Implementability of Timed Automata

Karine Altisen (Verimag),

Joint work with:
Nicolas Markey (LSV),
Pierre-Alain Reynier (LSV),
Stavros Tripakis (Verimag)
Context: Model-based Design

- Models are good for analysis:
 - simulation, testing, theorem proving, verification...

- What about implementation
 - currently mostly an art/practice

- How to move from models to implementation?
 - as automatically as possible,
 - preserving as much as possible
Timed Automata: definition

- finite automaton
- real-valued clocks: x
- triggering conditions on transitions:
 - guards: $x = 1$ and resets: $x := 0$
 - inputs?: $a?$ + outputs!: $b!$
- condition on states: invariants: $x \leq 1$
Timed Automata: semantics

Example of trace:

$\text{(state } = 1, x = 0) \rightarrow (\text{state } = 1, x = 0.88)$

$\rightarrow ?a \rightarrow (\text{state } = 2, x = 0) \rightarrow (\text{state } = 2, x = 0.45)$

$\rightarrow b! \rightarrow (\text{state } = 1, x = 0.45) \rightarrow (\text{state } = 1, x = 54.3)$

$\rightarrow a? \rightarrow (\text{state } = 2, x = 0) \rightarrow (\text{state } = 2, x = 1)$

$\rightarrow (\text{state } = 3, x = 1) \ldots$
Timed Automata: semantics

Comments:

• the *clocks* are infinitely precise
 guards are tested against exact values

• the *computation* takes zero time
 (evaluation of guards, change of discrete states)

• the *communication* with outside takes zero time
 (inputs/outputs)

→ a *model* with *ideal* semantics
Towards a Realistic Platform

we consider that a realistic platform should specify:

• how precise are the clocks (they should be digital!) and how they are related

• speed, frequency and precision of computations

• how inputs and outputs are treated
 • w.r.t. environment and shared variables (if some)
 • w.r.t. time
Guaranties

- Property Preservation

- “Faster is better” property
 - “implem + platform” satisfies a property
 - change for a “more performant” platform,
 - is the property still satisfied?
Approaches

Two ways to take into account the imprecision due to implementation:

- Model it within a model of the execution platform KA+ST (Verimag)

- Adapt the semantics of timed automata to include imprecision Raskin et al. (ULB) and then PB+NM+PAR (LSV)
Approach 1: models the exec. platform

- Idea: translate the TA into a program and model the execution platform as timed automata

- Global scheme:

 - Plant model: Env
 - Input and output interface model: A_{IO}
 - Program model for A: \text{Prog}(A)
 - Execution model: A_{EX}
 - Digital clock model: A_{DC}

- Diagram:

Approach 1: the program implementing \(A \)

- translate \(A \) into \(\text{Prog}(A) \) an \textit{untimed automaton}

 interface of \(\text{Prog}(A) \): inputs = \{now, trig, inputs\} outputs = \{outputs\}

- program the implementation of \(A \) by interpreting \(\text{Prog}(A) \):

 loop each trig --------------------------

 read now; read inputs;
 compute; update; write outputs;

endloop --------------------------
Approach 1: digital clock models

Digital clock model: A_{DC}

- provides now
- models that the clock of the CPU is digital (ie digitally updated)
- and may have some uncertainties

Examples

\[
x = \Delta \\
x := 0 \\
\text{tick!} \\
now := 0 \\
x \leq \Delta \\
now := \text{now} + \Delta
\]

\[
x \in [\Delta - \epsilon, \Delta + \epsilon] \\
x := 0 \\
\text{tick!} \\
now := 0 \\
x \leq \Delta \\
now := \text{now} + \Delta
\]
Approach 1: checking the implementation

A model around Prog(A) to check properties of the implementation

- A model of the execution platform: (timed automata)

 - digital clock: A_{DC}; \rightarrow provides now
 - execution: A_{EX}; \rightarrow provides trig!
 - communications: A_{IO}; \rightarrow provides inputs/outputs

 \rightarrow model of the platform: $P = A_{EX} || A_{DC} || A_{IO}$
plant model: Env

$\mathbf{a}_1 \?, \ldots, \mathbf{a}_n \?$

input and output interface model: \mathbf{A}_{IO}

output interface

input interface

program model for \mathbf{A}: $\text{Prog}(\mathbf{A})$

trig!

execution model: \mathbf{A}_{EX}

digital clock model: \mathbf{A}_{DC}

$\mathbf{b}_1 \!, \ldots, \mathbf{b}_m \!$
Approach 1: checking the implementation

A model around $\text{Prog}(A)$ to check properties of the implementation

- A model of the “real” execution of A:
 - execution platform: $P = A_{\text{EX}} || A_{\text{DC}} || A_{\text{IO}}$
 - reasonable assumptions on the environment: Env

\Rightarrow model of the execution of the program that implements A
on the execution platform modeled by P
when executing uppon the environment Env

$M = \text{Env} || \text{Prog}(A) || P$
Approach 1: checking the implementation

Formal analysis of M

- verification (model-checking)
- controller synthesis
- preservation and "faster is better" properties are FALSE with no assumptions
 try to prove them under some restrictive hypothesis?
Approach 2: adapt the semantics

Context:
fix the assumptions under which executing the timed automaton, so as to ensure properties

→ fix a given platform
 ● digital clock of the CPU: periodically updated (period Δ_P)
 ● execution: one cycle of computation takes at most Δ_L
 ● communications: one shared buffer of size 1 per input/output

loop -----------------------------
 read now; read inputs;
 compute; update; write outputs;
endloop --------------------------
Approach 2: results – Raskin et al. (ULB)

Definitions of new semantics:

• $[\{A\}]_{\Delta_L, \Delta_P}$: sem. of the program of A executing on the platform

• $[\{A\}_{\Delta}]$: new sem. for A, approximation by Δ of the ideal sem.
 — enlargement: $x \in [a, b] \rightarrow x \in [a - \Delta, b + \Delta]$

Theorems:

• if $\Delta > 4\Delta_P + 3\Delta_L$, then $[\{A\}]_{\Delta_L, \Delta_P}$ refines $[\{A\}_{\Delta}]$

• if $\Delta' < \Delta$, then $[\{A\}_{\Delta'}]$ refines $[\{A\}_{\Delta}]$

Robustness: A is robust wrt a property φ
iff $\exists \Delta$ st the semantics $[\{A\}_{\Delta}]$ satisfies φ
Approach 2: robust verification

- Verifies: $\exists \Delta$ st the semantics of A_Δ satifies φ

- Algo (idea): fix-point computation
 - $\text{Reach}(A_\Delta)$: the set of reachable states
 - computes: $\text{Reach}^*(A) = \cap_{\Delta > 0} \text{Reach}(A_\Delta)$

- Properties:
 - safety (ULB)
 - LTL (LSV)
 - bounded time properties (LSV)
Conclusion: Modeling vs Semantics

Modeling:
- uses classical timed automata, their semantics and algorithms
- allows changing the program type/execution platform by modularly changing the model
- offers possibilities for verification and synthesis
 BUT results are difficult to obtain

Semantics:
- introduces new semantics
- fixes the execution platform
- offers possibilities for robust verification
 + “Faster is better” property is true
Conclusion – Perspectives

Modeling:

● results: implementation framework using standard semantics + modeling

● to be continued: platform refinement and preservation

Semantics:

● results: implementability result on a given platform, for some properties

● to be continued: MTL properties
Related Work

- The tool TIMES [Uppsala]:
 - Timed automata that spawn tasks (multi-threaded programs)
 - Focus: schedulability analysis

- Timed Triggered Automata [Mokrushin, Krcal, Yi, Thiagarajan]:
 - Essentially discrete-time automata

- Digitization, robustness for timed automata [many]:
 - Focus: verification
 - Relation to code generation needs to be better understood