ∈ M, and I ′ = I otherwise.

INs (⌊in u[Φ].P ⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ I u ∧ Φ})

if (nI , n) ∈ E for some nI ∈ M

STOREs (⌊store(t).P ⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I; C)

READ-THENs (⌊read u then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ t = u) where ⌊t⌋n ∈ S

READ-ELSEs (⌊read u then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊Q⌋n ∪ P;S; I; C ∧ {∀X . t 6= u | ⌊t⌋n ∈ S})

where X = var(u) r rvar(C)

IF-THENs (⌊if Φ then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ Φ)

IF-ELSEs (⌊if Φ then P else Q⌋n ∪ P;S; I; C) →s
G,M (⌊Q⌋n ∪ P;S; I; C ∧ ¬Φ)

PARs (⌊P1 | P2⌋n ∪ P;S; I; C) →s
G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I; C)

REPLs ⌊!P ⌋n ∪ P;S; I; C →s
G,M ⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I; C

where α is a renaming of the bound variables of P that are not in rvar(C).

NEWs (⌊new m.P ⌋n ∪ P;S; I; C) →s
G,M (⌊P{m′

/m}⌋n ∪ P;S; I; C)

where m′ is a fresh name

Figure 3. Symbolic transition system.

is represented by a symbolic configuration if it is one of its

instances, called concretization.

Definition 3 (θ-concretization): A concretization of a

symbolic configuration Ks = (Ps;Ss; Is; C) is a concrete

configuration Kc = (P;S; I) such that there exists θ a

solution of C and, furthermore, Psθ = P , Ssθ = S,

Isθ = I. We say that Kc is a θ-concretization of Ks.

Note that the θ-concretization of a ground symbolic

configuration is a ground concrete configuration.

Each concrete transition can be matched by a symbolic

one.

Lemma 1 (Completeness): Let G be a graph and

M ⊆ Nloc. Let Ks = (Ps;Ss; Is; C) be a ground symbolic

configuration and θ be a solution of C. Let Kc be the θ-

concretization of Ks. Let K ′
c be a concrete configuration

such that Kc →G,M K ′
c. Then there exists a ground

symbolic configuration K ′
s and a substitution θ′ such that:

• K ′
c is the θ′-concretization of K ′

s, and

• Ks →s
G,M K ′

s.

The proof is performed by studying each rule of the

concrete transition system, showing that the corresponding

symbolic rule covers all possible cases. In particular, dis-

equality constraints allow to faithfully model cases where

nodes reject a message because the message does not match

the expected pattern.

Conversely, each symbolic transition can be instantiated

in a concrete one.

Lemma 2 (Soundness): Let G be a graph and M ⊆
Nloc. Let Ks = (Ps;Ss; Is; C) and K ′

s = (P ′
s;S

′
s; I

′
s; C

′)
be two ground symbolic configurations such that Ks →s

G,M

K ′
s. Let θ′ be a solution of C′ and θ be the restriction of θ′

to rvar(C). Let Kc be the θ-concretization of Ks. There

exists a ground concrete configuration K ′
c such that:

• Kc →G,M K ′
c, and

• K ′
c is the θ′-concretization of K ′

s.

We deduce that checking for a concrete attack can be

reduced to checking for a symbolic one.

Proposition 1: Let G be a graph and M ⊆ Nloc. Let

K = (P[];S; I) be a ground concrete configuration with

a hole, and Φ be a formula. There is an M-attack on K
and Φ for graph G if, and only if,

(P[if Φ then out(error)];S; I; ∅)
→s∗

G,M (⌊out(u)⌋n ∪ Ps;Ss; Is; C)

and the constraint system C ∧ u = error has a solution.

Note that our result holds for any signature, for any choice

of predicates, and for processes possibly with replication. Of

course, it then remains to decide the existence of a constraint

system that has a solution.

Example 7: Consider our former example of an attack

on SRP , with initial configuration K0. We can reach

the configuration Ks, and the constraint system C has a

solution σ for graph G0 (cf. Example 5), so there is an

{nI}-attack on K0 for G0.

IV. DECIDABILITY RESULT

In the remaining of the paper, we assume the fixed signa-

ture (S1,F1) (defined in Example 1) for list, concatenation,

mac and encryption. We also assume its associated deduction

system ⊢ defined in Figure 1.

Simple properties like secrecy are undecidable when

considering an unbounded number of role executions, even

for classical protocols [12]. Since our class of processes

encompasses classical protocols, the existence of an attack is

also undecidable. In what follows, we thus consider a finite

number of sessions, that is processes without replication.

In most existing frameworks, the intruder is given as initial

knowledge a finite number of messages (e.g. some of the

secret keys or messages learned in previous executions).

However, in the context of routing protocols, it is important

to give an a priori unbounded number of node names to the

attacker that he can use as its will, in particular for possibly

passing some disequality constraints and for creating false

routes.

We say that a process is finite if it does not contain

the replication operator. A concrete configuration K =
(P[];S; I) is said initial if K is ground, P is finite, S
is a finite set of terms and I = Nloc ∪ I′ where I ′ a finite

set of terms (the intruder is given all the node names in

addition to its usual initial knowledge).

Our second main contribution is to show that accessi-

bility properties are decidable for finite processes of our

process algebra, which models secured routing protocols,

for a bounded number of sessions. We actually provide two

decision procedures, according to whether the network is a

priori given or not. In case the network topology is not fixed

in advance, our procedure allows to automatically discover

whether there exists a (worst-case) topology that would yield

an attack.

Theorem 1: Let K = (P[];S; I) be an initial concrete

configuration with a hole, M ⊆ Nloc be a finite set of nodes,

and Φ ∈ Lroute be a property. Deciding whether there exists

a graph G such that there is an M-attack on K and Φ for

the topology G is NP-complete.

Theorem 2: Let K = (P[];S; I) be an initial concrete

configuration with a hole, G be a graph, M ⊆ Nloc be a

finite set of nodes, and Φ ∈ Lroute be a property. Deciding

whether there exists an M-attack on K and Φ for the

topology G is NP-complete.

Note that Theorem 1 does not imply Theorem 2 and

reciprocally. Theorems 1 and 2 ensure in particular that

we can decide whether a routing protocol like SRP can

guarantee that any route accepted by the source is indeed

a route (a path) in the network (which can be fixed by

the user or discovered by the procedure). The NP-hardness

of the existence of an attack comes from the NP-hardness

of the existence of a solution for deduction constraint

systems [23]. The (NP) decision procedures proposed for

proving Theorems 1 and 2 involve several steps, with many

common ingredients.

Step 1. Applying Proposition 1, it is sufficient to decide

whether there exists a sequence of symbolic transitions (and

a graph G if G is not fixed)

(P[if Φ then out(error)];S; I; ∅)
→s∗

G,M(⌊out(u)⌋n ∪ Ps;Ss; Is; C)

such that C ∧ u = error admits a solution for the graph G.

Since processes contain no replication and involve commu-

nication between a finite number of nodes, it is possible to

guess the sequence of symbolic transitions yielding an attack

(by guessing also the edges between the nodes that are either

in M or involved in a communication step) and the resulting

configuration remains of size polynomially bounded by the

size of the initial configuration. Moreover, any left-hand-

side of a deduction constraint in C is of the form T ∪ Nloc

where T is a finite set of terms. It then remains to decide the

existence of a solution for our class of constraint systems.

Step 2. It has been shown in [11] that the existence of

a solution of a constraint system (with only deduction

constraints) can be reduced to the existence of a solution

of a solved constraint system, where right-hand-sides of the

constraints are variables only. We extend this result to our

generalized notion of constraint systems, i.e. with disequality

tests and formula of Lroute, and for an intruder knowledge

with an infinite number of names.

Step 3. We then show how to decide the existence of

a solution for a constraint system, where each deduction

constraint is solved, that is of the form T x. It is not

straightforward like in [11] since we are left with (non

solved) disequality constraints and formulas. The key step

consists in showing that we can bound (polynomially) the

size of the lists in a minimal attack.

The two last steps are developed in the two following

subsections.

A. Solving constraint systems with an infinite number of

names

A constraint system C can be split into four disjoint sets

C = C1 ∧ C2 ∧ C3 ∧ C4 where C1, C2, C3, C4 are respectively

the sets of unification constraints, deduction constraints,

disequality constraints and formulas.

Unification constraints can be easily encoded into de-

duction constraints by replacing each equality u = v by

the constraint {u}k {v}k. More precisely, instead of C,

we consider the constraint system C′ where each constraint

Ci ∈ C of the form ui = vi has been replaced by

Ij , {ui}ki
 {vi}ki

where ki is a fresh key and j is the

greatest index such that j < i and Cj is a deduction

constraint of the form Ij tj (or Ij is empty if such a

j does not exist). Moreover, the term {ui}ki
is added in the

left-hand side of all deduction constraints greater than Ci.

It is immediate to see that C and C′ admits the same set of

solutions and that C′ remains a constraint system.

Thus we are left to decide the existence of a solution for

C2 ∧C3 ∧C4 where C1, C2, C3, C4 are respectively the sets of

deduction constraints, disequality constraints and formulas.

We say that a constraint system C is a deduction constraint

system if all its constraints are deduction constraints. Such

a system is in solved form if C = T1 x1 ∧ . . . ∧ Tn

xn where x1, . . . , xn are distinct variables. The goal of this

section is to show that we can assume that C2 is in solved

form.

It has been shown in [11] that the existence of a solution of

a deduction constraint system can be reduced to the existence

of a solution of a solved deduction constraint system by

applying (a variant of) the transformation rules presented in

Figure 4.

All the rules are indexed by a substitution. When there is

no index then the identity substitution is implicitly assumed.

We write C n
σ C′ if there are C1, . . . , Cn with n ≥ 1, C′ =

Cn, C σ1
C1 σ2

· · · σn
Cn, and σ = σn◦σn−1◦· · ·◦σ1.

We write C ∗
σ C′ if C n

σ C′ for some n ≥ 1, or if C′ = C
and σ is the identity substitution.

Getting a polynomial bound on the length of simplifica-

tion sequences can be achieved by considering a (complete)

strategy in order to avoid getting twice the same constraint.

It has been shown in [11] that a deduction constraint system

admits a solution if, and only if, the transformation rules

yield (in non-deterministically polynomial time) a solved

constraint.

However, the result of [11] assumes that the deduction

constraints are of the form T u where T is a finite set

of terms. We have extended this result to the case where T
contains an infinite set of names. Moreover, we have adapted

the simplification rules to our signature with mac and lists.

Definition 4: Let C be a deduction constraint system

where all left hand sides of constraints are finite, and I0 be

a (possibly infinite) set of names. We say that (C, I0) is a

special constraint system if St(C) ∩ I0 = ∅. The deduction

constraint system C
I0

associated to (C, I0) is inductively

defined by

C ∧ T u
I0

= C
I0

∧ ((I0 ∪ T) u).

A substitution θ is a solution of a special constraint system

(C, I0) if for every T u ∈ C, (T ∪ I0)θ uθ, i.e. θ is a

solution of C
I0

.

We show that when solving a special constraint system

(C, I0), it is sufficient to apply the transformation rules

to C, following a well-chosen strategy in order to get a

polynomial bound on the length of simplification sequences.

We consider the following strategy S:

• apply eagerly R4 and postpone R1 as much as possible

• apply the substitution rules eagerly (as soon as they

are enabled). This implies that all substitution rules

are applied at once, since the rules R1, R4, Rf cannot

enable a substitution.

• when R4 and substitution rules are not enabled, apply

Rf to the constraint whose right hand side is maximal

(in size).

For ordinary constraint systems, the strategy S is complete

and yields derivations of polynomial length (see Section 4.7

in [11]). It remains to show that the procedure also works

for special constraint systems.

Theorem 3: Let (C0, I0) be a special constraint system,

Φ a set of formulas and disequality constraints, and θ be a

substitution.

1) (Correctness) If C0
∗
σ C′ by a derivation in S

for some C′ and some substitution σ, and if θ is a

solution for Φσ and (C′, I0), then σθ is a solution for

Φ and (C0, I0).
2) (Completeness) If θ is a solution for (C0, I0) and Φ,

then there exists a deduction constraint system C′ in

solved form and substitutions σ, θ′ such that θ = σθ′,
C0

∗
σ C′ by a derivation in S, and θ′ is a solution

for (C′, I0) and Φσ.

3) (Termination) If C0
n
σ C′ by a derivation in S

for some deduction constraint system C′ and some

substitution σ, then n is polynomially bounded in the

size of C0.

The proof of Theorem 3 is mainly an adaptation of the

result in [11] and relies on the following lemma, which

intuitively states that adding an infinite set of disjoint names

does not provide an additional deduction power to the

intruder.

Lemma 3: Let T be a set of terms that contains at least

one constant, u a term and E a set of constants such that

St(T ∪ {u}) ∩ E = ∅. If T ∪ E ⊢ u, then we have that

T ⊢ u.

R1 C ∧ T u C if T ∪ {x | (T ′
 x) ∈ C, T ′ (T} ⊢ u

R2 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t, v), t ∈ St(T), v ∈ St(u), t 6= v, t, v not variables

R3 C ∧ T u σ Cσ ∧ Tσ uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T), t1 6= t2, t1, t2 not variables

R4 C ∧ T u ⊥ if var(T, u) = ∅ and T 6⊢ u
Rf C ∧ T f(u, v) C ∧ T u ∧ T v for f ∈ {〈〉, ::, hmac, enc}

Figure 4. Simplification rules

B. Bounding the size of minimal attacks

Applying the technique described in the previous section,

we are left to decide the existence of a solution for a con-

straint system C = C2∧C3∧C4 where C2 is a solved deduction

constraint system, C3 contains disequality constraints, and

C4 contains formulas of Lroute. We can show that the size

of the constraint system C obtained after the successive

transformations remains polynomially bounded in the size

of the initial configuration.

We first prove that given any solution of C, the variables

which are not of sort loc or lists can be instantiated by any

fresh name, still preserving the solution.

Lemma 4: Let (C, I) be a special constraint system in

solved form, Φ1 be a formula of Lroute, Φ2 be a set of

disequality constraints, and G be a graph. Consider σ a

solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G. There is a

solution σ′ of (C, I) ∧ Φ1 ∧ Φ2 for graph G such that:

• xσ′ = xσ for every variable x of sort loc or lists;

• xσ′ ∈ I otherwise.

We then show that it is possible to find a solution in

which lists are polynomially bounded. We need to prove two

separate lemmas, according to whether the network topology

is fixed or not. In case the network topology is not fixed,

we show that we can bound the size of an attack, possibly

by changing the graph.

Lemma 5: Let (C, I) be a special constraint system in

solved form, Φ1 be a conjunction of atomic formulas of

Lroute, Φ2 be a set of disequality constraints. If there is a

solution of (C, I)∧Φ1∧Φ2 for the graph G, then there exists

a graph G′ and a substitution σ such that σ is a solution of

(C, I) ∧Φ1 ∧Φ2 for G′, and σ is polynomially bounded in

the size of C, Φ1 and Φ2.

In case the network topology is fixed, we show that we

can bound the size of an attack, where the bound depends

on the size of the graph.

Lemma 6: Let (C, I) be a special constraint system in

solved form, Φ1 be a conjunction of atomic formulas of

Lroute, Φ2 be a set of disequality constraints, and G be a

graph. If there is a solution of (C, I)∧Φ1 ∧Φ2 for G, then

there exists a solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G that is

polynomially bounded in the size of C, Φ1, Φ2 and G.

The proofs of Lemma 5 and 6 use the fact that disequality

constraints can be satisfied using fresh node names and that

the predicates of the logic Lroute check only a finite number

of nodes. Combining the lemmas, we get that it is possible

to bound the size of a (minimal) solution. For Theorem 1,

we conclude by further noticing that nodes that do not occur

explicitly in a solution σ can be removed from the graph.

The complexity analysis actually requires to state slightly

more precise lemmas. Assume given a constraint system

C = C1 ∧ C2 ∧ C3 ∧ C4 where C1, C2, C3, C4 are respectively

the sets of unification constraints, deduction constraints,

disequality constraints and formulas. We have seen that C1

can be polynomially encoded as deductions constraints thus

we can assume C1 to be empty. Then, by Theorem 3, we can

apply (non-deterministically) a polynomial number of sim-

plification rules and get a constraint system C2σ∧C3σ∧C4σ
where C2σ is in solved form. Then, as shown in the proofs

of Lemma 5 and 6, we can actually bound the size of a

minimal solution polynomially in C2 ∧ C3 ∧ C4.

V. CONCLUSION

Using our symbolic semantics, we have shown that, for

general processes that can broadcast and perform some

correctness check in addition to the usual pattern matching,

existence of attacks can be reduced to existence of a solution

for (generalized) constraint systems. As an illustration, for

a large class of processes without replication that captures

routing protocol like SRP applied on DSR, we have proved

that the existence of an attack is NP-complete. In particular,

we generalize existing works on solving constraint systems

to properties like the validity of a route and to protocols

with broadcasting. Our result enables in particular to au-

tomatically discover whether a particular network topology

may allow malicious nodes to mount an attack.

As future work, we plan to extend our results to other

cryptographic primitives (e.g. signatures and public keys)

in order to model more protocols. Since our results reuse

existing techniques such as constraint solving, we believe

that our procedure could be implemented in existing tools

after a few adaptations. At the moment, if the network

topology is given in advance, then the location of malicious

nodes is also known before the protocol starts. We believe

that it would be possible to analyze a protocol for a given

network of honest nodes without knowing a priori the

location of malicious nodes. Another extension would be

to model mobility during the execution of the protocol. This

would allows us to consider changes in the network topology

and to analyze the security of route updates. This requires

to model an appropriate security property.

REFERENCES

[1] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In Proc. 28th Symposium on Princi-
ples of Programming Languages (POPL’01), pages 104–115.
ACM Press, 2001.

[2] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Proc. 4th Conference on
Computer and Communications Security (CCS’97), pages 36–
47. ACM Press, 1997.

[3] G. Ács. Secure Routing in Multi-hop Wireless Networks. PhD
thesis, Budapest University of Technology and Economics,
2009.

[4] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic
reduction of processes with cryptographic functions. Theo-
retical Computer Science, 290(1):695–740, 2002.

[5] A. Armando et al. The AVISPA Tool for the automated
validation of internet security protocols and applications.
In Proc. 17th International Conference on Computer Aided
Verification, CAV’2005, volume 3576 of LNCS, pages 281–
285. Springer, 2005.

[6] M. Arnaud, V. Cortier, and S. Delaune. Modeling and
verifying ad hoc routing protocols. Research Report LSV-10-
03, Laboratoire Spécification et Vérification, ENS Cachan,
France, Feb. 2010. 36 pages.

[7] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. In Proc. 14th Computer Security
Foundations Workshop (CSFW’01). IEEE Comp. Soc. Press,
2001.

[8] B. Blanchet. An automatic security protocol verifier based
on resolution theorem proving (invited tutorial). In Proc.
20th International Conference on Automated Deduction
(CADE’05), 2005.

[9] L. Buttyán and I. Vajda. Towards Provable Security for Ad
Hoc Routing Protocols. In Proc. 2nd ACM workshop on
Security of ad hoc and sensor networks (SASN’04), pages
94–105, New York, NY, USA, 2004. ACM.

[10] J. Clark and J. Jacob. A survey of authentication protocol
literature. http://www.cs.york.ac.uk/∼jac/papers/drareviewps.
ps, 1997.

[11] H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding
security properties for cryptographic protocols. Application
to key cycles. ACM Transactions on Computational Logic
(TOCL), 11(4):496–520, 2010.

[12] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecid-
ability of bounded security protocols. In Proc. Workshop on
Formal Methods and Security Protocols, 1999.

[13] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks. Wireless
Networks, 11, January 2005.

[14] Y.-C. Hu, A. Perrig, and D. B. Johnson. Wormhole attacks in
wireless networks. Selected Areas in Communications, IEEE
Journal on, 24(2):370–380, 2006.

[15] D. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic
Source Routing Protocol for multi-hop wireless ad hoc net-
works. In Ad Hoc Networking, pages 139–172, 2001.

[16] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The
dynamic source routing protocol for multi-hop wireless ad
hoc networks. In In Ad Hoc Networking, edited by Charles
E. Perkins, Chapter 5, pages 139–172. Addison-Wesley, 2001.

[17] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and
L. W. Chang. Preventing wormhole attacks on wireless ad
hoc networks: a graph theoretic approach. In Wireless Com-
munications and Networking Conference, volume 2, pages
1193–1199 Vol. 2, 2005.

[18] J. Millen and V. Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In Proc. 8th
ACM Conference on Computer and Communications Security
(CCS’01), 2001.

[19] S. Nanz and C. Hankin. A Framework for Security Analysis
of Mobile Wireless Networks. Theoretical Computer Science,
367(1):203–227, 2006.

[20] P. Papadimitratos and Z. Haas. Secure routing for mobile
ad hoc networks. In Proc. SCS Communication Networks
and Distributed Systems Modelling Simulation Conference
(CNDS), 2002.

[21] L. C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6(1-2):85–
128, 1998.

[22] C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand
distance vector routing. In Proc. 2nd Workshop on Mobile
Computing Systems and Applications (WMCSA ’99), pages
90–100, 1999.

[23] M. Rusinowitch and M. Turuani. Protocol insecurity with
finite number of sessions is NP-complete. In Proc. 14th
Computer Security Foundations Workshop (CSFW’01), pages
174–190. IEEE Comp. Soc. Press, 2001.

[24] P. Schaller, B. Schmidt, D. Basin, and S. Capkun. Modeling
and verifying physical properties of security protocols for
wireless networks. In Proc. 22nd Computer Security Foun-
dations Symposium (CSF’09). IEEE Comp. Soc. Press, 2009.

[25] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer
Security, 7(1), 1999.

[26] S. Yang and J. S. Baras. Modeling vulnerabilities of ad hoc
routing protocols. In Proc. 1st ACM Workshop on Security
of ad hoc and Sensor Networks (SASN’03), 2003.

[27] M. G. Zapata and N. Asokan. Securing ad hoc routing
protocols. In Proc. 1st ACM workshop on Wireless SEcurity
(WiSE’02), pages 1–10. ACM, 2002.

APPENDIX

In this appendix, we give a full proof of Lemma 4 and

Lemma 6. We also explain how to adapt the proof of

Lemma 6 to prove Lemma 5. Details can be found in [6].

A. Proof of Lemma 4

Let S be a set, we denote by #S the cardinal of S.

Lemma 4: Let (C, I) be a special constraint system in

solved form, Φ1 be a formula of Lroute, Φ2 be a set of

disequality constraints, and G be a graph. Consider σ a

solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G. There is a

solution σ′ of (C, I) ∧ Φ1 ∧ Φ2 for graph G such that:

• xσ′ = xσ for every variable x of sort loc or lists;

• xσ′ ∈ I otherwise.

Proof: Since (C, I) is a special constraint system in

solved form, we have that

C = T1 x1 ∧ . . . ∧ Tn xn

where:

• x1, . . . , xn are distinct variables, and

• var((C, I) ∧ Φ1 ∧ Φ2) = {x1, . . . , xn} = rvar(C).

We show the result by induction on:

µ(σ) = #{x ∈ rvar(C) | x is not of sort loc or lists

and xσ /∈ I}.

Base case: µ(σ) = 0. In such a case, since rvar(C) contains

all the variables that occur in the constraint system, we easily

conclude. The substitution σ is already of the right form.

Induction step: µ(σ) > 0. Let i0 be the maximal index

1 ≤ i0 ≤ n such that xi0σ 6∈ I and xi0 is not of sort

loc or lists. Let a be a name in I that does not occur

elsewhere. Let σ′ = τ ∪ {xi0 7→ a} where τ = σ|X with

X = dom(σ) r {xi0}. Clearly, we have that µ(σ′) < µ(σ).
In order to conclude, it remains to show that σ′ is a solution

of (C, I) ∧ Φ1 ∧ Φ2.

1) We show that σ′ is a solution of (C, I). For every

i < i0, since σ is a solution of (C, I), we have

that Tiσ ∪ I ⊢ xiσ. Since xi0 does not occur in this

constraint, we also have that Tiσ
′ ∪ I ⊢ xiσ

′. Since

a ∈ I, we have that Ti0σ
′ ∪ I ⊢ xi0σ

′.

For every i > i0, according to the definition of i0,

either xi is of sort loc or lists, or xiσ ∈ I. In the first

case, as for every term t of sort loc or lists, Nloc ⊢ t,
we have that Nloc ⊢ xiσ. In the second case, I ⊢ xiσ.

Hence, in both cases, we have that Tiσ
′ ∪ I ⊢ xiσ

′.

2) We show that σ′ is a solution of Φ1. All the variables

appearing in Φ1 are of type loc or lists. Hence, we

have that Φ1σ = Φ1σ
′. This allows us to conclude.

3) Lastly, we show that σ′ is a solution of Φ2. Let ∀Y.u 6=
v be a disequality constraint in Φ2. Assume w.l.o.g.

that dom(σ)∩Y = ∅. Since σ is a solution of ∀Y.u 6=
v, we know that uσ and vσ are not unifiable.

Assume by contradiction that there exists a substitu-

tion θ′ such that uσ′θ′ = vσ′θ′ (i.e. σ′ does not satisfy

∀Y.u 6= v). We can assume w.l.o.g. that uσ′θ′ and

vσ′θ′ are ground terms, and xi0 6∈ dom(θ′). In such

a case, we have that:

(uσ′)θ′ = ((uτ){xi0 7→ a})θ′ = ((uτ)θ′){xi0 7→ a}
(vσ′)θ′ = ((vτ){xi0 7→ a})θ′ = ((vτ)θ′){xi0 7→ a}

Since a is fresh, we deduce that (uτ)θ′ = (vτ)θ′.
Hence, we have also that:

((uτ)θ′){xi0 7→ xi0σ} = ((vτ)θ′){xi0 7→ xi0σ}

i.e. uσθ′ = vσθ′. This contradicts the fact that uσ
and vσ are not unifiable.

Hence, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2.

B. Proofs of Lemma 6 and Lemma 5

Let u be a term. We denote by |u|d the maximal depth

of a variable in u. The lemma below is useful to bound the

depth of variables after application of a substitution.

Lemma 7: Let T be a set of terms, P be a set of

equations between terms in T and σ = mgu(P). For every

variable x, we have that:

|xσ|d ≤ #dom(σ) · max{|t|d | t ∈ T}.

Definition 5: An extracted list from a list l =
[a1, . . . , an] is a list [ai1 , . . . , aik

] such that 1 ≤ i1 ≤ i2 ≤
. . . ≤ ik ≤ n with 0 ≤ k ≤ n.

A marked list is a list in which some elements are marked.

Definition 6: Let l′ be marked list in which at least one of

its element is not marked. A variation of l′ = a′
1 :: . . . :: a′

n

is a list l = a1 :: . . . :: an such that:

• there exists 1 ≤ j ≤ n such that a′
j is not marked

and aj is a fresh name,

• for all 1 ≤ i ≤ n such that i 6= j, we have that ai = a′
i.

We prove that we can find a solution in which lists are

polynomially bounded. In case the network topology is fixed,

the bound depends on the size of the graph, i.e. its number

of edges. Let l be a list, we denote by |l| the length of l.

Lemma 6: Let (C, I) be a special constraint system in

solved form, Φ1 be a conjunction of atomic formulas of

Lroute, Φ2 be a set of disequality constraints, and G be a

graph. If there is a solution of (C, I)∧Φ1 ∧Φ2 for G, then

there exists a solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G that is

polynomially bounded in the size of C, Φ1, Φ2 and G.

Proof: We write G = (VG, EG), Φ2 =
∧

n

∀Yn.un 6= vn,

Φ1 =
∧

i

±i check(ai, bi) ∧
∧

j

pj
∧

k

±jk
checkl(cjk

, lj) ∧
∧

l

±l route(rl) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}, ai, bi, cjk
are of sort loc, lj , rl, ph are

terms of type lists, un, vn are terms and Yn are sets of

variables.

In the following, we denote:

• N the maximal depth of a variable in the disequality

constraints,

• k the maximal number of variables in a disequality

constraint,

• C the number of constraints ±checkl in Φ1,

• L the number of constraints loop in Φ1,

• R the number of constraints ¬route in Φ1, and

• M = max(kN + 3C + L + R + 3, |G|) where |G| is

the size of G, i.e. |G| = #EG.

We show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2

for graph G, then there exists a substitution σ such that σ
is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, and

• for all variables x of sort lists, |xσ| ≤ M , and

• xσ ∈ I otherwise.

First, we have that xσ ∈ I when x is a variable of sort loc.

Moreover, thanks to Lemma 4, we can assume that xσ ∈
I when x is a variable that is neither of sort loc nor of

type lists. Now, among these solutions, consider a smallest

solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G, where the size of

a solution σ is given by |σ| = |x1σ| + . . . + |xnσ| where

x1, . . . , xn are the variables of sort lists that occur in (C, I)∧
Φ1 ∧ Φ2.

If |xσ| ≤ M for all variables x of sort lists, then we

easily conclude. Otherwise, there exists a variable xℓ of sort

lists such that the length of xℓσ is greater than M . We are

going to show that we can build σ′ from σ, solution of

(C, I) ∧ Φ1 ∧ Φ2 for G, smaller than σ. More specifically,

we build σ′ such that for all x 6= xℓ, xσ′ = xσ, and |xℓσ
′| ≤

M < |xℓσ|.

We build xℓσ
′ by marking the names we want to keep in

the list in the following manner:

xℓσ= a1 a2 . . . akN . . . aP

We mark the first kN names in the list:

a1 a2 . . . akN . . .

We then mark the other names we want to keep in the list

in the following way:

Case of a checkl that occurs positively.

If there exists cjk
such that checkl(cjk

, lj) is a constraint

that occurs positively in Φ1, i.e. ±jk
= +, and xℓ ∈ var(lj).

Assume that lj = d1 :: . . . :: dp :: xℓ. As σ is a solution

for Φ1, in particular we know that c = cjk
σ appears exactly

once in ljσ, and for any l′ sublist of ljσ,

• if l′ = a :: c :: l1, then (a, c) ∈ EG.

• if l′ = c :: b :: l1, then (b, c) ∈ EG.

Since c appears exactly once in ljσ, either there exists n
such that c = dnσ, or there exists m such that c = am. In

the first case and if n = p, we mark a1. In the second case,

we mark am, am−1(if m > 1) and am+1(if m < P). Any

variation of a list extracted from xℓσ containing at least the

marked names plus another one satisfies the checkl condition

for graph G.

a1 . . . am−1 am am+1 . . . aP

Case of a checkl that occurs negatively.

If there exists cjk
such that checkl(cjk

, lj) is a constraint

that occurs negatively in Φ1, i.e. ±jk
= −, and xℓ ∈ var(lj).

Assume that lj = b1 :: . . . :: bp :: xℓ. As σ is a solution

for Φ1, we can have three different cases depending on c =
cjk

σ:

• c does not appear in ljσ: for every n, m, bnσ 6= c and

am 6= c. In that case, we mark nothing.

• c appears at least twice in ljσ. In that case, we choose

two occurrences of c and we mark them when they

appear in xℓσ.

a1 . . . c . . . c . . . aP

• c appears once in ljσ, but one of his neighbors in the

list is not a neighbor of his in the graph. For example,

c = ai and (ai, ai+1) /∈ EG. We mark c and this false

neighbor when they appear in xℓσ.

a1 . . . ai ai+1 . . . aM

Any variation of a list extracted from xℓσ containing

at least the marked names plus another one satisfies the

¬checkl condition for graph G.

Case of a loop that occurs positively.

If there exists h such that loop(ph) is a constraint that

occurs positively in Φ1, i.e. ±h = +, and xℓ ∈ var(ph).
Assume ph = b1 :: . . . :: bp :: xℓ. Then there exists a name

c repeated in phσ. We mark two occurrences of such a c,

when they appear in xℓσ.

a1 . . . c . . . c . . . aP

Any variation of a list extracted from xℓσ containing at

least the marked names plus another one satisfies the loop

condition for graph G. Indeed, the condition does not depend

on the graph.

Case of a loop that occurs negatively.

If there exists h such that loop(ph) occurs negatively

in Φ1, i.e. ±h = −, and xℓ ∈ var(ph). Assume that

ph = b1 :: . . . :: bp :: xℓ. Removing nodes from the list

preserves this condition, so any extracted list of xℓσ satisfies

the ¬loop condition. Moreover, as a variation of a list is built

with a fresh constant, any variation of a list extracted from

xℓσ satisfies the condition.

Case of a route that occurs negatively.

If there exists rl such that route(rl) occurs negatively

in Φ1, i.e. ±l = −, and xℓ ∈ var(rl). Assume that rl =
b1 :: . . . :: bp :: xℓ. As σ is a solution for Φ1, we can have

two different cases:

• There exists a name c repeated in rlσ. Then we mark

two occurrences of such a c, when they appear in xℓσ.

• There exists a sublist l of rlσ such that l = c :: d :: l1
and (c, d) /∈ EG. We mark c and d if they appear in

xℓσ.

a1 . . . c d . . . aP

Any variation of a list extracted from xℓσ containing at

least the marked names plus another one satisfies the ¬route

condition for G.

Case of a route that occurs positively.

If there exists rl such that route(rl) occurs positively

in Φ1, i.e. ±l = +, and xℓ ∈ var(rl). Assume that

rl = b1 :: . . . :: bp :: xℓ. Write rlσ = c1 :: . . . :: cn. As σ is

a solution for Φ1 in G, for every 0 < i < n, (ci, ci+1) ∈ EG

and for every i 6= j, ci 6= cj . Consequently, |rlσ| ≤ #EG,

and as |xℓσ| ≤ |rlσ|, we have that |xℓσ| ≤ |G|. But our

hypothesis tells us that |xℓσ| > M ≥ |G|. So there is no

positive route condition on xℓ.

We count the number of marked names. We have marked

the first kN names in the list. For each constraint ±checkl,

we mark at most 3 names in the list. Suppose there are

several constraints ¬route(l) with xℓ sublist of l. Either

¬route(xℓσ) holds, and we can mark two names in xℓσ
which will make all the ¬route constraints true; or the con-

straint is satisfied by marking one name for each constraint.

Thus, we need only mark max(R, 2) names when R ≥ 1 and

0 otherwise. Thus, in any case, it is sufficient to mark R+1
names in xℓσ. Similarly, it is sufficient to mark L+1 names

in xℓσ to satisfy the loop constraints. The number of names

marked in the list is at most kN +3C +(R+1)+(L+1) ≤
M .

Consider l1 extracted from xℓσ by keeping only the

marked names in xℓσ and the first unmarked name. Such

an unmarked name exists, because |xℓσ| ≥ M . Let l2 be

the variation of l1 replacing the first unmarked name with a

fresh constant aℓ. For each condition considered above, l2
satisfies it, as it is a variation of a list extracted from xℓσ
containing the marked names.

Let σ0 be the substitution such that xσ0 = xσ for every

x ∈ dom(σ) r {xℓ}, and xσ = x otherwise. Let σ′ =

σ0∪{xℓ 7→ l2}. By hypothesis, σ is a solution of Φ1 for G,

so by construction, σ′ is a solution of Φ1 for G. Now, it

remains for us to show that σ′ is a solution of (C, I) and

Φ2.

Deduction constraints. Consider a right-hand side vari-

able xi of C. Either xi is of sort loc or lists, which means that

Nloc ⊢ xiσ
′, thus I ⊢ xiσ

′. Or xi is not of sort loc or lists,

so in particular xi ∈ dom(σ) r xℓ, and xiσ
′ = xiσ ∈ I,

so I ⊢ xiσ
′. Hence, in both cases, we have that I ⊢ xiσ

′.

Consequently, σ′ is a solution of (C, I).

Disequality constraints. Consider a disequality constraint

∀Y.u 6= v ∈ Φ2. We assume w.l.o.g. that dom(σ) ∩ Y = ∅.

We have to show that uσ′ and vσ′ are not unifiable. We

distinguish two cases. Either uσ0 and vσ0 are not unifiable,

but in such a case, we easily deduce that uσ′ and vσ′ are

not unifiable too. This allows us to conclude. Otherwise, let

µ = mgu(uσ0, vσ0).
If dom(µ) ⊆ Y , let τ = {xℓ 7→ xσ} ◦ µ. We have that:

(uσ)τ = ((uσ0){xℓ 7→ xℓσ})τ = (uσ0µ){xℓ 7→ xℓσ}
(vσ)τ = ((vσ0){xℓ 7→ xℓσ})τ = (vσ0µ){xℓ 7→ xℓσ}.

Hence, we deduce that uσ and vσ are unifiable, and we

obtain a contradiction since σ satisfies the constraint ∀Y.u 6=
v. Hence, this case is impossible.

Otherwise, there exists a term t such that µ(xℓ) = t, and

var(t) ⊆ Y . We apply Lemma 7 to the set T = {uσ0, vσ0},

and the set of equations P = {uσ0 = vσ0}. We have that

µ = mgu(P). Since σ0 is ground, we get that:

|t|d ≤ #dom(µ).max(|uσ0|d, |vσ0|d)
≤ #dom(µ).max(|u|d, |v|d)
≤ kN

We reason by case over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and vσ′

are not unifiable.

• Suppose t = a1 :: . . . :: an :: ⊥, with a1, . . . , an terms

of type loc. We write t = t1@t2 with t2 ground term

of maximal size, where @ denotes the concatenation of

lists. We have shown that |t1|d = |td| ≤ kN .

We know that xℓσ
′ = b1 :: . . . :: bp and there exists

k′ > kN such that bk′ = aℓ and aℓ is a constant of I
which does not appear anywhere else in the constraints.

Consequently, ak′ 6= aℓ, and so xℓσ
′ 6= tθ for any

substitution θ.

Now, assume by contradiction that uσ′ and vσ′ are

unifiable. This means that there exists τ such that

(uσ′)τ = (vσ′)τ . Hence, we have that τ ◦{xℓ 7→ xℓσ
′}

is an unifier of uσ0 and vσ0. By hypothesis, we have

that µ = mgu(uσ0, vσ0). Hence, we deduce that there

exists θ′ such that τ ◦ {xℓ 7→ xℓσ
′} = θ′ ◦ µ. We have

that:

– τ ◦ {xℓ 7→ xℓσ
′}(xℓ) = xℓσ

′, and

– θ′ ◦ µ(xℓ) = tθ′.

This leads to a contradiction.

• Suppose t = a1 :: . . . :: an :: yℓ, with yℓ ∈ Y variable

of sort lists. We know that |t|d ≤ kN , thus we must

have n < kN . We reason by contradiction. Assume

that there exists θ′ such that (uσ′)θ′ = (vσ′)θ′. In the

remaining of the proof, we show that uσ and vσ are

unifiable.

By hypothesis, we have that θ′ ◦ {xℓ 7→ xℓσ
′} is an

unifier of uσ0 and vσ0. Since µ = mgu(uσ0, vσ0), we

deduce that there exists ρ′ such that:

ρ′ ◦ µ = θ′ ◦ {xℓ 7→ xℓσ
′} (1)

We have that xℓσ
′ = (xℓµ)ρ′ = tρ′. By hypothesis, we

know that the size of xℓσ is greater than M ≥ kN ≥
n. Let lt be the list obtaining from xℓσ by removing

its n first elements. Let ρ0 be a substitution such that

xρ0 = xρ for every x ∈ dom(ρ) r {yℓ}, and yρ0 = y
otherwise. Let ρ = ρ0◦{yℓ 7→ lt}. In order to conclude,

it remains to show that ρ ◦ µ is an unifier of uσ and

vσ.

First, as xℓσ and xℓσ
′ have the same first kN elements

by construction, and n < kN , we have that:

(xℓµ)ρ = tρ
= (a1 :: . . . :: an :: yℓ)ρ
= a1ρ

′ :: . . . :: anρ′ :: lt
= xℓσ.

Hence, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and

((vσ)µ)ρ = ((vσ0)µ)ρ. We easily conclude that uσ and

vσ are unifiable since we know that (uσ0)µ = (vσ0)µ.

In all possible cases, σ′ satisfies the disequality constraint.

As a conclusion, σ′ is a solution of (C, I)∧Φ1∧Φ2, smaller

than σ, which leads to a contradiction.

In case the topology is not fixed, we show that we can

bound the size of an attack, possibly by changing the graph.

The proof follows the same lines as the proof of Lemma 6.

However, we can not consider the size of the graph to bound

the size of the lists. This is used in the proof of Lemma 6

to deal with the case of route that occur positively in the

formula. In Lemma 5, we rely on the fact that we can change

the graph to solve this problem.

Definition 7: Let G = (V, E) be a graph and Vubi be a

set of nodes. The graph (V ∪Vubi, E ∪Eubi) where Eubi =
{(a, b) | a ∈ V ∪ Vubi, b ∈ Vubi} is called the ubiquitous

graph associated to G and Vubi.

In the proof of Lemma 5, we will consider ubiquitous

variation instead of variation. This is needed to satisfy a

formula route that occur positively.

Definition 8: Let l′ be a marked list and n the number

of unmarked elements in l′. Let Vubi be a set of nodes such

that #Vubi > n and names in Vubi do not occur in l′. A

ubiquitous variation according to Vubi of l′ = a′
1 :: . . . :: a′

n

is a list l = a1 :: . . . :: an such that:

• for all 1 ≤ i ≤ n such that a′
i is not marked, ai ∈ Vubi,

• for all 1 ≤ i ≤ n such that a′
i is marked, ai = a′

i.

Moreover we require that the ubiquitous nodes of l are all

distinct.

Lemma 5: Let (C, I) be a special constraint system in

solved form, Φ1 be a conjunction of atomic formulas of

Lroute, Φ2 be a set of disequality constraints. If there is a

solution of (C, I)∧Φ1∧Φ2 for the graph G, then there exists

a graph G′ and a substitution σ such that σ is a solution of

(C, I) ∧Φ1 ∧Φ2 for G′, and σ is polynomially bounded in

the size of C, Φ1 and Φ2.

Proof: We write G = (VG, EG). We adapt the proof

of Lemma 6 by showing that there exists a solution σ such

that for every variable x of sort lists, we have that |xσ| ≤
M = 2× (kN + 3C + L + R + 2) where k, N, C, L, and R
are defined as in Lemma 6.

Let σ be a solution of (C, I) ∧Φ1 ∧Φ2 for graph G and

assume that there exists a variable xℓ of sort lists such that

|xℓσ| > M . Let Vubi be a set of M/2 fresh nodes, i.e. names

in I that do not occur in C, Φ1, and Φ2. Consider Gubi the

ubiquitous graph associated to G and Vubi. We show that

we can build σ′, a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph

Gubi, such that for x 6= xℓ, xσ′ = xσ, and |xℓσ
′| ≤ M .

We build σ′ in a similar way as in the previous proof. We

mark xℓσ as in the previous proof. The number of names

marked in the list is at most:

kN + 3C + (R + 1) + (L + 1) ≤ M/2.

Consider l1 extracted from xℓσ by leaving exactly one

unmarked name between sequences of marked names. Note

that, we have no more than M/2 unmarked names in l1.

Let l2 be the ubiquitous variation of l1 according to Vubi.

The fact that we consider a ubiquitous variation allows one

to satisfy the constraint route that occurs positively. Note

that, we have no more than M/2 ubiquitous names in l2, so

|l2| ≤ M .

Let σ0 be the substitution such that xσ0 = xσ for every

x ∈ dom(σ) r {xℓ}, and xσ = x otherwise. Let σ′ =
σ0 ∪ {xℓ 7→ l2}. By construction, we have that σ′ satisfies

Φ1. We show that σ′ is a solution of (C, I) and Φ2 for Gubi

as in Lemma 6.

