
Deciding security for protocols with recursive
tests★

Mathilde Arnaud1,2, Véronique Cortier2, and Stéphanie Delaune1

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 LORIA, CNRS, France

Abstract. Security protocols aim at securing communications over pub-
lic networks. Their design is notoriously difficult and error-prone. Formal
methods have shown their usefulness for providing a careful security anal-
ysis in the case of standard authentication and confidentiality protocols.
However, most current techniques do not apply to protocols that per-
form recursive computation e.g. on a list of messages received from the
network.
While considering general recursive input/output actions very quickly
yields undecidability, we focus on protocols that perform recursive tests
on received messages but output messages that depend on the inputs in
a standard way. This is in particular the case of secured routing proto-
cols, distributed right delegation or PKI certification paths. We provide
NPTIME decision procedures for protocols with recursive tests and for
a bounded number of sessions. We also revisit constraint system solving,
providing a complete symbolic representation of the attacker knowledge.

1 Introduction

Security protocols are communication programs that aim at securing commu-
nications over public channels like the Internet. It has been recognized that
designing a secure protocol is a difficult and error-prone task. Indeed, protocols
are very sensitive to small changes in their description and many protocols have
been shown to be flawed several years after their publication (and deployment).
Formal methods have been successfully applied to the analysis of security pro-
tocols, yielding the discovery of new attacks like the famous man-in-the-middle
attack in the Needham-Schroeder public key protocol [17] or, more recently, a
flaw in Gmail [4]. Many decision procedures have been proposed (e.g. [18, 20])
and efficient tools have been designed such as ProVerif [8] and AVISPA [3].

While formal methods have been successful in the treatment of security pro-
tocols using standard primitives like encryption and signatures, there are much
fewer results for protocols with recursive primitives, that is, primitives that in-
volve iterative or recursive operations. For example, in group protocols, the server

★ This work has been partially supported by the project ANR-07-SESU-002 AVOTÉ.
The research leading to these results has also received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement number 258865 (ERC ProSecure project).



or the leader typically has to process a request that contains the contributions of
each different agent in the group and these contributions are used to compute a
common shared key (see e.g. the Asokan-Ginzboorg group protocol [6]). Secured
versions of routing protocols [9, 14, 12] also require the nodes (typically the node
originating the request) to check the validity of the route they receive. This is
usually performed by checking that each node has properly signed (or MACed)
some part of the route, the whole incoming message forming a chain where each
component is a contribution from a node in the path. Other examples of proto-
cols performing recursive operations are certification paths for public keys (see
e.g. X.509 certification paths [13]) and right delegation in distributed systems [7].

Recursive operations may yield complex computations. Therefore it is dif-
ficult to check the security of protocols with recursive primitives and very few
decision procedures have been proposed for recursive protocols. One of the first
decidability results [16] holds when the recursive operation can be modeled using
tree transducers, which forbids any equality test and also forbids composed keys
and chained lists. In [21] recursive computation is modeled using Horn clauses
and an NEXPTIME procedure is proposed. This is extended in [15] to include
the Exclusive Or operator. This approach however does not allow composed keys
nor list mapping (where the same operation, e.g. signing, is applied to each ele-
ment of the list). To circumvent these restrictions, another procedure has been
proposed [10] to handle list mapping provided that each element of the list is
properly tagged. No complexity bound is provided. All these results hold for
rather limited classes of recursive operations (on lists of terms). This is due to
the fact that even a single input/output step of a protocol may reveal com-
plex information, as soon as it involves a recursive computation. Consequently,
recursive primitives very quickly yield undecidability [16].

Our contributions. The originality of our approach consists in considering proto-
cols that perform standard input/output actions (modeled using usual pattern
matching) but that are allowed to perform recursive tests such as checking the
validity of a route or the validity of a chain of certificates. Indeed, several families
of protocols use recursivity only for performing sanity checks at some steps of the
protocol. This is in particular the case of secured routing protocols, distributed
right delegation, and PKI certification paths.

For checking security of protocols with recursive tests (for a bounded number
of sessions), we reuse the setting of constraint systems [18, 11] and add tests of
membership to recursive languages. As a first contribution, we revisit the pro-
cedure of [11] for solving constraint systems and obtain a complete symbolic
representation of the knowledge of the attacker, in the spirit of the characteri-
zation obtained in [1] in the passive case (with no active attacker). This result
holds for general constraint systems and is of independent interest.

Our second contribution is the proposition of (NPTIME) decision procedures
for two classes of recursive languages (used for tests): link-based recursive lan-
guages and mapping-based languages. A link-based recursive language contains
chains of links where consecutive links have to satisfy a given relation. A typical
example is X.509 public key certificates [13] that consist in a chain of signatures of

2



the form: [J⟨A1, pub(A1)⟩Ksk(A2); J⟨A2, pub(A2)⟩Ksk(A3); ⋅ ⋅ ⋅ ; J⟨An, pub(An)⟩Ksk(S)].
The purpose of this chain is to authenticate the public key of A1. The chain be-
gins with the certificate J⟨A1, pub(A1)⟩Ksk(A2), and each certificate in the chain
is signed by the entity identified by the next certificate in the chain. The chain
terminates with a certificate signed by a trusted party S.

A mapping-based language contains lists that are based on a list of names
(typically names of agents involved in the protocol session) and are uniquely
defined by it. Typical examples can be found in the context of routing protocols,
when nodes check for the validity of the route. For example, in the SMNDP
protocol [12], a route from the source A0 to the destination An is represented
by a list lroute = [An; . . . ;A1]. This list is accepted by the source node A0 only
if the received message is of the form:

[J⟨An, A0, lroute⟩Ksk(A1); J⟨An, A0, lroute⟩Ksk(A2); . . . ; J⟨An, A0, lroute⟩Ksk(An)].

Note that a link J⟨An, A0, lroute⟩Ksk(Ai) both depends on the list lroute and on its
i-th element.

For each of these two languages, we show that it is possible to bound the size
of a minimal attack (bounding in particular the size of the lists used in member-
ship tests), relying on the new characterization we have obtained for solutions
of constraint systems. As a consequence, we obtained two new NP decision pro-
cedures for two classes of languages that encompass most of the recursive tests
involved in secured routing protocols and chain certificates. We illustrate our
results with several examples of relevant recursive languages. Detailed proofs of
our results can be found in [5].

2 Models for security protocols

2.1 Messages

As usual, messages are represented using a term algebra. We consider the sorted
signature ℱ = {senc, aenc, J K , ⟨ , ⟩, h, ::, [], pub, priv, vk, sk} with corresponding
arities:

– ar(f) = Msg×Msg → Msg for f ∈ {senc, aenc, J K , ⟨ , ⟩},
– ar(h) = Msg → Msg,
– ar(::) = Msg× List → List, and ar([]) = List,
– ar(f) = Base → Msg for f ∈ ℱs = {pub, priv, vk, sk}.

The sort Msg is a supersort of List and Base. The symbol ⟨⟩ represents the
pairing function, :: is the list constructor, and [] represents the empty list. For
the sake of clarity, we write ⟨u1, u2, u3⟩ for the term ⟨u1, ⟨u2, u3⟩⟩, and [u1;u2;u3]
for u1::(u2::(u3::[])). The terms pub(A) and priv(A) represent respectively the
public and private keys associated to an agent A, whereas the terms sk(A) and
vk(A) represent respectively the signature and verification keys associated to an
agent A. The function symbol senc (resp. aenc) is used to model symmetric (resp.

3



asymmetric) encryption whereas the term JmKsk(A) represents the message m
signed by the agent A.

We consider an infinite set of names N = {Rep,Req,N,K,A, S,D, Id . . .}
having Base sort. These names typically represent constants, nonces, symmetric
keys, or agent names. Moreover, we assume that we have three disjoint infinite
sets of variables, one for each sort, denoted XBase, XList, and XMsg respectively.
We write vars(u) for the set of variables occurring in u. A term is ground if it
has no variables.

We write st(u) for the set of subterms of a term u. This notion is extended as
expected to sets of terms. Substitutions are written � = {x1 7→ t1, . . . , xn 7→ tn}
with dom(�) = {x1, . . . , xn}. They are assumed to be well-sorted substitutions,
that is the sort of each xi is a supersort of the sort of ti. Such a substitution �
is ground if all the ti are ground terms. The application of a substitution � to a
term u is written u�. A most general unifier of terms u1 and u2 is a substitution
(when it exists) denoted by mgu(u1, u2).

2.2 Intruder capabiblities

The ability of the intruder is modeled by a deduction system described below
and corresponds to the usual rules representing attacker abilities (often called
Dolev-Yao rules).

u1 . . . un
f ∈ℱ∖ℱs

f(u1, . . . , un)

⟨u1, u2⟩
i∈{1,2}

ui

u1::u2
i∈{1,2}

ui

senc(u1, u2) u2

u1

aenc(u1, pub(u2)) priv(u2)

u1

Ju1Ksk(u2)
(optional)

u1

The first inference rule describes the composition rules. The remaining in-
ference rules describe the decomposition rules. Intuitively, these deduction rules
say that an intruder can compose messages by pairing, building lists, encrypt-
ing and signing messages provided he has the corresponding keys. Conversely,
he can retrieve the components of a pair or a list, and he can also decompose
messages by decrypting provided he has the decryption keys. For signatures, the
intruder is also able to verify whether a signature JmKsk(a) and a message m
match (provided he has the verification key vk(a)), but this does not give him
any new message. That is why this capability is not represented in the deduction
system. We also consider an optional rule that expresses that an intruder can
retrieve the whole message from its signature. This property may or may not
hold depending on the signature scheme, and that is why this rule is optional.
Our results hold in both cases (that is, when the deduction relation ⊢ is defined
with or without this rule).

A term u is deducible from a set of terms T , denoted by T ⊢ u, if there exists
a proof, i.e. a tree such that the root is labelled with u, the leaves are labelled
with v ∈ T and every intermediate node is an instance of one of the rules of the
deduction system.

4



2.3 Constraint systems

Constraint systems are quite common (see e.g. [11, 18]) in modeling security
protocols. A constraint system represents in a symbolic and compact way which
trace instances of a protocol are possible once an interleaving of actions has been
fixed. They are used, for instance, to specify secrecy preservation of security
protocols under a particular, finite scenario. Note that, even if the scenario is
fixed, there are still many (actually infinitely many) possible instances of it,
because the intruder may affect the content of the messages by intercepting sent
messages and forging received messages. The behaviour of the attacker is taken
into account relying on the inference system presented in Section 2.2. To enforce
the intruder capabilities, we also assume he knows an infinite set of names ℐ
that he might use at his will to mount attacks.

Definition 1 (constraint system). A constraint system is a pair (C, ℐ) such
that ℐ is a non empty (and possibly infinite) set of names, and C is either ⊥
or a finite conjunction

n⋀
i=1

Ti ⊩ ui of expressions called deducibility constraints,

where each Ti is a finite set of terms, called the left-hand side of the constraint
and each ui is a term, called the right-hand side of the constraint, such that:

– Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;
– if x ∈ vars(Ti) for some i then there exists j < i such that x ∈ vars(uj).

Moreover, we assume that st(C) ∩ ℐ = ∅.

The second condition in Definition 1 says that each time a new variable
is introduced, it first occurs in some right-hand side. The left-hand side of a
constraint system usually represents the messages sent on the network, while
the right-hand side represents the message expected by the party.

Definition 2 (non-confusing solution). Let (C, ℐ) be a constraint system

where C =
n⋀

i=1

Ti ⊩ ui. A solution of (C, ℐ) is a ground substitution � whose

domain is vars(C) such that Ti� ∪ ℐ ⊢ ui� for every i ∈ {1, . . . , n}. The empty
constraint system is always satisfiable whereas (⊥, ℐ) denotes an unsatisfiable
constraint system. Furthermore, we say that � is non-confusing for (C, ℐ) if
t1 = t2 for any t1, t2 ∈ st(Tn) such that t1� = t2�.

In other words, non-confusing solutions do not map two distinct subterms
of a left-hand side of the constraint system to the same term. Later on, we will
show that we can restrict ourselves to consider this particular case of solutions.

Constraint systems model protocols that perform pattern matching only. In
particular, deducibility constraints cannot ensure that some message is a valid
chain of certificates since this cannot be checked using a pattern. Therefore, we
extend constraint systems with language constraints of the form u A ℒ where ℒ
can be any language, that is, any set of terms. In particular, ℒ will typically be a
recursively defined set of terms. We provide in Sections 4 and 5 several examples
of classes of recursive languages but for the moment ℒ can be left unspecified.

5



Definition 3 (language constraint). Let ℒ be a language (i.e. a set of terms).
An ℒ-language constraint associated to some constraint system (C, ℐ) is an ex-
pression of the form u1 A ℒ ∧ . . . ∧ uk A ℒ where each ui is a term such that
vars(ui) ⊆ vars(C) and st(ui) ∩ ℐ = ∅.

A solution of a constraint system (C, ℐ) and of an ℒ-language constraint
� = u1 A ℒ ∧ . . . ∧ uk A ℒ is a ground substitution � such that � is a solution of
(C, ℐ) and ui� ∈ ℒ for any 1 ≤ i ≤ k. We denote st(�) = {st(ui) ∣ 1 ≤ i ≤ k}.

2.4 Example: the SMNDP protocol

The aim of the SMNDP protocol [12] is to find a path from a source node S
towards a destination node D. Actually, nodes broadcast the route request to
their neighbors, adding their name to the current path. When the request reaches
the destination, D signs the route and sends the reply back over the network.

More formally, if D receives a request message of the form ⟨Req , S,D, Id , l⟩,
where Id is a name (the identifier of the request) and l is the path built dur-
ing the request phase, D will compute the signature s0 = J⟨D,S,D::l⟩Ksk(D)

and send back the reply ⟨Rep, D, S,D::l, [s0]⟩. All nodes along the route then
have to certify the route by adding their own signature. More precisely, dur-
ing the reply phase, an intermediate node Ai receiving a message of the form
⟨Rep, D, S, lroute , [si−1, . . . , s0]⟩ would compute si = J⟨D,S, lroute⟩Ksk(Ai) and send
the message ⟨Rep, D, S, lroute , [si, . . . , s0]⟩. The list of signatures expected by S
built over the list lroute = [D,A1, . . . , An] is the list lsign = [sn, . . . , s0] where
s0 = J⟨D,S, lroute⟩Ksk(D) and si = J⟨D,S, lroute⟩Ksk(Ai) for 1 ≤ i ≤ n. We will
denote by ℒSMNDP the set of messages of the form ⟨⟨S,D⟩, ⟨lroute , lsign⟩⟩.

Consider the following network configuration, where S is the source node, D
is the destination node, X is an intermediate (honest) node, W is a node who
has been compromised (i.e. the intruder knows the secret key sk(W )), and I is
a malicious node, i.e. a node controlled by the intruder.

S

W

X

I D

An execution of the protocol where D is ready to answer a request and the
source is ready to input the final message can be represented by the following
constraint system:

C =

{
T0 ∪ {u0, u1} ⊩ v1

T0 ∪ {u0, u1, u2} ⊩ v2

with T0 = {S,D,X, I,W, sk(I), sk(W )} the initial knowledge of the intruder
u0 = ⟨Req , S,D, Id , []⟩,
u1 = ⟨Req , S,D, Id , [X,W ]⟩,
u2 = ⟨Rep, D, S,D::xl, [J⟨D,S,D::xl⟩Ksk(D)]⟩,
v1 = ⟨Req , S,D, xid , xl⟩,
v2 = ⟨Rep, D, S,D::xroute , xsign⟩

6



Let ℐ be a non-empty set of names such that st(C)∩ℐ = ∅. We have that (C, ℐ) is
a constraint system. A solution to (C, ℐ)∧⟨⟨S,D⟩, ⟨D::xroute , xsign⟩⟩ A ℒSMNDP is
e.g. the substitution � = {xid 7→ Id , xl 7→ [I;W ], xroute 7→ [I;W ], xsign 7→ lsign}
where:

– lroute = [D, I,W ], and
– lsign = [J⟨D,S, lroute⟩Ksk(W ); J⟨D,S, lroute⟩Ksk(I); J⟨D,S, lroute⟩Ksk(D)].

This solution reflects an attack (discovered in [2]) where the attacker sends to
the destination node D the message ⟨Req , S,D, Id , l⟩ with a false list l = [I,W ].
Then D answers accordingly by ⟨Rep, D, S, lroute , [J⟨D,S, lroute⟩Ksk(D)]⟩. The in-
truder concludes the attack by sending to S the message ⟨Rep, D, S, lroute , lsign⟩.
This yields S accepting W, I,D as a route to D, while it is not a valid route.

3 Constraint solving procedure

As a first contribution, we provide a complete symbolic representation of the
attacker knowledge, in the spirit of the characterization obtained in [1] in the
passive case (that is, when the intruder only eavesdrops on the messages ex-
changed during the protocol execution). Revisiting the constraint solving pro-
cedure proposed in [11], we show that it is possible to compute a finite set
(C1, ℐ), . . . , (Cn, ℐ) of solved forms whose solutions represent all the solutions of
(C, ℐ). This first result is an easy adaptation of the proof techniques of [11] to our
richer term algebra. More importantly, we show that it is sufficient to consider
the solutions of (Ci, ℐ) that are obtained by applying composition rules only.

3.1 Simplification rules

Our procedure is based on a set of simplification rules allowing a general con-
straint system to be reduced to some simpler ones, called solved, on which sat-
isfiability can be easily decided. A constraint system (C, ℐ) is said to be solved
if C ∕= ⊥ and if each of its constraints is of the form T ⊩ x, where x is a vari-
able. Note that the empty constraint system is solved. Solved constraint systems
are particularly simple since they always have a solution. Indeed, let N0 ∈ ℐ,
the substitution � defined by x� = N0 for every variable x is a solution since
T� ∪ ℐ ⊢ x� for any constraint T ⊩ x of the solved constraint system.

The simplification rules we consider are the following ones:

Rax : (C ∧ T ⊩ u, ℐ) ⇝ (C, ℐ) if T ∪ {x ∣ T ′ ⊩ x ∈ C, T ′ ⊊ T} ⊢ u

Runif : (C ∧ T ⊩ u, ℐ)⇝� (C� ∧ T� ⊩ u�, ℐ) if � = mgu(t1, t2)
where t1 ∈ st(T ), t2 ∈ st(T ∪ {u}), and t1 ∕= t2

Rfail : (C ∧ T ⊩ u, ℐ) ⇝ (⊥, ℐ) if vars(T ∪ {u}) = ∅ and T ∕⊢ u

Rf : (C ∧ T ⊩ f(u, v), ℐ) ⇝ (C ∧ T ⊩ u ∧ T ⊩ v, ℐ) for f ∈ ℱ ∖ ℱs

7



All the rules are indexed by a substitution (when there is no index then
the identity substitution is implicitly considered). We write (C, ℐ) ⇝∗

� (C′, ℐ)
if there are C1, . . . , Cn such that (C, ℐ) ⇝�0

(C1, ℐ) ⇝�1
. . . ⇝�n

(C′, ℐ) and
� = �n ∘ ⋅ ⋅ ⋅ ∘ �1 ∘ �0. Our rules are similar to those in [11] except for the
rule Runif . We authorize unification with a subterm of u and also with variables.

Soundness and termination are still ensured by [11]. To ensure termination
in polynomial time, we consider the strategy S that consists of applying Rfail

as soon as possible, Runif and then Rf , beginning with the constraint having the
largest right hand side. Lastly, we apply Rax on the remaining constraints. We
show that these rules form a complete decision procedure.

Theorem 1. Let (C, ℐ) be a constraint system. We have that:

– Soundness: If (C, ℐ)⇝∗
� (C′, ℐ) for some constraint system (C′, ℐ) and some

substitution � and if � is a solution of (C′, ℐ) then �∘� is a solution of (C, ℐ).
– Completeness: If � is a solution of (C, ℐ), then there exist a constraint sys-

tem (C′, ℐ) in solved form and substitutions �, �′ such that � = �′ ∘ �,
(C, ℐ)⇝∗

� (C′, ℐ) following the strategy S, and �′ is a non-confusing solution
of (C′, ℐ).

– Termination: If (C, ℐ)⇝n
� (C′, ℐ) following the strategy S, then n is polyno-

mially bounded in the size of C. Moreover, the number of subterms of C′ is
smaller than the number of subterms of C.

Example 1. Consider our former example of a constraint system (see Section 2.4),
we can simplify the constraint system (C, ℐ) following strategy S:

– Runif : (C, ℐ)⇝�(C1, ℐ) with C1 = C� where � = {xid 7→ Id},
– Rf : (C1, ℐ)⇝∗ (C2, ℐ) with

C2 =

⎧⎨⎩
T0 ∪ {u0�, u1�} ⊩ Req ∧ T0 ∪ {u0�, u1�, u2�} ⊩ Rep ∧
T0 ∪ {u0�, u1�} ⊩ S ∧ T0 ∪ {u0�, u1�, u2�} ⊩ D ∧
T0 ∪ {u0�, u1�} ⊩ D ∧ T0 ∪ {u0�, u1�, u2�} ⊩ S ∧
T0 ∪ {u0�, u1�} ⊩ Id ∧ T0 ∪ {u0�, u1�, u2�} ⊩ xroute ∧
T0 ∪ {u0�, u1�} ⊩ xl ∧ T0 ∪ {u0�, u1�, u2�} ⊩ xsign

– Rax: (C2, ℐ)⇝∗ (C′, ℐ) with

C′ =

{
T0 ∪ {u0�, u1�} ⊩ xl ∧ T0 ∪ {u0�, u1�, u2�} ⊩ xroute

∧ T0 ∪ {u0�, u1�, u2�} ⊩ xsign

The constraint system (C′, ℐ) is in solved form, and we have that � = �′∘� where
�′ = {xl 7→ [I;W ], xroute 7→ [I;W ], xsign 7→ lsign} is a non-confusing solution of
(C′, ℐ).

Compared to [11], we prove in addition that on the resulting solved constraint
systems, we can restrict our attention to non-confusing solutions. Intuitively,
we exploit the transformation rules such that any possible equality between
subterms has already been guessed, thus ensuring that two distinct subterms
do not map to the same term. Interestingly, non-confusing solutions of a solved
constraint system enjoy a nice characterization.

8



3.2 A basis for deducible terms

We show that, for any non-confusing solution, any term deducible from the
attacker knowledge may be obtained by composition only.

We first associate to each set of terms T the set of subterms of T that may
be deduced from T ∪ vars(T ). Note that on solved constraint systems, these
variables are indeed deducible.

Satv(T ) = {u ∈ st(T ) ∣ T ∪ vars(T ) ⊢ u}

Proposition 1. Let (C, ℐ) be a constraint system in solved form, � be a non-
confusing solution of (C, ℐ), T be a left-hand side of a constraint in C and u be a
term such that T� ∪ℐ ⊢ u. We have that Satv(T )� ∪ℐ ⊢ u by using composition
rules only.

Proposition 1 states that it is possible to compute from a solved constraint
system, a “basis” Satv(T ) from which all deducible terms can be obtained ap-
plying only composition rules. This follows the spirit of [1] but now in the active
case.

This characterization is crucial in the remaining of the paper, when consider-
ing recursive tests. More generally, we believe that this characterization provides
more modularity and could be useful when considering other properties such as
checking the validity of a route or authentication properties.

We will also use the notion of constructive solution on constraint systems in
solved form, which is weaker than the notion of non-confusing solution.

Definition 4 (constructive solution). Let (C, ℐ) be a constraint system in
solved form. A substitution � is a constructive solution of (C, ℐ) if for every
deducibility constraint T ⊩ x in C, we have that Satv(T )� ∪ ℐ ⊢ x� using com-
position rules only.

A non-confusing solution of a solved system is a constructive solution, while
the converse does not always hold. This notion will be used in proofs as we
will transform solutions, preserving the constructive property but not the non-
confusing property.

4 Link-based recursive languages

A chain of certificates is typically formed by a list of links such that consecutive
links follow a certain relation. For example, the chain of public key certificates
[J⟨A1, pub(A1)⟩Ksk(A2); J⟨A2, pub(A2)⟩Ksk(A3); J⟨A3, pub(A3)⟩Ksk(S)] is based on the
link J⟨x, pub(y)⟩Ksk(z), and the names occurring in two consecutive links have to
satisfy a certain relation. We provide a generic definition that captures such
link-based recursive language.

Definition 5 (link-based recursive language). Let m be a term built over
variables of sort Base. A link-based recursive language ℒ is defined by three terms

9



w0, w1, w2 of sort List such that w0 = [m�10; . . . ;m�k0
0 ], wi = m�1i :: . . . ::m�ki

i ::xm

for i = 1, 2, and w2 is a strict subterm of w1.
Once w0, w1, w2 are given, the language is recursively defined as follows. A

ground term t belongs to the language ℒ if either t = w0� for some �, or there
exists � such that t = w1�, and w2� ∈ ℒ.

Intuitively, w0 is the basic valid chain while w1 encodes the desired depen-
dence between the links and w2 allows for a recursive call.

Example 2. As defined in [13], X.509 public key certificates consist in chains of
signatures of the form:

[J⟨A1, pub(A1)⟩Ksk(A2); J⟨A2, pub(A2)⟩Ksk(A3); ⋅ ⋅ ⋅ ; J⟨An, pub(An)⟩Ksk(S)]

where S is some trusted server and each agent Ai+1 certifies the public key
pub(Ai) of agent Ai. These chained lists are all built from the term m =
J⟨x, pub(y)⟩Ksk(z) with x, y, z ∈ XBase. The set of valid chains of signatures can
be formally expressed as the m-link-based recursive language ℒcert defined by:⎧⎨⎩w0 = [J⟨x, pub(x)⟩Ksk(S)],

w1 = J⟨x, pub(x)⟩Ksk(y)::J⟨y, pub(y)⟩Ksk(z)::xm,
w2 = J⟨y, pub(y)⟩Ksk(z)::xm.

Similarly, link-based recursive languages can also describe delegation rights
certificates in the context of distributed access-rights management. In [7] for
example, the certificate chains delegating authorization for operation O are of
the form:

[J⟨A1, pub(A1), O⟩Ksk(A2); J⟨A2, pub(A2), O⟩Ksk(A3); . . . ; J⟨An, pub(An), O⟩Ksk(S)]

where S has authority over operation O and each agent Ai+1 delegates the
rights for operation O to agent Ai. These chained lists are all built from the
term m = J⟨x, pub(y), O⟩Ksk(z) with x, y, z ∈ XBase.

Example 3. In the recursive authentication protocol [19], a certificate list con-
sists in a chain of encryptions of the form:

[senc(⟨Kab, B,Na⟩,Ka); senc(⟨Kab, A,Nb⟩,Kb);

senc(⟨Kbc, C,Nb⟩,Kb); senc(⟨Kbc, B,Nc⟩,Kc); . . . ; senc(⟨Kds, S,Nd⟩,Kd)]

where S is a trusted server distributing session keys Kab, Kbc, . . . , Kds to each
pair of successive agents via these certificates. These chained lists are all built
from the term m = senc(⟨y1, y2, y3⟩, z) with y1, y2, y3, z ∈ XBase. The set of valid
chains of encryptions in this protocol can be formally expressed as the m-link-
based recursive language ℒRA defined by:⎧⎨⎩w0 = [senc(⟨z, S, x⟩, xk)],

w1 = senc(⟨z, xa, x⟩, xkb
)::senc(⟨z, xb, y⟩, xka)::senc(⟨z′, xc, y⟩, xka)::x

m,
w2 = senc(⟨z′, xc, y⟩, xka)::x

m.

10



We propose a procedure for checking for secrecy preservation for a protocol
with link-based recursive tests in NP, for a bounded number of sessions.

Theorem 2. Let ℒ be a link-based recursive language. Let (C, ℐ) be a constraint
system and � be an ℒ-language constraint associated to (C, ℐ). Deciding whether
(C, ℐ) and � has a solution is in NP.

The proof of Theorem 2 involves three main steps. First, thanks to Theo-
rem 1, it is sufficient to decide in polynomial (DAG) size whether (C, ℐ) with
language constraint � has a non-confusing solution when (C, ℐ) is a solved con-
straint system. Then, we show that we can (polynomially) bound the size of the
lists in �. This relies partly on Proposition 1, as it shows that a non-confusing
solution is a constructive solution.

Proposition 2. Let (C, ℐ) be a constraint system in solved form and � be an
ℒ-language constraint associated to (C, ℐ) where ℒ is a link-based recursive lan-
guage. Let � be a constructive solution of (C, ℐ) and �. Then there exists a
constructive solution �′ of (C, ℐ) and � such that ��′ is polynomial in the size
of C, and �.

Proposition 2 is proved by first showing that there is a solution that uses a
bounded number of distinct names. Thus there is a finite number of instances
of m used in recursive calls, allowing us to cut the lists while preserving the
membership to the recursive language.

The third step of the proof of Theorem 2 consists in showing that we can
restrict our attention to solutions � such that x� is either a constant or a subterm
of ��, by using Lemma 1. This lemma is a generic lemma that shows how any
solution can be transformed by projecting some variables on constants. It will
be reused in the next section.

Lemma 1. Let ℒ be a language, i.e. a set of terms. Let (C, ℐ) be a constraint
system in solved form and � be an ℒ-language constraint associated to (C, ℐ).
Let � be a constructive solution of (C, ℐ) and �. Let N0 be a name of Base sort
in ℐ, and �′ be a substitution such that:⎧⎨⎩x�′ = x� if x� ∈ st(��)

x�′ = [] if x ∈ XList and x� /∈ st(��)
x�′ = N0 if x ∕∈ XList and x� /∈ st(��)

The substitution �′ is a constructive solution of (C, ℐ) and �.

5 Routing protocols

Routing protocols typically perform recursive checks to ensure the validity of a
given route. However, link-based recursive languages do not suffice to express

11



these checks. Indeed, in routing protocols, nodes aim at establishing and certi-
fying a successful route (i.e. a list of names of nodes) between two given nodes
that wish to communicate. Each node on the route typically contributes to the
routing protocol by certifying that the proposed route is correct, to the best of
its knowledge. Thus each contribution contains a list of names (the route). Then
the final node receives a list of contributions and needs to check that each contri-
bution contains the same list of names, which has also to be consistent with the
whole received message. For example, in the case of the SMNDP protocol [12],
the source node has to check that the received message is of the form:

[J⟨D,S, lroute⟩Ksk(An); . . . ; J⟨D,S, lroute⟩Ksk(A1); J⟨D,S, lroute⟩Ksk(D)]

where lroute = [D;A1; . . . ;An].

5.1 Mapping-based languages

An interesting property in the case of routing protocols is that (valid) messages
are uniquely determined by the list of nodes [A1; . . . ;An] in addition to some
parameters (e.g. the source and destination nodes in the case of SMNDP). We
propose a generic definition that captures any such language based on a list of
names.

Definition 6 (mapping-based language). Let b be a term that contains no
name and no :: symbol, and such that:

{w1, w
p
1 , . . . , w

p
m} ⊆ vars(b) ⊆ {w1, w2, w3, w

p
1 , . . . , w

p
m}.

The variables wp
1 , . . . , w

p
m are the parameters of the language, whereas w1, w2,

and w3 are special variables. Let P = ⟨P1, . . . , Pm⟩ be a tuple of names and
�P = {wp

1 7→ P1, . . . , w
p
m 7→ Pm}. Let l = [A1; . . . ;An] be a list of names, the

links are defined over l recursively in the following manner :

mP(i, l) = (b�P){w1 7→ l, w2 7→ Ai, w3 7→ [mP(i− 1, l); . . . ;mP(1, l)]}

The mapping-based language (defined by b) is the following one:

ℒ = {⟨P, ⟨l, l′⟩⟩ ∣ P = ⟨P1, . . . , Pm⟩ is a tuple of names,

l = [A1; . . . ;An] a list of names, n ∈ ℕ, and l′ = [mP(n, l); . . . ;mP(1, l)]}.

A mapping-based language is defined by a base shape b. The special variables
w2 and w3 are optional and may not occur in b. Each element of the language
is a triple ⟨P, ⟨l, l′⟩⟩ where l′ is a list of links entirely determined by the tuple
P = ⟨P1, . . . , Pm⟩ and the list l of arbitrary length n. In the list l′, each link
contains the same parameters P1, . . . , Pm (e.g. the source and destination nodes),
the list l of n names [A1; . . . ;An] and possibly the current name Ai and the list
of previous links, following the base shape b.
We illustrate this definition with two examples of routing protocols.

12



Example 4 (SMNDP protocol [12]). Recall that in SMNDP, the list of signatures
expected by the source node S built over the list l = [A1, . . . , An] is the list
[sn, . . . , s1], where si = J⟨D,S, l⟩Ksk(Ai). This language has two parameters, the
name of the source wp

1 and the name of the destination wp
2 . The language can

be formally described with b = J⟨wp
2 , w

p
1 , w1⟩Ksk(w2).

Example 5 (endairA protocol [9]). The difference between SMNDP and endairA
lies in the fact that during the reply phase, the intermediate nodes compute a sig-
nature over the partial signature list that they receive. In the endairA protocol,
the list of signatures expected by the source node S built over the list of nodes l =
[A1, . . . , An] is the list l

′
s = [sn, . . . , s1], where si = J⟨D,S, l, [si−1; . . . ; s1]⟩Ksk(Ai).

This language has two parameters, the name of the source wp
1 and the

name of the destination wp
2 . The language can be formally described with b =

J⟨wp
2 , w

p
1 , w1, w3⟩Ksk(w2).

5.2 Decision procedure

We propose a procedure for checking for secrecy preservation for a protocol with
mapping-based tests in NP, for a bounded number of sessions.

Theorem 3. Let ℒ be a mapping-based language. Let (C, ℐ) be a constraint sys-
tem and � be an ℒ-language constraint associated to (C, ℐ).
Deciding whether (C, ℐ) ∧ � has a solution is in NP.

The proof of Theorem 3 involves three main steps. First, thanks to Theo-
rem 1, it is sufficient to decide in polynomial (DAG) size whether (C, ℐ) with
language constraint � has a non-confusing solution when (C, ℐ) is a solved con-
straint system. Due to Proposition 1, we deduce that it is sufficient to show that
deciding whether (C, ℐ) ∧ � has a constructive solution is in NP, where (C, ℐ) is
a solved constraint system.

The second and key step of the proof consists in bounding the size of a con-
structive solution. Note that the requirement on the form of � is not a restriction
since any substitution satisfying � will necessarily have this shape.

Proposition 3. Let ℒ be a mapping-based language. Let (C, ℐ) be a constraint
system in solved form, � be an ℒ-language constraint associated to (C, ℐ), and �
be a constructive solution of (C, ℐ)∧ �. We further assume that � is of the form
u1 A ℒ ∧ . . . ∧ uk A ℒ where uj = ⟨⟨pj1, . . . , pjm⟩, ⟨lj , l′j⟩⟩.

There exists a constructive solution � ′ of (C, ℐ)∧� such that, for every j, the
length of lj�

′ is polynomially bounded on the size of C and �.

For each constraint ⟨⟨pj1, . . . , pjm⟩, ⟨lj , l′j⟩⟩ A ℒ, the list lj provides constraints
on the last elements of the list l′j , while l′j provides constraints on the last ele-
ments of the list lj . The main idea of the proof of Proposition 3 is to show that it
is possible to cut the middle of the list lj , modifying the list l′j accordingly. This
is however not straightforward as we have to show that the new substitution
is still a solution of the constraint system (C, ℐ). In particular, cutting part of

13



the list might destroy some interesting equalities, used to deduce terms. Such
cases are actually avoided by considering constructive solutions and by cutting
at some position in the lists such that none of the elements are subterms of the
constraint, which can be ensured by combinatorial arguments.

Proposition 3 allows us to bound the size of lj� for a minimal solution �,
which in turn bounds the size of l′j�. The last step of the proof of Theorem 3
consists in showing that any x� is bounded by the size of the lists or can be
replaced by a constant, by applying Lemma 1.

6 Conclusion

We have provided two new NP decision procedures for (automatically) analysing
confidentiality of security protocols with recursive tests, for a bounded number
of sessions. The classes of recursive languages we can consider both encompass
chained-based lists of certificates and most of the recursive tests performed in
the context of routing protocols. These procedures rely on a new characteriza-
tion of the solutions of a constraint system, extending the procedure for solving
constraint systems. We believe that this new characterization is of independent
interest and could be used for other families of protocols.

As further work, we plan to implement our procedure, which will require
us to optimize it. We also plan to consider larger classes of recursive languages
in order to capture e.g. the recursive tests performed in the context of group
protocols. It would also be interesting to see whether our techniques could be
extended for analysing protocols that use such recursive languages not only for
performing tests but also as outputs in protocols.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

2. T. R. Andel and A. Yasinsac. Automated security analysis of ad hoc routing
protocols. In Proc. of the Joint Workshop on Foundations of Computer Security
and Automated Reasoning for Security Protocol Analysis (FCS-ARSPA’07), pages
9–26, 2007.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA Tool for the automated validation of internet security protocols and
applications. In Proc. of the 17th International Conference on Computer Aided
Verification, CAV’2005, volume 3576 of LNCS, pages 281–285. Springer, 2005.

4. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In Proc. of the 6th ACM Workshop on Formal Methods
in Security Engineering (FMSE 2008), pages 1–10, 2008.

5. M. Arnaud, V. Cortier, and S. Delaune. Deciding security for protocols with recur-
sive tests. Research Report LSV-11-05, Laboratoire Spécification et Vérification,
ENS Cachan, France, Apr. 2011. 46 pages.

14



6. N. Asokan and P. Ginzboorg. Key agreement in ad hoc networks. Computer
Communications, 23(17):1627–1637, 2000.

7. T. Aura. Distributed access-rights management with delegation certificates. In
Secure Internet Programming, volume 1603 of LNCS, pages 211–235. 1999.

8. B. Blanchet. An automatic security protocol verifier based on resolution theo-
rem proving (invited tutorial). In Proc. of the 20th International Conference on
Automated Deduction (CADE-20), 2005.

9. L. Buttyán and I. Vajda. Towards Provable Security for Ad Hoc Routing Protocols.
In Proc. of the 2nd ACM workshop on Security of ad hoc and sensor networks
(SASN’04), pages 94–105. ACM, 2004.

10. N. Chridi, M. Turuani, and M. Rusinowitch. Decidable analysis for a class of
cryptographic group protocols with unbounded lists. In Proc. of the 22nd IEEE
Computer Security Foundations Symposium (CSF’09), pages 277–289, 2009.

11. H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for
cryptographic protocols. Application to key cycles. ACM Transactions on Com-
putational Logic (TOCL), 11(4):496–520, 2010.

12. T. Feng, X. Guo, J. Ma, and X. Li. UC-Secure Source Routing Protocol, 2009.
13. R. Housley, W. Ford, and W. Polk. X.509 certificate and CRL profile, 1998. IETF

standard, RFC 2459.
14. Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A Secure On-Demand Routing

Protocol for Ad Hoc Networks. Wireless Networks, 11:21–38, 2005.
15. R. Küsters and T. Truderung. On the Automatic Analysis of Recursive Security

Protocols with XOR. In Proc. of the 24th Symposium on Theoretical Aspects of
Computer Science (STACS’07), volume 4393 of LNCS, pages 646–657. Springer,
2007.

16. R. Küsters and T. Wilke. Automata-based Analysis of Recursive Cryptographic
Protocols. In Proc. of the 21st Symposium on Theoretical Aspects of Computer
Science (STACS’04), volume 2996 of LNCS, pages 382–393. Springer-Verlag, 2004.

17. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages
147–166. Springer-Verlag, 1996.

18. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. of the 8th ACM Conference on Computer and
Communications Security (CCS’01), pages 166–175, 2001.

19. L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In Proc.
of the 10th IEEE Computer Security Foundations Workshop, pages 84–95. IEEE
Computer Society Press, 1997.

20. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Proc. of the 14th Computer Security Foundations Workshop
(CSFW’01), pages 174–190. IEEE Computer Society Press, 2001.

21. T. Truderung. Selecting theories and recursive protocols. In Proc. of the 16th
International Conference on Concurrency Theory (CONCUR’05), volume 3653 of
LNCS, pages 217–232. Springer, 2005.

15


