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Abstract. Priced timed (game) automata extend timed (game) au-
tomata with costs on both locations and transitions. The problem of
synthesizing an optimal winning strategy for a priced timed game un-
der some hypotheses has been shown decidable in [5]. In this paper, we
present an algorithm for computing the optimal cost and for synthesiz-
ing an optimal strategy in case there exists one. We also describe the
implementation of this algorithm with the tool HyTech and present an
example.

1 Introduction

In recent years the application of model-checking techniques to scheduling prob-
lems has become an established line of research. Static scheduling problems with
timing constraints may often be formulated as reachability problems on timed
automata, viz. as the possibility of reaching a given goal state. Real-time model
checking tools such as Kronos and Uppaal have been applied on a number of
industrial and benchmark scheduling problems [1, 6, 8, 11, 13, 16].

Often the scheduling strategy needs to take into account uncertainty with
respect to the behavior of an environmental context. In such situations the
scheduling problem becomes a dynamic (timed) game between the controller
and the environment, where the objective for the controller is to find a dynamic
strategy that will guarantee the game to end in a goal state [3, 7, 15].

A few years ago, the ability to consider quite general performance measures
has been given. Priced extensions of timed automata have been introduced [4,
2] where a cost c is associated with each location ` giving the cost of a unit of
time spent in `. Within this framework, it is possible to measure performance of
runs and to give optimality criteria for reaching a given set of states.

In [5], we have combined the notions of games and prices and we have proved
that, under some hypotheses, the optimal cost in priced timed game automata
is computable and that optimal strategies can then be synthetized.

? Work partially supported by ACI Cortos, a program of the French government.
† Basic Research in Computer Science (www.brics.dk).
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In this paper, we present an algorithm for extracting optimal strategies in
priced timed game automata. We also provide an implementation of the algo-
rithm using the tool HyTech [10]. The outline of the paper is as follows: in
section 2 we recall the definition of Priced Timed Game Automata and present
an example; in section 3 we unveil an optimal cost computation method; in sec-
tion 4 we detail the algorithm to synthesize the optimal strategies and we give
some conclusions in section 6.

The HyTech files given in Fig. 4 and Fig. 5 and available at http://www.

lsv.ens-cachan.fr/aci-cortos/ptga/. The detailed proofs of the theorems
we refer to, as well as complementary definitions and explanations can be found
in [5].

2 Priced Timed Games

Preliminaries. Let X be a finite set of real-valued variables called clocks. We
denote B(X) the set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k |
ϕ∧ϕ where k ∈ Z, x, y ∈ X and ∼∈ {<,≤,=, >,≥}. A valuation of the variables
in X is a mapping from X to R≥0 (thus an element of RX

≥0). For a valuation
v and a set R ⊆ X we denote v[R] the valuation that agrees with v on X \ R

and is zero on R. We denote v + δ for δ ∈ R≥0 the valuation s.t. for all x ∈ X,
(v + δ)(x) = v(x) + δ.

The (R)PTGA Model.

Definition 1 (RPTGA). A Priced Timed Game Automaton (PTGA) G is
a tuple (L, `0,Act,X, E, inv, cost) where: L is a finite set of locations; `0 ∈ L

is the initial location; Act = Actc ∪ Actu is the set of actions (partitioned into
controllable and uncontrollable actions); X is a finite set of real-valued clocks;
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions; inv : L −→ B(X)
associates to each location its invariant; cost : L ∪ E −→ N associates to each
location a cost rate and to each discrete transition a cost value. We assume that
PTGA are deterministic w.r.t. controllable actions (renaming). A reachability
PTGA (RPTGA) is a PTGA with a distinguished set of locations Goal ⊆ L.

Runs, Costs of Runs. Let G = (L, `0,Act,X, E, inv, cost) be a RPTGA. A
configuration of G is a pair (`, v) in L×RX

≥0. We denote Q the set of configurations
of G. A run in G from (`′0, v0) is a (finite or infinite) sequence of transitions

ti = (`′i, vi)
αi−→ (`′i+1, vi+1) such that for every i ≥ 0: (`′i, vi) is a configuration

of G; αi ∈ Act ∪ R>0; αi ∈ R>0 implies `′i−1 = `′i and vi = vi−1 + αi; αi ∈ Act

implies that there exists a transition (`′i−1, g, αi, Y, `′i) ∈ E such that vi−1 |= g

and vi = vi−1[Y ]. The cost of a transition ti is given by Cost(ti) = αi.cost(`′i−1)
if αi ∈ R>0 and Cost(ti) = cost((`′i−1, g, αi, Y, `′i)) if αi ∈ Act. A run ρ of G is
winning if at least one of the states along ρ is in the set Goal. We note Runs(G)
(resp. WinRuns(G)) the set of (resp. winning) runs in G and Runs((`, v), G) (resp.
WinRuns((`, v), G)) the set of (resp. winning) runs in G starting in configuration
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(`, v). If ρ is a finite run we note last(ρ) = (`′n, vn) and the cost of the run ρ is
defined by: Cost(ρ) =

∑

0≤i≤n−1 Cost(ti).

Example 1. Consider the RPTGA in Fig. 1. Plain arrows represent controllable
actions (Actc = {c1, c2}) whereas dashed arrows represent uncontrollable actions
(Actu = {u}). Cost rates in locations `0, `2 and `3 are 5, 10 and 1 respectively.
In `1 the environment may choose to move to either `2 or `3. However, due to
the invariant y = 0 this choice must be made instantaneously.

`0

cost(`0) = 5

`1

[y = 0]

`2

cost(`2) = 10

`3

cost(`3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Strategies, Costs of Strategies.

Definition 2 (Strategy). Let G be a (R)PTGA. A strategy f over G is a
partial function from Runs(G) to Actc ∪ {λ}.

Definition 3 (Outcome). Let G = (L, `0,Act,X, E, inv, cost) be a (R)PTGA
and f a strategy over G. The outcome Outcome((`, v), f) of f from configuration
(`, v) in G is the subset of Runs((`, v), G) defined inductively by:

– (`, v) ∈ Outcome((`, v), f),

– if ρ ∈ Outcome((`, v), f) then ρ′ = ρ
e

−−→ (`′, v′) ∈ Outcome((`, v), f) if
ρ′ ∈ Runs((`, v), G) and one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃(`′′, v′′) ∈ (L×RX
≥0) s.t. last(ρ)

e′

−−→ (`′′, v′′)∧

f(ρ
e′

−−→ (`′′, v′′)) = λ.
– an infinite run ρ is in ∈ Outcome((`, v), f) if all the finite prefixes of ρ are

in Outcome((`, v), f).

A strategy f over a RPTGA G is winning from (`, v) whenever all maxi-
mal1 runs in Outcome((`, v), f) are winning. We denote WinStrat((`, v), G) the
set of winning strategies from (`, v) in G. Let f be a winning strategy from
configuration (`, v). The cost of f from (`, v) is defined by:

Cost((`, v), f) = sup{Cost(ρ) | ρ ∈ Outcome((`, v), f)}

1 Roughly speaking a run is maximal if it can not be extended in the future by a
controllable action (see [5] page 6, section 2.2); this point is discussed in the sequel
in section 3.2.
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Optimal Control Problems. Let (`0,0) denote the initial configuration of a
RPTGA G. The three main problems we address in this paper are:

Optimal Cost Computation Problem: we want to compute the optimal cost
one can expect in a RPTGA G from (`0,0), i.e. to compute

OptCost((`0,0), G) = inf{Cost((`0,0), f) | f ∈ WinStrat((`0,0), G)}

Optimal Strategy Existence Problem: we want to determine whether the
optimal cost can actually be reached i.e. if there is an optimal strategy
f ∈ WinStrat((`0,0), G) such that:

Cost((`0,0), f) = OptCost((`0,0), G)

Optimal Strategy Synthesis Problem: in case an optimal strategy exists
we want to compute a witness.

Note that there are RPTGA for which no optimal strategy exists (see Example 2,
Fig. 4, page 11 of [5]). In this case there is a family of strategies fε such that

|Cost((`0,0), fε) − OptCost((`0,0), G)| < ε

Thus another problem is, given ε, to compute such an fε strategy. This latter
synthesis problem is not dealt with in this paper.

Example 2. We consider again Fig. 1. We want to compute an optimal strategy
for the controller from the initial configuration. Obviously, once `2 or `3 has been
reached the optimal strategy for the controller is to move to Goal asap (taking a
c2 action). The crucial (and only remaining) question is how long the controller
should wait in `0 before taking the transition to `1 (doing c1). Obviously, in
order for the controller to win this duration must be no more than two time
units. However, what is the optimal choice for the duration in the sense that the
overall cost of reaching Goal is minimal? Denote by t the chosen delay in `0. Then
5t+10(2−t)+1 is the minimal cost through `2 and 5t+(2−t)+7 is the minimal
cost through `3. As the environment chooses between these two transitions the
best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 . In Fig. 2 we illustrate

the optimal strategy for all states reachable from the initial state provided by
our HyTech-implementation that will be described in section 3.4.

3 Optimal Cost Computation

In this section we show that computing the optimal cost for a RPTGA amounts
to solving a simple2 control problem on a linear hybrid game automaton [18].
As a consequence well-known algorithms [18, 7] for computing winning states of
reachability hybrid games enable us to compute the optimal cost of a RPTGA.
We then show how to use the HyTech tool to implement the computation of
the optimal cost for RPTGA.

2 Without cost.



5

D
el
a
y

`0 →`1

y

0 x
`0

4

3

4

3

2

2

y

0 x

`i, i ∈ {2, 3}

2

2

Delay

`i →Goal

Fig. 2. Optimal strategy for the RPTGA of Fig. 1. Optimal cost is 14 1

3
.

3.1 From Priced Timed Games to Linear Hybrid Games

Assume we want to compute the optimal cost of the RPTGA A given in Fig. 1.
We translate this automaton into a linear hybrid game automaton (LHGA for
short) H (see Fig. 3) where the cost function is encoded into a variable Cost

of the LHGA. In H the variable Cost decreases with rate k in a location ` (i.e.
dCost

dt
= −k in `) if Cost(`) = k in A. As for discrete transitions the variable Cost

is updated by Cost′ = Cost − k in H if the corresponding transition’s cost in A
is k.

`0

dCost
dt

= −5

`1

y = 0

`2

dCost
dt

= −10

`3

dCost
dt

= −1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2

Cost
′ = Cost − 1

x ≥ 2; c2

Cost
′ = Cost − 7

Fig. 3. The Linear Hybrid Game Automaton H.

Let CompWin be a semi-algorithm (e.g. [18, 7]) that computes the largest
set of winning states for a reachability hybrid game. Using CompWin we can
compute the largest set of winning states for H with the goal states given by
Goal ∧ Cost ≥ 0. The meaning of this new reachability game is that we want
to win without having spent all the resources (Cost) we started with. Assume
the corresponding (largest) set of winning states is denoted CompWin(H,Goal∧
Cost ≥ 0). The meaning of the set W = CompWin(H,Goal∧ Cost ≥ 0) is that in
order to win one has to start in the region given by W and if one starts outside
W the opponent has a strategy to win i.e. we loose. We can prove (see [5],
Theorem 5 and Lemma 6) that the (largest) set of winning states is of the form
W = W ′∧Cost Â k with Â∈ {≥, >} and k ∈ Q≥0 and W ′ is a set that constrains
only the set of clocks X of the RPTGA (actually W ′ is the largest set of winning
states of the game if we take the unpriced version with no cost, Theorem 4 of
[5]). As a consequence k is the optimal cost: first note that we must start in
W ′ to ensure we reach the Goal state; by definition of W if we start outside W
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but in W ′ i.e. Cost = k0 with k0 < k (or k0 ≤ k) the opponent has a strategy
to win and there are outcomes for which Cost will not be greater than or equal
to 0 when we reach Goal. Thus computing CompWin(H,Goal ∧ Cost ≥ 0) is a
semi-algorithm for computing the optimal cost of the RPTGA A. Moreover we
can decide (if CompWin terminates) whether there exists an optimal strategy or
not: in case W = W ′ ∧ Cost > k there is no optimal strategy but a family of
strategies fε (for ε > 0) with cost lower than k + ε. When W = W ′ ∧ Cost ≥ k

(and assuming CompWin terminates) we can compute an optimal strategy (this
point is dealt with in the next section 4).

The formal definitions and proofs of this reduction are given in [5] (Defini-
tion 12, Lemma 5, Theorems 4 and 5, Corollaries 1 and 2).

3.2 The π Operator

The computation of the winning states (with CompWin) is based on the definition
of a controllable predecessors operator [15, 7]. Let G = (L, `0,Act,X,E, inv, cost)
be a RPTGA and Q its set of configurations of G. For a set X ⊆ Q and a ∈ Act

we define Preda(X) = {q ∈ Q | q
a

−−→ q′, q′ ∈ X}. The controllable and uncon-
trollable discrete predecessors of X are defined by cPred(X) =

⋃

c∈Actc
Predc(X),

respectively uPred(X) =
⋃

u∈Actu
Predu(X). We also need a notion of safe timed

predecessors of a set X w.r.t. a set Y . Intuitively a state q is in Predt(X,Y ) if
from q we can reach q′ ∈ X by time elapsing and along the path from q to q′ we
avoid Y . Formally this is defined by:

Predt(X,Y ) = {q ∈ Q | ∃δ ∈ R≥0 s.t. q
δ

−−→ q′, q′ ∈ X ∧ Post[0,δ](q) ⊆ Y } (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] | q
t

−−→ q′}. We are then able to define a
controllable predecessors operator π as follows:

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

(2)

This definition of π captures the choice that uncontrollable actions cannot be
used to win (this choice is made in [12] and in [5]). As a matter of fact there is
no way to win in the RPTGA of Fig. 1 with this definition of π: `1 cannot be
a winning state if we start iterating the computation of π from Goal as π only
adds predecessors that can reach a winning state by a controllable transition.
Another choice is possible: uncontrollable actions may be used to win if they
are forced to happen. This second choice is rather involved when one wants to
give a new definition of π in the general case. We adopt a position which is half-
way between the previous two extremes: if an uncontrollable action is enabled
from a state q where time cannot elapse and leads to a winning state q′, and
no uncontrollable transitions enabled at q can lead to a non-winning state, we
declare q as winning. Assume the set of configurations of G where time cannot
elapse is denoted STOP . Then a new definition of π where uncontrollable actions
can be used to win is given by:

π′(X) = Predt

(

X ∪ cPred(X) ∪ (uPred(X) ∩ STOP), uPred(X)
)

(3)
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Note that this choice does not change the results presented in [5]. In the example
of Fig. 1, from location `1 only uncontrollable transitions are enabled, but they
are bound to happen within a bounded amount of time (in this case as soon as
we reach `1 because of the invariant y = 0). π′ will add configuration (`1, x ≥
0 ∧ y = 0) to the set of winning states.

The semi-algorithm CompWin computes the least fixed point W of λX.{X0}∪
π′(X) as the limit of an increasing sequence of sets of states Wi (starting
from set W0 = X0) where Wi+1 = π′(Wi)). If G is a RPTGA, the result
of the computation of CompWin on the associated LHGA H starting from
Goal∧Cost ≥ 0 is W = µX.{Goal∧Cost ≥ 0}∪π′(X). This result is also denoted
CompWin(H,Goal ∧ Cost ≥ 0) and gives the largest set of winning states.

3.3 Termination Issues

An important issue about the previous semi-algorithm CompWin is whether it
terminates or not. We have identified a class of RPTGA for which CompWin

terminates on the associated hybrid game.
Let G be a RPTGA satisfying:

– G is bounded, i.e. all clocks in G are bounded3;
– the cost function of G is strictly non-zeno, i.e. there exists some κ > 0 such

that the accumulated cost of every cycle in the region automaton associated
with G is at least κ. Note that this condition can be checked. For more
complete explanations, see [5].

Then the semi-algorithm CompWin(H,Goal ∧ Cost ≥ 0) terminates (H is the
hybrid game defined from G in the previous section). The formal statement and
proof of this claim is given by Theorem 6 in [5]. We thus get:

Theorem 1. Let G be a RPTGA satisfying the above-mentionned hypotheses
(boundedness and strict non-zenoness of the cost). Then the optimal cost is com-
putable for G.

3.4 Implementation of CompWin in HyTech

HyTech [9, 10] is a tool that implements “pre” and “post” operators for linear
hybrid automata. Moreover it is possible to write programs that use these op-
erators (and many others) on polyhedra in order to compute sets of states. The
specification in HyTech of our LHGA H of Fig. 3 is given in Fig. 4, lines 7–25.
We detail this specification in the sequel.

First note that the least fixed point of λX.{Goal ∧ Cost ≥ 0} ∪ π′(X) can be
obtained equivalently using the operator π′′ defined by:

π′′(X) = Predt(X, uPred(X))

∪ cPred(X) \ uPred(X)

∪
(

uPred(X) ∩ STOP
)

\ uPred(X)

(4)

3 This hypothesis is not a restriction, see [14].
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For technical reasons (tagging of regions, see section 4), we prefer using this
operator π′′ instead of π′ for computing the optimal cost.

Controllable and Uncontrollable Predecessors. HyTech provides the pre oper-
ator that computes at once the time predecessors and the discrete predecessors
of a set of states. As we need to distinguish between time predecessors, discrete
controllable predecessors and discrete uncontrollable predecessors, we use the
following trick: in the HyTech source code of the LHA H we add two boolean
variables u and c (Fig. 4, line 4) that are negated on each discrete uncontrollable
(resp. controllable) transitions (Fig. 4, lines 11–24). In HyTech one can existen-
tially quantify over a variable t by using the hide operator. Then the controllable
predecessors can be computed by existentially quantifying over c and over a vari-
able t that has rate4 −1. We can express the cPred (and uPred) operator with
existential quantifiers and two variables t and c as follows:

cPred(X) = {q | ∃c ∈ Actc s.t. q
c
−→ q′, q′ ∈ X} (5)

= {q | ∃t |∃c | t = 0 ∧ c = 0 ∧ (q, t, c) ∈ pre(X ∧ t = 0 ∧ c = 1)} (6)

where pre is the predecessor operator of HyTech.
We impose that the value of t stays unchanged to ensure that we just take

discrete predecessors (Fig. 4, line 44). For uncontrollable predecessors we replace
c by u (Fig. 4, line 46). Note that the computation of STOP states (Fig. 4, line 37)
can also be done using our extra variables t, c, u.

Safe Time Predecessors. The other operator Predt(Z, Y ) is a bit more compli-
cated. We just need to express it with existential quantification so that it is
easy to compute it with HyTech. Also we assume we have time deterministic
automata as in this case Predt(Z, Y ) is rather simple (if we do not have time
determinism a more complicated encoding must be done and we refer the reader
to [18] for a detailed explanation.) From equation (1) we get:

Predt(Z, Y ) = {q | ∃t ≥ 0 s.t. q
t
−→ q′, q′ ∈ Z ∧ ∀0 ≤ t1 ≤ t, q

t
−→ q′′ =⇒ q′′ 6∈ Y }

= {q | ∃t ≥ 0 s.t. q
t
−→ q′, q′ ∈ Z ∧ ¬(∃0 ≤ t1 ≤ t, q

t
−→ q′′ ∧ q′′ ∈ Y )}

The latter formula can be encoded in HyTech using the hide operator (Fig. 4,
lines 52–60) and two auxiliary variables t and t1 that evolves at rate −1 (note
that those variables are not part of the model but only used in existentially
quantified formulas and they do not constrain the behavior of H.) Finally if the
computation of π′′ terminates (Fig. 4, lines 40–64) the set fix contains all the
winning states. It then suffices to compute the projection on cost in the initial
state to obtain the optimal cost (Fig. 4, line 66).

Doing this we have solved the first two problems: computing the optimal cost
and deciding whether there exists an optimal strategy.

4 any rate different from 0 would also do but we need another variable t with rate −1
later on and use this one.
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var
x,y: clock;
cost: analog; −− the cost variable
c,u: discrete; −− used to indicate that

5: t,t1: analog; −− used for existential quantification

automaton H
synclabs: ;
initially l0 & x=0 & y=0;

10:

loc l0: while x>=0 & y>=0 wait {dcost=-5,dt=-1,dt1=-1}
when x>=0 & x<=2 do {u’=u,c’=1-c,y’=0} goto l1;

loc l1: while y=0 wait {dcost=0,dt=-1,dt1=-1}
15: when True do {u’=1-u,c’=c} goto l2;

when True do {u’=1-u,c’=c} goto l3;

loc l3: while x>=0 & y>=0 wait {dcost=-10,dt=-1,dt1=-1}
when x>=2 do {c’=1-c,u’=u,cost’=cost-1} goto Win;

20:

loc l4: while x>=0 & y>=0 wait {dcost=-1,dt=-1,dt1=-1}
when x>=2 do {c’=1-c,u’=u,cost’=cost-7} goto Win;

loc Win: while True wait {dcost=0,dt=-1,dt1=-1}
25: end

var init_reg,winning,fix, −− sets of states
STOP, −− set of STOP states from which time cannot elapse
uPreX,uPrebarX,cPreX,X,Y,Z : region ;

30:

−− first define the initial and winning regions
init_reg := loc[H]=l0 & x=0 ;
winning := loc[H]=Win & cost>=0;
−− fix is the fixpoint we want to compute i.e. the set of winning states W

35: fix := winning;
−− stopped states
STOP := ~(hide t,c,u in t>0 & c=0 & u=0 & pre(True & t=0 & c=0 & u=0) endhide) ;

−− compute the fixpoint of π′′

40: X := iterate X from winning using {

−− uncontrollable predecessors of X: uPred(X)
uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide;
−− controllable predecessors of X: cPred(X)
cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ;

45: −− uncontrollable predecessors leading to winning states: uPred(X)
uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide;

−− Z is the the first argument of π′′ in the paper;
−− Z = X ∪ cPred(X) ∪ (uPred(X) ∩ STOP)
Z := (X | cPreX | (uPreX & STOP)) ;

50: −− time predecessors of Z from which we can reach Z

−− and avoid uPred(X) all along; X := Predt(Z, uPred(X))
X := hide t in

(hide c,u in t>=0 & c=0 & u=0 & pre(Z & t=0 & c=0 & u=0)
endhide) &

55: ~(hide t1 in
(hide c,u in t1>=0 & t1<=t & c=0 & u=0 &

pre(uPrebarX & t1=0 & c=0 & u=0)
endhide)

endhide)
60: endhide;

−− add the newly computed regions to the set of already
−− computed region
fix := fix | X ;

} ;
65: −− print the result

print omit all locations hide x,y in fix & init_reg endhide;

Fig. 4. Computation of the Optimal Cost.
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4 Optimal Strategies Computation

In this section we show how to compute an optimal strategy when one exists.
Then we give the HyTech implementation of this computation and discuss some
properties of those strategies.

4.1 Strategy Synthesis For RPTGA

First we recall some basic properties of strategies for (unpriced) Timed Game
Automata (TGA).

A strategy f is

– state-based whenever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) =
f(ρ′). State-based strategies are also called memoryless strategies in game
theory [17, 7];

– polyhedral if for all a ∈ Actc∪{λ}, f−1(a) is a finite union of convex polyhedra
for each location the game;

– realizable, whenever the following holds: for all ρ ∈ Outcome(q, f) s.t. f is
defined on ρ and f(ρ) = λ, there exists some δ > 0 such that for all 0 ≤ t < δ,

there exists q′ with ρ
t

−−→ q′ ∈ Outcome(q, f) and f(ρ
t

−−→ q′) = λ.

Strategies which are not realizable are not interesting because they generate
empty sets of outcomes. Nevertheless it is not clear from [15, 3] how to extract
strategies for reachability TGA and ensure their realizability5. This is why we
have provided a secondary result in [5] for Linear Hybrid Games (Theorem 2
page 7) that can be rephrased in the context of RPTGA as:

Theorem 2 (Adapted from Theorem 2 of [5]). Let G be a RPTGA. If
the semi-algorithm CompWin terminates for the hybrid game associated with G

(see section 3.1), then we can compute a winning strategy which is: polyhedral,
realizable and stated-based.

Let H be the LHGA associated to the RPTGA G = (L, `0,Act,X,E, inv, cost).
A state of H is a triple (`, v, c) where ` ∈ L, v ∈ RX

≥0 and c ≥ 0 (c is the value
of the variable Cost of H). Thus if we synthetize a realizable winning state-
based strategy f for H, we obtain a strategy that depends on the cost value.
In case there is a winning strategy for H (see section 3.1) we can synthetize
realizable state-based winning strategies for G (see [5], Corollary 2). This result
is already satisfying but we would like to build strategies that are independent
of the cost value i.e. in which there is no need for extra information to play the
strategy on the original RPTGA G (this means we want to build a state-based
strategy for the original RPTGA G.) To this extent we introduce the notion of
cost-independent strategies.

Let W = CompWin(H,Goal ∧ Cost ≥ 0) be the set of winning states of H. A
state-based strategy f for H is cost-independent if (`, v, c) ∈ W and (`, v, c′) ∈ W

5 See [5],page 5, Fig. 2 for an example of non realizable strategy.
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imply f(`, v, c) = f(`, v, c′). Cost-independent strategies in H will then be used
for having state-based strategies in G. Theorem 7 of [5] gives then sufficient
conditions for the existence of a state-based, optimal, realizable strategy in G

and, when back to the automaton reads as follows:

Theorem 3 (Adapted from Theorem 7 of [5]). Let G be a RPTGA satis-
fying the following hypotheses:

1. G is bounded;

2. the cost function of G is strictly non-zeno;

3. constraints on controllable actions are non-strict (i.e. possible constraints
are of the form x ≤ c and x ≥ c);

4. constraints on uncontrollable actions are strict (i.e. possible constraints are
of the form x < c and x > c)

Then we can compute a winning strategy for G which is: optimal, state-based
and realizable.

Note that under the previous conditions we build a strategy which is globally
optimal i.e. optimal for all winning states (and not only for the initial win-
ning states). We now give an algorithm to extract such an optimal, state-based,
realizable and winning strategy for a RPTGA G.

The example of Fig. 1 satisfies the assumptions of Theorem 3 and thus we can
compute an optimal strategy for this model. Moreover, the strategy we obtain
using HyTech is precisely the one we described in Fig. 2.

4.2 Synthesis of Optimal Strategies

First we recall that the set of winning states of H is computed iteratively using
the functional π′′ defined by equation (4). Note that cPred(X) \ uPred(X) is
equal to

⋃

c∈Actc
Predc(X) \ uPred(X). In the sequel we need to compute the

states that can let a strict positive delay elapse to define the strategy for the
delay action. For a set X we denote NonStop(X) the set of states in X from
which a strict positive delay can elapse and all the intermediary states lie in X

i.e.

NonStop(X) = {q ∈ X | ∃t > 0 | q + t ∈ X ∧ ∀0 ≤ t′ ≤ t, q + t′ ∈ X} (7)

Tagged Sets. To synthetize strategies we compute iteratively a set of extended
“tagged” states W+ during the course of the computation of W (this follows
from Theorem 2 and Lemma 6 of [5]). The tags will contain information about
how a new set of winning states Wi+1 = π′′(Wi) has been obtained.

We start with W+
0 = ∅ and W0 = Goal ∧ Cost ≥ 0. Assuming Wi and W+

i

are the sets obtained after i iterations of π′′ we define W+
i+1 as follows:

1. let Y = Wi+1 \ Wi where Wi+1 = π′′(Wi);
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2. for each c ∈ Actc, we define the tagged set
(

Y ∩ cPredc(Wi)
)[c]

with the

intended meaning: “Y ∩ cPredc(Wi) has been added to the set of winning
states by a Predc and doing a c from this set leads to Wi”;

3. define another tagged set
(

NonStop(Y ∩ Predt(Wi))
)[λ]

with the intended

meaning: “NonStop(Y ∩ Predt(Wi)) has been added to the set of winning
states by the (strictly positive) time predecessors operator and letting time
elapse will lead to Wi”;

4. define W+
i+1 by :

W+
i+1 = W+

i ∪
(

NonStop(Y ∩ Predt(Wi))
)[λ]

∪
⋃

c∈Actc

(

Y ∩ cPredc(Wi)
)[c]

Computation of an Optimal Strategy. If CompWin terminates in j iterations
we end up with W+ = W+

j . Note that by construction a state q of W may belong

to several tagged sets X
[λ]
0 , X

[c1]
1 , . . . , X

[cn]
n (where ci ∈ Actc for each i ∈ [1, n])

of W+. All the Xi’s are of the form X ′
i ∧ Cost ≥ fi where X ′

i ⊆ {`i} × RX
≥0 for

some location `i and fi : X ′
i → R≥0 is a piecewise affine function (Lemma 6

of [5]) because the constraints on the guards of theorem 3 imply that each cost
constraint is of the form Cost ≥ fi. Thus the infimum of fi is reachable and
equal to the minimum of fi.

Theorem 7 of [5] states that in this case an optimal state-based strategy f∗

for q a winning state of G (no cost) will be obtained by taking the local optimal
choice: let m = mini∈[0,n] fi(q) then defining f∗(q) = ci if fi(q) = m gives an
optimal strategy.

As it can be the case that fi(q) = fj(q) = m with i 6= j, we impose a total
order @ on the set of events in Actc and define f∗(q) = ci where i = max{j |
fj(q) = m}. To avoid realizability problems (see proof of Lemma 6 in [5]) on the
boundary of a set Xi if f0(q) = m (which means that the optimal cost can be
achieved by time elapsing) and fi(q) = m for some i ∈ [1, n] we define f∗(q) = ci.
This can be easily defined in our setting by extending @ to Actc∪{λ} and making
λ the smallest element.

After these algorithmics explanations, we can summarize how we can syn-
thesize an optimal, cost-independent strategy. We denote W+

[c] the set defined

by:

W+
[c] =

⋃

S
[c]
i

∈W+

Si (8)

For each c ∈ Actc ∪ {λ}, W+
[c] is a set of the form Xc ∧ Cost ≥ hc where hc is a

piecewise affine function on Xc (Xc is a union of convex polyhedra). Note that
the constraint Cost ≥ hc is a polyhedron which constrains the Cost variable and
the clocks. In what follows, a pair (q, α) will represent a state of H (α is the
value of the Cost variable). For each winning state q of G, we want to compute
the minimal cost for winning and which action we should do if we want to win
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with the optimal cost. Let us consider two actions c1, c2 ∈ Actc∪{λ}. We denote
[c1 ≤ c2] the set of winning states of G where it is better to do action c1 than
action c2 (hc1(q) ≤ hc2(q)). This set is defined by:

[c1 ≤ c2] = {q ∈ Xc1 | ∃α1 | (q, α1) ∈ W+
[c1]

and

∀α2 | (q, α2) ∈ W+
[c2]

, α1 ≤ α2}
(9)

=
{

q ∈ Xc1 | ∃α1 | (q, α1) ∈ W+
[c1]

∧

¬
(

∃α2 | (q, α2) ∈ W+
[c2]

and α2 < α1

)} (10)

Each set [c1 ≤ c2] is a polyhedral set. For each c ∈ Actc ∪ {λ} define

Opt(c) =
⋂

c′ 6=c

[c ≤ c′] (11)

Opt(c) is the set of states for which c is an action that gives the optimal cost.
W ∗ =

⋃

c∈Actc∪{λ} Opt(c) is thus equal to the set of states on which we need to

define the optimal strategy. Given the total order @ on Actc∪{λ} with λ @ c1 @

· · · @ cn, we can define an optimal strategy f∗ as follows: for i ∈ [0, n − 1], let
Bi =

(

W ∗ \ (∪k>iBk)
)

∩Opt(ci) and Bn = W ∗ ∩Opt(cn); define then f∗(q) = ci

if q ∈ Bi. f∗ is an optimal strategy that is (winning), state-based, realizable and
polyhedral.

4.3 Implementation in HyTech

Controllable Tagged Sets. We first show how to compute tagged sets of
states. Our HyTech encoding consists in adding a discrete variable a to the
HyTech model of Fig. 4 and use it in the guards of controllable transitions:
controllable action ck of Fig. 3 corresponds to the guard a = k in the HyTech

model. The HyTech model of Fig. 4 is enriched as follows: we add the guard
a = 1 to line 12, a = 2 to lines 19 and 22. In this way we achieve the tagging
of controllable predecessors as now the computation of cPred (line 44 of Fig. 5)
will compute a tagged region that will be a union of polyhedra with some a = k

constraints. Note that we also modify line 49 of Fig. 4 and replace it by line 25 in
Fig. 5 where a is hidden from the new cPreX by (hide a in cPreX endhide)

as a is not needed to compute the winning set of states.

New NonStop States. To compute NonStop(Y ∩Predt(Wi)) we use again our
extra variables t, c, u and add the tag a = 0 to the result set. Lines 40–41 of
Fig. 5 achieves this.

W+ is stored in the region fix_strat in the HyTech code. To compute
W+

i+1 we update fix_strat as described by line 43 in Fig. 5.

Computation of the Optimal Strategy. To compare the costs for each ac-
tion and determine the optimal one we use the trick described in the previous
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subsection. Each tagged set gives the function hci by the means of a constraint
between the Cost variable and the rest of the state variables. To compute hci

we need to split the state space according to each action ci: this is achieved by
lines 49–51 where the state space that corresponds to hci is stored in ri.

It remains to compute for each pair of actions (c1, c2) (ci can be λ), the set
[c1 ≤ c2] states. The encoding in HyTech of the formula given by equation (10)
is quite straightforward using the hide operator that corresponds to existential
quantification. The strategy is then computed has described at the end of the
previous subsection by lines 59–68.

5 Experiments

Using a HyTech-code as described in this paper, we have done some more
experiments. The most important example we have treated is a model of a mobile
phone with two antennas trying to connect to a base station with an environment
which can possibly jam some transmissions.

Description of the Mobile Phone Example. We consider a mobile phone with
two antennas emitting on different channels. Making the initial connection with
the base station takes 10 time units whatever antenna is in use. Statistically, a
jam of the transmission (e.g. collision with another phone) may appear every
6 time units in the worst case. When a collision is observed, the antenna tries
to transmit with a higher level of energy for a while (at least 5 time units
for Antenna 1 and at least 2 time units for Antenna 2) and then can switch
back to the lower consumption mode. Unfortunately, switching back to the low
consumption mode requires more resources and forces to interrupt the other
transmission (Antenna 1 resets variable y of Antenna 2 and vice-versa). The
overall cost rate (consumption per time unit) for the mobile phone in a product
state s = (lowx, highy,Y) is the sum of the rates of Antenna 1 and Antenna 2
(both are working) i.e. 1 + 20 = 21 and Cost(s) = 21 in our model. Once the
connection with the base station is established (either x ≥ 10 or y ≥ 10) the
message is delivered with an energy consumption depending on the antenna
(Cost = 7 for Antenna 1 and Cost = 1 for Antenna 2). The aim is to connect the
mobile phone with an energy consumption (cost) as low as possible whatever
happens in the network (jam).

This system can be represented by a network of PTGAs (see Fig. 6) and
the problem reduces to finding an optimal strategy for reaching one of the goal
states Goalx or Goaly. Note that our original model is a single PTGA and not a
network of PTGAs, but networks of PTGA can be used as well because it does
not add expressive power and it is simple to define the composed PTGA: in a
global location (being a tuple of locations of simple PTGAs), the cost is simply
the sum of the costs of all single locations composing it. Idem for a composed
transition resulting from a synchronization: the cost of the synchronized transi-
tion is the sum of the costs of the two initial transitions. Of course, one has to
pay attention that no controllable action can synchronize with an uncontrollable
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−− same sets of variables as lines 1–5 in Fig. 4 plus some new vars:
var
a: discrete;
cost0,cost1,cost2: analog;

5:

Insert Here lines 7–25 of Fig. 4 with guard a = k when needed

−− same set of variables here as lines 27–29 in Fig. 4 plus some new vars:
var

fix_strat,nonstop,Y,
10: r0,r1,r2,

B0,B1,B2,
inf_0_1,inf_0_2,inf_1_0,inf_1_2,inf_2_0,inf_2_1: region;

init_reg := loc[H]=l0 & x=0 ;
15: winning := loc[H]=Win & cost>=0;

fix := winning;
STOP := ~(hide t,c,u in t>0 & c=0 & u=0 & pre(True & t=0 & c=0 & u=0) endhide) ;

fix_strat := False; −− this is new and corresponds to W
+
0 = ∅

20:

X := iterate X from winning using {
uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide;
cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ;
uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide;

25: Z := (X | (hide a in cPreX endhide) | (uPreX & ~uPrebarX & STOP)) ;
X := hide t in

(hide c,u in t>=0 & c=0 & u=0 & pre(Z & t=0 & c=0 & u=0)
endhide) &
~(hide t1 in

30: (hide c,u in t1>=0 & t1<=t & c=0 & u=0 &
pre(uPrebarX & t1=0 & c=0 & u=0)

endhide)
endhide)

endhide;
35:

Y := X & ~fix ; −− store the real new states in Y

fix := fix | X ;
−− computation of NonStop(X)

40: nonstop := a=0 & Y &
hide t,c,u in t>0 & c=0 & u=0 & pre(Y & t=0 & u=0 & c=0) endhide;

−− computation of fix_strat
fix_strat := fix_strat | (Y & cPreX) | nonstop ;

} ;
45: −− print the result as before

print omit all locations hide x,y in fix & init_reg endhide;

−− rename the cost fonction; then ri corresponds to hci

r0 := hide a,cost in cost0=cost & fix_strat & a=0 endhide ;
50: r1 := hide a,cost in cost1=cost & fix_strat & a=1 endhide ;

r2 := hide a,cost in cost2=cost & fix_strat & a=2 endhide ;

−− compute the state space inf_i_j where hci (q) ≤ h
cj (q)

inf_0_1 := hide cost0 in r0 & ~(hide cost1 in r1 & cost1<cost0 endhide) endhide ;
55: ...

inf_2_1 := hide cost2 in r2 & ~(hide cost1 in r1 & cost1<cost2 endhide) endhide ;

−− Output the result taking the best move according to the total order (Actc ∪ {λ}, @)
prints "Optimal Winning Strategy" ;

60: prints "do control from l3 or l4 to Win (a=2) on";
B2 := inf_2_0 & inf_2_1 ;
print B2 ;
prints "do control from l0 to l1 (a=1) on";
B1 := inf_1_0 & inf_1_2 & ~B2 ;

65: print B1 ;
prints "do wait (a=0) on";
B0 := inf_0_1 & inf_0_2 & ~B1 & ~B2 ;
print B0;

Fig. 5. Synthesis of Optimal Strategies.
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action in order that we can define properly the nature, controllable or not, of
the synchronization. In this example, see Fig. 6, jamx? (resp.jamy?) synchronizes
with jamx! (resp. jamy!). The HyTech code of this example can be found in [5]
and on the web page http://www.lsv.ens-cachan.fr/aci-cortos/ptga/.

lowx highx

Goalx

jamx?, x:=0

x≥5, y:=0

x:=0,

jamx?

x≥10

Costx=7

Costx(lowx)=1

Costx(lowy)=10

Antenna 1

lowy highy

Goaly

jamy?, y:=0

y≥2, x:=0

y:=0,

jamy?

y≥10

Costy=1

Costy(lowy)=2

Costy(lowy)=20

Antenna 2

X Y

x>6, jamy!

y>6, jamx!

x>6,

jamx!

y>6,

jamy!

Jammer

Controllable

Uncontrollable

Fig. 6. Mobile Phone Example.

Results of our Experiments. We got that the optimal cost (lowest energy con-
sumption) that can be ensured is 109. The optimal strategy is graphically rep-
resented on Fig. 7. The strategy is non-trivial and the actions to take depend on
a complex partitioning of the clock space.

The computation took 828s on a 12” PowerBook G4 running Mac OS X.

6 Conclusion

In this paper we have described an algorithm to synthesize optimal strategies
for a sub-class of priced timed game automata. The algorithm is based on the
work described in [5] where we proved this problem was decidable (under some
hypotheses we recall in this paper). Morever, we also provide an implementation
of our algorithm in HyTech and use on small case-studies.

Our future work consists in extending the class of systems for which the
algorithm we provided is correct and terminates. We would also like to extend
this work to more general winning conditions (like safety conditions) and with
other performance criteria (as for example the price per unit of time along infinite
schedules).
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Fig. 7. Strategy of the mobile phone example.


