
Optimal Strategies in Priced Timed Game

Automata

Patricia Bouyer1?, Franck Cassez2?, Emmanuel Fleury3, Kim G. Larsen3

1 LSV, UMR 8643, CNRS & ENS de Cachan, France
Email: bouyer@lsv.ens-cachan.fr

2 IRCCyN, UMR 6597, CNRS, France
Email: cassez@irccyn.ec-nantes.fr

3 Computer Science Department
BRICS†, Aalborg University, Denmark

Email: {fleury,kgl}@cs.auc.dk

Abstract. Priced timed (game) automata extend timed (game) au-
tomata with costs on both locations and transitions. In this paper we
focus on reachability games for priced timed game automata and prove
that the optimal cost for winning such a game is computable under con-
ditions concerning the non-zenoness of cost. Under stronger conditions
(strictness of constraints) we prove that it is decidable whether there is
an optimal strategy in which case an optimal strategy can be computed.
Our results extend previous decidability result which require the under-
lying game automata to be acyclic. Finally, our results are encoded in a
first prototype in HyTech which is applied on a small case-study.

1 Introduction

In recent years the application of model-checking techniques to scheduling prob-
lems has become an established line of research. Static scheduling problems with
timing constraints may often be formulated as reachability problems on timed
automata, viz. as the possibility of reaching a given goal state. Real-time model
checking tools such as Kronos and Uppaal have been applied on a number of
industrial and benchmark scheduling problems [1,10,15,20,22,26].

Often the scheduling strategy needs to take into account uncertainty with
respect to the behavior of an environmental context. In such situations the
scheduling problem becomes a dynamic (timed) game between the controller
and the environment, where the objective for the controller is to find a dynamic
strategy that will guarantee the game to end in a goal state [6,13,24].

Optimality of schedules may be obtained within the framework of timed au-
tomata by associating with each run a performance measure. Thus it is possible
to compare runs and search for the optimal run from an initial configuration

? Work partially supported by ACI Cortos, a program of the French government.
† Basic Research in Computer Science (www.brics.dk).

bouyer@lsv.ens-cachan.fr
cassez@irccyn.ec-nantes.fr
{fleury, kgl}@cs.auc.dk

2

to a final (goal) target. The most obvious performance measure for timed au-
tomata is clearly that of time itself. Time-optimality for timed automata was first
considered in [12] and proved computable in [25]. The related problem of syn-
thesizing time-optimal winning strategies for timed game automata was shown
computable in [5].

More recently, the ability to consider more general performance measures has
been given. Priced extensions of timed automata have been introduced where
a cost c is associated with each location ` giving the cost of a unit of time
spent in `. In [2] cost-bound reachability has been shown decidable. [7] and
[4] independently solve the cost-optimal reachability problem for priced timed
automata. Efficient incorporation in Uppaal is provided by use of so-called
priced zones as a main data structure [23]. In [27] the implementation of cost-
optimal reachability is improved considerably by exploiting the duality with
linear programming problems over zones (min-cost flow problems). More recently
[9], the problem of computing optimal infinite schedules (in terms of minimal
limit-ratios) is solved for the model of priced timed automata.

In this paper we combine the notions of game and price and solve the problem
of cost-optimal winning strategies for priced timed game automata under condi-
tions concerning the strictness of constraints and non-zenoness of cost. In [21] the
authors solve the problem of computing the optimal cost for acyclic priced timed
game. The existing results mentioned above related to timed game automata and
priced timed automata respectively, are all based on various extensions of the
so-called classical region- and zone-techniques. In this paper the solution is ob-
tained in a radically different way and we extend the result of [21] into many
directions: first we give a new (run-based) definition of cost-optimality; second
we solve the problem of computing the optimal cost for the class of priced timed
game automata having a strictly non-zeno cost; third we can decide whether
there exists an optimal strategy (i.e. achieving the optimal cost); fourth we can
synthetize an optimal strategy in case one exists.

`0

`1

`2 `3

Goal

x ≤ 2,
y := 0

x ≥ 2

Cost = 1

x ≥ 2

Cost = 7

Cost(`0) = 5

[y = 0]

Cost(`2) = 10 Cost(`3) = 1

Controllable transition

Uncontrollable transition

D
el
a
y

`0 →`1

y

0 x
`0

4

3

4

3

2

2

y

0 x

`i, i ∈ {2, 3}

2

2

Delay

`i →Goal

Fig. 1. A small Priced Time Game Automata. Optimal strategy has cost 141
3 .

3

Consider the priced timed game automaton in Fig. 1. Here the cost-rates in
locations `0, `2 and `3 are 5, 10 and 1 respectively. In `1 the environment may
choose to move to either `2 or `3 (dashed arrows are uncontrollable). However,
due to the invariant y = 0 this choice must be made instantaneous. Obviously,
once `2 or `3 has been reached the optimal strategy for the controller is to move
to Goal immediately. The crucial (and only remaining) question is how long the
controller should wait in `0 before taking the transition to `1. Obviously, in
order for the controller to win this duration must be no more than two time
units. However, what is the optimal choice for the duration in the sense that the
overall cost of reaching Goal is minimal? Denote by t the chosen delay in `0. Then
5t+10(2−t)+1 is the minimal cost through `2 and 5t+(2−t)+7 is the minimal
cost through `3. As the environment chooses between these two transitions the
best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 . In Fig. 1 we illustrate

the optimal strategy for all states reachable from the initial state provided by
our HyTech-implementation.

The outline of the paper is as follows: in section 2 we recall some basics about
reachability timed games. Section 3 introduces priced timed games (PTG) where
we give a new run-based definition of optimality. We also relate our run-based
definition of optimality to the recursive one previously given in [21]. Section 4 is
the core of the paper where we show how to compute the optimal cost of a PTG
and optimal strategies. Finally section 5 reports on preliminary experiments
with our implementation in HyTech. For proofs of all theorems we refer the
interested reader to [8].

2 Reachability Timed Games (RTG)

In this paper we focus on reachability games, where the control objective is to
enforce that the system eventually evolves into a particular state. It is classical
in the literature to define reachability timed games (RTG) [6,13,24] to model
control problems. In this section we recall some known general results about
RTG and we finally give an additional result about the controller (strategy)
synthesis for RTG. Indeed controller synthesis is well defined for safety games
but some additional care is needed for RTG as shown later in the section.

Timed Transition Systems and Games.

Definition 1 (Timed Transition Systems). A timed transition system (TTS)
is a tuple S = (Q,Q0,Act,−→) with:

– Q is a set of states
– Q0 ⊆ Q is the set of initial states
– Act is a finite set of actions, disjoint from R≥0. We denote Σ = Act ∪ R≥0

– −→⊆ Q × Σ × Q is a set of edges. If (q, e, q′) ∈−→, we also write q
e

−−→ q′.

We make the following common assumptions about TTSs:

4

– 0-delay: q
0

−−→ q′ if and only if q = q′,

– Additivity: if q
d

−−→ q′ and q′
d′

−−→ q′′ with d, d′ ∈ R≥0, then q
d+d′

−−−−→ q′′,

– Continuity: if q
d

−−→ q′, then for every d′ and d′′ in R≥0 such that d =

d′ + d′′, there exists q′′ such that q
d′

−−→ q′′
d′′

−−−→ q′,
– Determinism1: if q

e
−−→ q′ and q

e
−−→ q′′ with e ∈ Σ, then q′ = q′′.

A run in S is a finite or infinite sequence ρ = q0
e1−−→ q1

e2−−→ . . .
en−−−→ qn

States(ρ) = {q0, q1, . . . , qn, . . . } is the set of states encountered on ρ. We denote
by first(ρ) = q0 and last(ρ) = qn if ρ is finite and ends in qn. Runs(q, S) is the
set of (finite and infinite) runs in S starting from q. The set of runs of S is

Runs(S) =
⋃

q∈Q Runs(q, S). We use q
e

−−→ as a shorthand for “∃q′ s.t. q
e

−−→ q′”

and extends this notation to finite runs ρ
e

−−→ whenever last(ρ)
e

−−→.

Definition 2 (Timed Games – Adapted from [13]). A timed game (TG)
G = (Q,Q0,Act,−→) is a TTS such that Act is partitioned into controllable
actions Actc and uncontrollable actions Actu.

Strategies, Reachability Games. A strategy [24] is a function that during the
cause of the game constantly gives information as to what the controller should
do in order to win the game. In a given situation the strategy could suggest the
controller to either i) “do a particular controllable action” or ii) “do nothing at
this point in time” which will be denoted by the special symbol λ. For instance
if one wants to delay until some clock value x reaches 4

3 (as would be a good
strategy in the location `0 of Fig. 1) then the strategy would be: for x < 4

3 do λ

and for x = 4
3 do the control action from `0 to `1.

Definition 3 (Strategy). Let G = (Q,Q0,Act,−→) be a TG. A strategy f

over G is a partial function from Runs(G) to Actc ∪ {λ}.

We denote Strat(G) the set of strategies over G. A strategy f is state-based
whenever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-
based strategies are also called memoryless strategies in game theory [13,28].
The possible runs that may be realized when the controller follows a particular
strategy is defined by the following notion of Outcome ([13]):

Definition 4 (Outcome). Let G = (Q,Q0,Act,−→) be a TG and f a strategy
over G. The outcome Outcome(q, f) of f from q in G is the subset of Runs(q,G)
defined inductively by:

– q ∈ Outcome(q, f),

– if ρ ∈ Outcome(q, f) then ρ′ = ρ
e

−−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q,G)
and one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

1 Determinism is not essential in our work but it simplifies proofs in the sequel.

5

3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃q′′ ∈ Q s.t. last(ρ)
e′

−−→ q′′∧f(ρ
e′

−−→ q′′) = λ.
– an infinite run ρ is in ∈ Outcome(q, f) if all the finite prefixes of ρ are in

Outcome(q, f).

A strategy is realizable, whenever the following holds: for all ρ ∈ Outcome(q, f)
s.t. f is defined on ρ and f(ρ) = λ, there exists some δ > 0 such that for all

0 ≤ t < δ, there exist q′ with ρ
t

−−→ q′ ∈ Outcome(q, f) and f(ρ
t

−−→ q′) = λ.
Strategies which are not realizable are not interesting because they generate
empty set of outcomes. Note that realizability is a weaker notion than the one
of implementability considered in [11,14]. It is easy to provide examples of non-
realizable strategies (see [8]). We want to avoid this and offer as a secondary
result means of synthesizing realizable strategies.

In the following, we will restrict our attention to realizable strategies and
simply refer to them as strategies.

Definition 5 (Reachability Timed Games (RTG)). A reachability timed
game G = (Q,Q0,Goal,Act,−→) is a timed game (Q,Q0,Act,−→) with a dis-

tinguished set of goal states Goal ⊆ Q such that for all q ∈ Goal, q
e

−−→ q′ implies
q′ ∈ Goal.

If G is a RTG, a run ρ is a winning run if States(ρ) ∩ Goal 6= ∅. We denote
WinRuns(q,G) the set of winning runs in G from q.

In the literature one can find (at least) two definitions of the meaning of
uncontrollable actions: i) in [6,24] uncontrollable actions can be used to win the
game whereas ii) in [21] they cannot help to win the game.

We follow the framework used by La Torre et al in [21] where uncontrollable
actions cannot help to win. This choice is made for the sake of simplicity (mainly
for the proof of theorem 3). However, we can handle the semantics of [24] (case
i) as well but the proofs are more involved2.

We now formalize the previous notions. A maximal run ρ is either an infinite

run or a finite run that satisfies: ∀t ≥ 0, ρ
t

−−→ q′
a

−−→ implies a ∈ Actu, thus the
next discrete actions from last(ρ), if any, are uncontrollable actions. A strategy
f is winning from q if all runs in Outcome(q, f) are finite and all maximal runs
in Outcome(q, f) are in WinRuns(q,G). Note that f must be realizable. A state
q in a RTG G is winning if there exists a winning strategy f from q in G. We
denote by W(G) the set of winning states in G. We note WinStrat(q,G) the set
of winning (and realizable) strategies from q over G.

In the remainder of this section we summarize previous results obtained for
particular classes of RTG: Linear Hybrid Games (LHG). Due to lack of space
we will not define this model here but refer to [16] for details.

The computation of the winning states is based on the definition of a control-
lable predecessors operator [13,24]. Let G = (Q,Q0,Goal,Act,−→) be a RTG. For

2 The definition of π later on must be patched as well as the definition of the O

function in Def. 10. Theorem 2 still holds for this case as it only depends on the
winning set of states.

6

a subset X ⊆ Q and a ∈ Act we define Preda(X) = {q ∈ Q | q
a

−−→ q′, q′ ∈ X}.
Now the controllable and uncontrollable discrete predecessors of X are defined
by cPred(X) =

⋃

c∈Actc
Predc(X), respectively uPred(X) =

⋃

u∈Actu
Predu(X).

We also need a notion of safe timed predecessors of a set X w.r.t. a set Y . Intu-
itively a state q is in Predt(X,Y) if from q we can reach q′ ∈ X by time elapsing
and along the path from q to q′ we avoid Y . Formally this is defined by:

Predt(X,Y) = {q ∈ Q | ∃δ ∈ R≥0 s.t. q
δ

−−→ q′, q′ ∈ X and Post [0,δ](q) ⊆ Y }

where Post [0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t

−−→ q′}. Now we are able to define
the controllable predecessors operator π as follows:

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

(1)

Note that this definition of π captures the choice that uncontrollable actions
cannot be used to win. We denote by CompWin the semi-algorithm which com-
putes the least fixed point of λX.{Goal} ∪ π(X) as the limit of an increasing
sequence of sets of states (starting with the initial state Goal). If G is a LHG,
the result of the computation µX.{Goal} ∪ π(X) is denoted CompWin(G).

Theorem 1 (Symbolic Algorithm for LHG [13,17]). W(G) = CompWin(G)
for a LHG G and hence CompWin is a symbolic semi-algorithm for computing
the winning states of a LHG. Moreover CompWin terminates for the subclass of
Initialized Rectangular Games [17].

As for controller synthesis the previous algorithms allow us to compute the
winning states of a game but the extraction of strategies is not made particularly
explicit. As a secondary result we provide a symbolic algorithm (assuming time
determinism) that synthesizes realizable strategies as claimed in the following
theorem:

Theorem 2 (Synthesis of Realizable Strategies). Let G be a time deter-
ministic LHG. If the semi-algorithm CompWin terminates for G, then we can
compute a polyhedral3 strategy which is winning (and realizable) in each state of
W(G) and state-based.

3 Priced Timed Games (PTG)

In this section we define Priced Timed Games (PTG). We focus on reachability
PTG (RPTG) where the aim is to reach a particular state of the game at the
lowest possible cost. We give a new run-based definition of the optimal cost.
Then we review some previous work [21] on acyclic weighted timed automata
by Salvatore La Torre et al where a definition of optimal cost is given as a
state-based optimal cost function. We conclude this section by relating the two
definitions and proving their equivalence.

3 A strategy f is polyhedral if for all a ∈ Actc ∪{λ}, f−1(a) is a finite union of convex
polyhedra for each location of the LHG.

7

Priced Timed Games.

Definition 6 (Priced Timed Transition Systems). A priced timed transi-
tion system (PTTS) is a pair (S,Cost) where S = (Q,Q0,Act,−→) is a TTS
and Cost is a cost function i.e. a mapping from −→ to R≥0 that satisfies:

– Price Additivity: if q
d

−−→ q′ and q′
d′

−−→ q′′ with d, d′ ∈ R≥0, then

Cost(q
d+d′

−−−−→ q′′) = Cost(q
d

−−→ q′) + Cost(q′
d′

−−→ q′′).

– Bounded Cost Rate: there exists K ∈ N such that for every q
d

−−→ q′

where d ∈ R≥0, Cost(q
d

−−→ q′) ≤ d.K

For a transition q
e

−−→ q′, Cost(q
e

−−→ q′) is the cost of the transition and we

note q
e,p

−−−→ q′ if p is the cost of q
e

−−→ q′.

All notions concerning runs on TTS extend straightforwardly to PTTS. Let S

be a PTTS and ρ = q0
e1−−→ q1

e2−−→ . . .
en−−−→ qn a finite run4 of S. The cost of

ρ is defined by Cost(ρ) =
∑n−1

i=0 Cost(qi

ei+1

−−−−→ qi+1).

Definition 7 (Priced Timed Games). A priced timed game (PTG) (resp.
Reachability PTG) is a pair G = (S,Cost) such that S is a TG (resp. RTG) and
Cost is a cost function.

All the notions like strategies, outcomes, winning states are already defined for
(R)TG and carry over in a natural way to (R)PTG. The cost Cost(q, f) of a
winning strategy f ∈ WinStrat(q,G) is defined by:

Cost(q, f) = sup {Cost(ρ) | ρ ∈ Outcome(q, f)} (2)

Definition 8 (Optimal Cost for a RPTG). Let G be a RPTG and q be a
state in G. The reachable costs set Cost(q) from q in G is defined by:

Cost(q) = {Cost(q, f) | f ∈ WinStrat(q,G)}

The optimal cost from q in G is OptCost(q) = inf Cost(q). The optimal cost in
G is supq∈Q0

OptCost(q) where Q0 denotes the set of initial states5.

Definition 9 (Optimal Strategies for a RPTG). Let G be a RPTG and q a
state in G. A winning strategy f ∈ WinStrat(q,G) is said to be optimal whenever
Cost(q, f) = OptCost(q).

In the presence of RPTGs described by priced timed automata with strict
guards an optimal winning strategy may not always exist, rather a family of
strategies fε which get arbitrarily close to the optimal cost of winning may be
determined. Our aim is many-fold. We want to 1) compute the optimal cost of
winning, 2) decide whether there is an optimal strategy, and 3) in case there is
an optimal strategy compute one such strategy.

4 We are not interested in defining the cost of an infinite run as we will only use costs
of winning runs which must be finite in the games we play.

5 An alternative definition would be to take the inf if we consider that the choice of
the initial state is “controllable”.

8

Recursive Definition of the Optimal Cost. In [21] Salvatore La Torre et
al introduced a method for computing the optimal cost in acyclic priced timed
games. In this paper the authors define the optimal cost one can expect from a
state by a function satisfying a set of recursive equations, and not using a run-
based definition as we did in the last subsection. We give hereafter the definition
of the function used in [21] and prove that it does correspond to our run-based
definition of optimal cost.

Definition 10 (The O function (Adapted from [21])). Let G be a RPTG.
Let O be the function from Q to R≥0 ∪{+∞} that is the least fixed point6 of the
following functional:

O(q) = inf
q

t,p
−−→q′

t∈R≥0

max

min

min

q′
c,p′

−−→q′′

c∈Actc

p + p′ + O(q′′)

, p + O(q′)

(1)

sup

q
t′,p′

−−−→q′′

t′≤t

max

q′′
u,p′′

−−−→q′′′

u∈Actu

p′ + p′′ + O(q′′′) (2)

(♦)

This definition can be justified by the following arguments: item (2) of Def. 10
gives the maximum cost that an uncontrollable action can lead to if it is taken
before t; note that by definition sup ∅ = −∞ and that (2) is always defined
and the outermost max is thus always defined; item (1) gives the best you can
expect if a controllable action can be fired; if from q′ no controllable action
can be taken, then either (i) there is a time step leading to some q′ with O(q′)
finite or (ii) no such state q′ is reachable from q: as our semantics specifies that
no uncontrollable action can be used to win, we can not win from q (except if
q ∈ Goal) and the optimal cost will be +∞. We have the following theorem that
relates the two definitions:

Theorem 3. Let G = (S,Cost) be a RPTG induced by a LHG and Q its set of
states. Then O(q) = OptCost(q) for all q ∈ Q.7

4 Reducing Priced Timed Games to Timed Games

In this section we show that computing the optimal cost to win a priced timed
game amounts to solving a control problem (without cost). The idea is the
following:

6 The righthand-sides of the equations for O(q) defines a functional F on (Q −→
R≥0 ∪ {+∞}). (Q −→ R≥0 ∪ {+∞}) equipped with the natural lifting of ≤ on
R≥0 ∪ {+∞} constitutes a complete lattice. Also F can be quite easily seen to be a
monotonic functional on this lattice. It follows from Tarski’s fixed point theory that
the least fix point of F exists.

7 Note that if a state q ∈ Q is not winning, both O(q) and OptCost(q) are +∞.

9

From Optimal Reachability Game to Reachability Game. Assume we
want to compute the optimal cost to win a priced timed game A. We define a
(usual and unpriced) timed game AC as follows: we use a variable cost to stand
for the cost value. We build AC with the same discrete structure as A and specify
a rate for cost in each location: if the cost increases with a rate of +k per unit
of time in A, then we set the derivative of cost to be −k in AC ; if the cost of a
discrete transition is +k in A, then we update cost by cost := cost−k in AC . Now
we solve the following control problem: can we win in AC with the goal states
being Goal∧ cost ≥ 0 ? Note that if A is a priced timed automaton [4,7] (game)
then AC is a (simple) linear hybrid automaton [16]. Intuitively speaking we want
to solve a control game with a distinguished variable cost that decreases when
time elapses and when a discrete transition is fired according to what it costs
in the priced timed game. So we are asking the question: ”what is the minimal
amount of resource (cost) needed to win the control game AC?” In the case of A
we can compute the winning states of AC (with an algorithm for solving hybrid
games [13,29]) and if it terminates we have the answer to the optimal reachability
game: we intersect the set of initial states with the set of winning states, and in
case it is not empty, the projection on the cost axis yields a constraint on the
cost like cost > 1. By definition of winning set of states in reachability games,
i.e. this is the largest set from which we can win, no cost lower than or equal to
1 is winning and we can deduce that 1 is the optimal cost. Also we can deduce
there is no optimal strategy because of the strict inequality.

The rest of this section is devoted to formalizing this reduction and to proving
that this reduction is correct. Then we focus on the computation of optimal
strategies and we investigate conditions under which we can compute the optimal
cost (i.e. a termination criterion).

Definition 11 (RTG associated to a RPTG). Let G = ((Q,Q0,Goal,Act,

−→G),Cost) be a RPTG. We associate to G the RTG Cont(G) = (Q×R≥0, Q0×

R≥0,Goal×R≥0,Act,−→Cont(G)) where (q, c)
e

−−→Cont(G) (q′, c′) ⇐⇒ q
e,c−c′

−−−−→G

q′. In the sequel we abstract away the subscript of −→ as it will be clear from
the context which transition relation is referred to.

Note that with our reduction, the cost information becomes part of the state
and that the runs in G and Cont(G) are closely related. Now we focus on sub-
classes of reachability timed games, namely those obtained by enriching timed
automata [3] with costs (Priced or Weighted Timed Automata [4,7]). This en-
ables us to rely on symbolic algorithms and to have computability results.

Priced Timed Game Automata. Let X be a finite set of real-valued variables
called clocks. We denote B(X) the set of constraints ϕ generated by the grammar:
ϕ ::= x ∼ k | ϕ∧ϕ where k ∈ Z, x, y ∈ X and ∼∈ {<,≤,=, >,≥ }. A valuation
of the variables in X is a mapping from X to R≥0 (thus an element of RX

≥0). For
a valuation v and a set R ⊆ X we denote v[R] the valuation that agrees with v

on X \R and is zero on R. We denote v + δ for δ ∈ R≥0 the valuation s.t. for all
x ∈ X, (v + δ)(x) = v(x) + δ.

10

Definition 12 (PTGA). A Priced Timed Game Automaton A = (L, `0,Act,X,

E, inv, f) is a tuple where:

– L is a finite set of locations,
– `0 ∈ L is the initial location,
– Act = Actc ∪ Actu is the set of actions (partitioned into controllable and

uncontrollable actions),
– X is a finite set of real-valued clocks,
– E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions,
– inv : L −→ B(X) associates to each location its invariant,
– f : L ∪ E −→ N associates to each location a cost rate and to each discrete

transition a cost.

A reachability PTGA (RPTGA) is a PTGA with a distinguished set of locations
Goal ⊆ L. It defines the set of goal states Goal × RX

≥0.

The semantics of a PTGA A = (L, `0,Act,X,E, inv, f) is a PTG GA = ((L×

RX
≥0, (`0,0),Act,−→),Cost) where −→ consists of: i) discrete steps: (`, v)

e
−−→

(`′, v′) if there exists (`, g, e, R, `′) ∈ E s.t. v |= g and v′ = v[R]; Cost((`, v)
e

−−→

(`′, v′)) = f(`, g, e, R, `′) ; ii) time steps: (`, v)
δ

−−→ (`, v′) if δ ∈ R≥0, v′ = v + δ

and v, v′ ∈ inv(`); and Cost((`, v)
δ

−−→ (`, v′)) = δ · f(`). Note that this definition
of Cost gives a cost function as defined in Def. 6.

Lemma 1 (PTGA to LHG). Let A be a PTGA. There exists a LHG H with
a distinguished extra variable cost such that Cont(GA) = GH

8.

The correctness of the reduction is given by the following theorem:

Theorem 4. Let A be a RPTGA and H its corresponding LHG (as given by
lemma 1). If the semi-algorithm CompWin terminates for GH and if WH =

CompWin(GH), then: 1) CompWin terminates for GA and WA
def
= CompWin(GA) =

∃cost.WH ; and 2) (q, c) ∈ WH ⇐⇒ ∃f ∈ WinStrat(q,WA) with Cost(q, f) ≤ c.

Computation of the Optimal Cost and Strategy. Let X ⊆ Rn
≥0. The

upward closure of X, denoted ↑X is the set ↑X = {x′ |∃x ∈ X |x′ ≥ x}.

Theorem 5. Let A be a RPTGA and H its corresponding LHG. If the semi-
algorithm CompWin terminates for GH then for every (`, v) ∈ WA, ↑Cost(`, v) =
{c | ((`, v), c) ∈ WH}.

Proof. This is a direct consequence of theorem 4. ut

Corollary 1 (Optimal Cost). Let A be a RPTGA and H its corresponding
LHG. If the semi-algorithm CompWin terminates for GH then ↑Cost(`0,0) is
computable and is of the form cost ≥ k (left-closed) or cost > k (left-open) with
k ∈ Q≥0. In addition we get that OptCost(A) = k.

8 Note that GH is the TG that gives the semantics of H.

11

Proof. The fact that it is of the form cost ≥ k or cost > k is direct from theo-
rem 5. Now k is a rational number because we are considering LHG and symbolic
algorithms. The iterative computation of the π operator generates only polyhe-
dra defined by rational inequations. As it terminates the result follows. ut

Corollary 2 (Existence of an Optimal Strategy). Let A be a RPTGA.
If ↑Cost(`0,0) is left-open then there is no optimal strategy. Otherwise we can
compute a realizable, winning, optimal strategy.

Proof. Direct consequence of theorem 4. ut

Note that in the proof of corollary 2 we build a state-based strategy for H which
is no more state-based for A: indeed the strategy for H depends on the current
value of the cost (which is part of the state in H). The strategy for A is thus
dependent on the run and not memoryless. However it only depends on the last
state (`, v) of the run and on the accumulated cost along the run.

Termination Criterion & Optimal Strategies.

Theorem 6. Let A be a RPTGA satisfying the following hypotheses:

– A is bounded, i.e. all clocks in A are bounded ;
– the cost function of A is strictly non-zeno, i.e. there exists some κ > 0 such

that the accumulated cost of every cycle in the region automaton associated
with A is at least κ.

Then the semi-algorithm CompWin terminates for GH , where H is the LHG
associated with A.

Sketch of proof. After a finite number of iterations of CompWin we obtain a set
R of regions of the form (`,R, cost ≥ f) where f is a piecewise affine function on
R9. Assume f i

`,R is the cost function obtained after reaching the i-th occurrence
of (`,R) by computing backward with the semi-algorithm CompWin.

We know that the semi-algorithm CompWin

terminates for GH without the cost variable
(this is a timed automaton game as in [6,24])
and this entails that abstracting away the
cost function in R gives a finite number of
cost-free regions (`,R). To prove termina-
tion on GH it suffices to prove that for each
such region (`,R) there is some i ∈ N such
that ↑f i

`,R(R) ⊆↑f1
`,R(R). As all clocks are

bounded there exists a maximum M i
`,R and

a minimum mi
`,R cost value for the function

f i
`,R on region (`,R) (see the figure on the

righthand side for the case the PTGA has
only one clock).

m1
`,R

M1
`,R

cost ≥ f1

`,R =↑f1

`,R

κ

f2
`,R

m2
`,R

κ

κ

κ

κ

κ

m7
`,R

↑f7
`,R

cost

R
9 Note that cost constraints could be of the form cost > f as well, but this does not

affect our termination argument.

12

Now if we encounter the (i+1)-th occurrence of (`,R) when computing backward
with CompWin, we have mi+1

`,R ≥ m1
`,R + i × κ (see the previous figure) as each

cycle increases the cost of at least κ for any point in R (strictly non-zenoness

of the cost). Define n(`,R) =
⌈

M1
`,R−m1

`,R

κ

⌉

. As soon as we have encountered the

(n(`,R))-th occurrence of (`,R) (7 on the previous figure) we have m
n(`,R)
`,R ≥

M1
`,R and thus ↑f

n(`,R)
`,R (R) ⊆↑f1

`,R(R).

On each branch obtained in the tree corresponding to the (backward) com-
putation of CompWin, once (`,R) has appeared n(`,R) times no better cost will
be added for region (`,R). Hence CompWin terminates. ¤

It is not straightforward to build an optimal state-based (without the accu-
mulated cost) strategy as shown by the PTGA A given in Fig. 2. The most nat-

`0

x ≤ 1

Cost(`0) = 1

`1

x < 1

Cost(`1) = 1

`2

x ≤ 1

Cost(`2) = 2

Goal
x < 1; u x < 1; c

x = 1; c; Cost = 7

x = 1; c; Cost = 0

Fig. 2. Priced Timed Game A

ural way to define a state-based (without cost) strategy would be to take in each
state (`, v) the action given by the strategy in H in the state (`, v, c) with some
minimal c. Doing this would result in a strategy f such that f(`1, x < 1) = λ.
Such a strategy is however not winning. In this particular case, we can build an
optimal strategy f∗ the cost of which is 8: f∗(`0, x < 1) = λ, f∗(`0, x = 1) = c,
f∗(`1, x < 1) = c, f∗(`2, x < 1) = λ and f∗(`2, x = 1) = c. This strategy is
optimal in (`0,0) but is not (and needs not to be) optimal in state `1 for exam-
ple. From this observation we see that it is difficult to exhibit an algorithm for
building a state-based (with no cost) winning strategy.

Nevertheless, we now exhibit a restricted class of automata for which we can
synthesize optimal state-based (without the cost information) strategies auto-
matically. One of the challenges of future work is to enlarge this class of au-
tomata.

Theorem 7. Let A be a RPTGA satisfying the following hypotheses:

1. A is bounded ;
2. the cost function of A is strictly non-zeno ;
3. constraints on controllable actions are non-strict ;
4. constraints on uncontrollable actions are strict

13

Let WA = CompWin(GA) be the set of winning states. There exists a state-based
strategy f defined over WA s.t. for each (`, v) ∈ WA, f ∈ WinStrat((`, v),WA)
and Cost((`, v), f) = OptCost(`, v).

Note that under the previous conditions we build a strategy f which is globally
optimal i.e. optimal for all states of WA.

Remarks on the hypotheses in Theorems 6 and 7. The hypothesis on A being
bounded is not restrictive because all priced timed automata can be transformed
into bounded priced timed automata having the same behaviours (see for exam-
ple [23]). The strict non-zenoness of the cost function can be checked on priced
timed game automata: indeed it is sufficient to check whether there is a cycle
whose price is 0 in the so-called “corner-point abstraction” (see [7,9]) ; then, if
there is no cycle with cost 0, it means that the cost is strictly non-zeno, oth-
erwise, it is not strictly non-zeno. As illustrated by Fig. 2, hypotheses on the
syntax of the guards seem quite natural to get Theorem 7.

5 Preliminary Experiments

An example has been implemented in Hytech [19]. We can compute optimal
strategies for reachability priced timed game automata: first we get the winning
set of states by applying CompWin (see Section 2) ; then, we extract a winning
optimal strategy (if any). The code of this example can be found in [8] and on
the web page http://www.lsv.ens-cachan.fr/aci-cortos/ptga/.

lowx highx

Goalx

jamx?, x:=0

x≥5, y:=0

x:=0,

jamx?

x≥10

Costx=7

Costx(lowx)=1

Costx(lowy)=10

Antenna 1

lowy highy

Goaly

jamy?, y:=0

y≥2, x:=0

y:=0,

jamy?

y≥10

Costy=1

Costy(lowy)=2

Costy(lowy)=20

Antenna 2

X Y

x>6, jamy!

y>6, jamx!

x>6,

jamx!

y>6,

jamy!

Jammer

Controllable

Uncontrollable

Fig. 3. Mobile Phone Example.

We consider a mobile phone with two antennas emitting on different channels.
Making the initial connection with the base station takes 10 time units whatever

http://www.lsv.ens-cachan.fr/aci-cortos/ptga/

14

antenna is in use. Statistically, a jam of the transmission (e.g. collision with
another phone) may appear every 6 time units in the worst case. When a collision
is observed, the antenna tries to transmit with a higher level of energy for a while
(at least 5 time units for Antenna 1 and at least 2 time units for Antenna 2) and
then can switch back to the lower consumption mode. But switching back to the
low consumption mode requires more resources and forces to interrupt the other
transmission (Antenna 1 resets variable y of Antenna 2 and vice-versa). The
overall cost rate (consumption per time unit) for the mobile phone in a product
state s = (lowx, highy,Y) is the sum of the rates of Antenna 1 and Antenna 2
(both are working) i.e. 1 + 20 = 21 and Cost(s) = 21 in our model. Once the
connection with the base station is established (either x ≥ 10 or y ≥ 10) the
message is delivered with an energy consumption depending on the antenna
(Cost = 7 for Antenna 1 and Cost = 1 for Antenna 2). The aim is to connect the
mobile phone with an energy consumption (cost) as low as possible whatever
happens in the network (jam). This system can be represented by PTGAs (see
Fig. 3) and the problem reduces to finding an optimal strategy for reaching one
of the goal states Goalx or Goaly. Note that the modelization we propose satisfies
the assumptions of Theorem 7, needed to ensure termination and existence of a
state-based strategy.

y

0 x
highx.highy.Y

5

5

10

10

y=
- 53 x+

6

y=
x

y=2

y

0 x
highx.highy.X

6

10

4

y=
x+

6

y

0 x
highx.lowy.Y

105

10

2

(10,20)

(10,12)
y=

x+
10

y=
x+

2

y

0 x
highx.lowy.X

10

10

y

0 x
lowx.highy.Y

10

10

y

0 x

lowx.lowy.Y

y=
x+

10

y=
x+

2
y=

x-
5

y=
x-
10

10

10

(10,20)

lo
w x

→
G
oa

lo
r
lo
w y

→
G
oa

l

D
el
ay

y

0 x

lowx.lowy.X

y=
x-
5

y=
x-
10

10

10

Delay

highx→lowx

highy→lowy

lowx→Goalx

lowy→Goaly

Fig. 4. Strategy of the mobile phone example.

15

With our Hytech implementation we can compute the optimal cost (lowest
energy consumption) that we can ensure: it is 109. We can also compute an
optimal strategy the graphical representation of which is given for each product
location of the system in Fig. 4. The strategy is non trivial and the actions to take
depend on complex zones e.g. in (highx, lowy,Y) delay when y ≥ x+1∧x ≤ 5∧y ≤
10; Antenna 1 should go to lower consumption mode when y ≥ x + 2 ∧ x ≥ 5.
In state (highx, highy,Y) it is even more complex as described by the zoomed
picture: one should delay except if y ≥ 2 ∧ y ≤ 5

3 + 6 ∧ y ≤ x where Antenna 2
should switch to lower consumption mode. This example demonstrates the power
of our algorithm as it is really difficult to come up by hand with such a strategy.

6 Conclusion

In this paper we have given a new run-based definition of cost optimality for
priced timed games. This definition enables us to extend previous results on
acyclic priced timed games [21] and generalize them in the following ways: the
optimal cost can be computed for the class of priced timed game automata with
a strictly non-zeno cost. Moreover we can decide whether there exists an optimal
strategy which could not be done in previous works even for acyclic priced timed
games [21]. In case an optimal strategy exists we can compute a witness. Finally
we give some additional results concerning the type of information needed by
the optimal strategy and exhibit a class of priced timed game automata for
which optimal state-based (no need to keep track of the cost information) can
be synthetized. We have implemented the algorithm we propose in HyTech and
demonstrated the usefulness of our work on a small example of a mobile phone.

Our future work will be on extending the class of systems for which termi-
nation is ensured. Our claim is that there is no need for the strict non-zenoness
hypothesis for termination. Another direction will consist in extending our work
to optimal safety games where we want to minimize for example the cost per
time unit along infinite schedules whatever the environment does, which would
naturally extends both this current work and [9].

References

1. Y. Abdeddaim. Modélisation et résolution de problèmes d’ordonnancement à l’aide
d’automates temporisés. PhD thesis, Institut National Polytechnique de Grenoble,
Grenoble, France, 2002.

2. R. Alur, C. Courcoubetis, and T. Henzinger. Computing accumulated delays in
real-time systems. In Proc. 5th International Conference on Computer Aided Ver-
ification (CAV’93), vol. 697 of LNCS, pp. 181–193. Springer, 1993.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

4. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Int. Work. Hybrid Systems: Computation and Control (HSCC’01), vol.
2034 of LNCS, pp. 49–62. Springer, 2001.

16

5. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Proc. 2nd Int. Work. Hybrid Systems: Computation and Control
(HSCC’99), vol. 1569 of LNCS, pp. 19–30. Springer, 1999.

6. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control, pp. 469–
474. Elsevier Science, 1998.

7. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proc. 4th
International Workshop on Hybrid Systems: Computation and Control (HSCC’01),
vol. 2034 of LNCS, pp. 147–161. Springer, 2001.

8. P. Bouyer, F. Cassez, E. Fleury and K. Larsen. Optimal Strategies on Priced
Timed Game Automata. BRICS Report Series, February 2004.

9. P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as cheaply as possible. In
Proc. 7th International Workshop on Hybrid Systems: Computation and Control
(HSCC’04), LNCS. Springer, 2004. To appear.

10. E. Brinksma, A. Mader, and A. Fehnker. Verification and optimization of a PLC
control schedule. Journal of Software Tools for Technology Transfer (STTT),
4(1):21–33, 2002.

11. F. Cassez, T. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In Proc. 5th Int. Workshop on Hybrid Systems:
Computation and Control (HSCC’02), vol. 2289 of LNCS, pp. 134–148. Springer,
2002.

12. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.

13. L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In Proc. 12th International Conference on Concurrency Theory
(CONCUR’01), vol. 2154 of LNCS, pp. 536–550. Springer, 2001.

14. M. De Wulf, L. Doyen, and J.-F Raskin. Almost ASAP semantics: From timed
models to timed implementations. In Proc. 7th International Workshop on Hybrid
Systems: Computation and Control (HSCC’04), LNCS. Springer, 2004. To appear.

15. A. Fehnker. Scheduling a steel plant with timed automata. In Proc. 6th Int. Conf.
Real-Time Computing Systems and Applications (RTCSA’99), pp. 280–286. IEEE
Computer Society Press, 1999.

16. T. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Annual Sym-
posim on Logic in Computer Science (LICS’96), pp. 278–292. IEEE Computer
Society Press, 1996.

17. T. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games. In Proc.
10th International Conference on Concurrency Theory (CONCUR’99), vol. 1664
of LNCS, pp. 320–335. Springer, 1999.

18. T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech. In Proc.
1st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’95), vol. 1019 of LNCS, pp. 41–71. Springer, 1995.

19. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model-checker for hybrid
systems. Journal on Software Tools for Technology Transfer (STTT), 1(1–2):110–
122, 1997.

20. T. Hune, K. Larsen, and P. Pettersson. Guided synthesis of control programs
using uppaal. In Proc. IEEE ICDS Int. Work. Distributed Systems Verification
and Validation, pp. E15–E22. IEEE Computer Society Press, 2000.

21. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control
for acyclic weighted timed automata. In Proc. 2nd IFIP International Confer-

17

ence on Theoretical Computer Science (TCS 2002), vol. 223 of IFIP Conference
Proceedings, pp. 485–497. Kluwer, 2002.

22. K. Larsen. Resource-efficient scheduling for real time systems. In Proc. 3rd In-
ternational Conference on Embedded Software (EMSOFT’03), vol. 2855 of LNCS,
pp. 16–19. Springer, 2003. Invited presentation.

23. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J.
Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed
automata. In Proc. 13th Int. Conf. Computer Aided Verification (CAV’01), vol.
2102 of LNCS, pp. 493–505. Springer, 2001.

24. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In Proc. 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), vol. 900, pp. 229–242. Springer, 1995.

25. P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed au-
tomata. In Proc. 8th IEEE Mediterranean Conference on Control and Automation,
2000.

26. P. Niebert and S. Yovine. Computing efficient operations schemes for chemical
plants in multi-batch mode. European Journal of Control, 7(4):440–453, 2001.

27. J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’04), LNCS. Springer,
2004. To appear.

28. W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’95), vol. 900, pp.
1–13. Springer, 1995. Invited talk.

29. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc.
36th IEEE Conference on Decision and Control, pp. 4607–4612. IEEE Computer
Society Press, 1997.

	Optimal Strategies in Priced Timed Game Automata
	Introduction
	Reachability Timed Games (RTG)
	Timed Transition Systems and Games.
	Strategies, Reachability Games.

	Priced Timed Games (PTG)
	Priced Timed Games.
	Recursive Definition of the Optimal Cost.

	Reducing Priced Timed Games to Timed Games
	From Optimal Reachability Game to Reachability Game.
	Priced Timed Game Automata.
	Computation of the Optimal Cost and Strategy.
	Termination Criterion & Optimal Strategies.
	Remarks on the hypotheses in Theorems 6 and 7.

	Preliminary Experiments
	Conclusion

