
Petri nets



Petri nets

Petri nets are a basic model of parallel and distributed systems (named after Carl
Adam Petri). The basic idea is to describe state changes in a system with
transitions.
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Petri nets contain places��
��

and transitions that may be connected by
directed arcs.

Places symbolise states, conditions, or resources that need to be met/be
available before an action can be carried out.

Transitions symbolise actions.
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Behaviour of Petri nets

Places may contain tokens that may move to other places by executing (“firing”)
actions.

A token on a place means that the corresponding condition is fulfilled or that a
resource is available:
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In the example, transition t may “fire” if there are tokens on places s1 and s3.
Firing t will remove those tokens and place new tokens on s2 and s4.
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Why Petri Nets?

low-level model for concurrent systems

expressly models concurrency, conflict, causality, . . .

finite-state or infinite-state models

Content:

Semantics of Petri nets

Modelling with Petri nets

Analysis methods: finite/infinite-state case, structural analysis

Remark: Many variants of Petri nets exist in the literature; we regard a special
simple case also called P/T nets.
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Petri Net

A Petri net is a tuple N = 〈P,T ,F ,W ,m0〉, where

• P is a finite set of places,

• T is a finite set of transitions,

• the places P and transitions T are disjoint (P ∩ T = ∅),

• F ⊆ (P × T ) ∪ (T × P) is the flow relation,

• W : ((P × T ) ∪ (T × P))→ IN is the arc weight mapping
(where W(f) = 0 for all f /∈ F , and W(f) > 0 for all f ∈ F ), and

• m0 : P → IN is the initial marking representing the initial distribution of tokens.
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Semantics

Let N = 〈P,T ,F ,W ,m0〉 be a Petri net. We associate with it the transition
systemM = 〈S,Σ,∆, I,AP, `〉, where:

S = {m | m : P → IN }, I = {m0}

Σ = T

∆ = { (m, t ,m′) | ∀p ∈ P : m(p) ≥ W(p, t) ∧m′(p) = m(p)−W(p, t) + W(t , p) }

AP = P, `(m) = { p ∈ P | m(p) > 0 }

When (m, t ,m′) ∈∆, we say that t is enabled in m and that its firing produces
the successor marking m′; we also write m t−→ m′.
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Semantics (remark)

The semantics given on the previous slide is also called interleaving semantics
(one transition fires at a time).

Alternatively, one could define a step semantics, which better expresses the
concurrent behaviours.

In step semantics, one allows a multiset of transitions to fire simultaneously; i.e.
a multiset A is enabled in marking m if m contains enough tokens to fire all
transitions in A.

However, for our purposes the interleaving semantics is sufficient.
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Petri nets: Remarks

If 〈p, t〉 ∈ F for a transition t and a place p, then p is an input place of t ,

If 〈t , p〉 ∈ F for a transition t and a place p, then p is an output place of t ,

Let a ∈ P ∪ T . The set •a = {a′ | 〈a′, a〉 ∈ F} is called the pre-set of a, and the
set a• = {a′ | 〈a, a′〉 ∈ F} is its post-set.

When drawing a Petri net, we usually omit arc weights of 1. Also, we may either
denote tokens on a place either by black circles, or by a number.
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Example: Dining philosophers

There are philosophers sitting around a round table.

There are forks on the table, one between each pair of philosophers.
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The philosophers want to eat spaghetti from a large bowl in the center of the
table.
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Dining philosophers: Petri net
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Synchronization by rendez-vous

Assume that we have a number of components with local actions and actions !m
(send message m) and ?m (receive message m).

Transition into Petri net:

Places = union of local states

Transitions:

– for local actions (p, a, p′) build a Petri transition t labelled with a and
•t = {p}, t• = {p′};

– for pairs of actions (p, !m, p′) and (q, ?m, q′) build a Petri transition t
labelled with m and •t = {p, q}, t• = {p′, q′}.

Similar translations possible for other models discussed in the course
(asynchronous product, TS with variables, . . . )
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Notation for markings

Often we will fix an order on the places (e.g., matching the place numbering),
and write, e.g., m0 = 〈2,5,0〉 instead.

When no place contains more than one token, markings are in fact sets, in which
case we often use set notation and write instead m0 = {p5, p7, p8}.

Alternatively, we could denote a marking as a multiset, e.g.
m0 = {p1, p1, p2, p2, p2, p2, p2}.
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Reachable markings

Let m be a marking of a Petri net N = 〈P,T ,F ,W ,m0〉.

The set of markings reachable from m (the reachability set of m, written
reach(m)), is the smallest set of markings such that:

1. m ∈ reach(m), and

2. if m′ t−→ m′′ for some t ∈ T , m′ ∈ reach(m), then m′′ ∈ reach(m).

The set of reachable markings reach(N) of a net N = 〈P,T ,F ,W ,m0〉 is
defined to be reach(m0).
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Reachability Graph

Let N = 〈P,T ,F ,W ,m0〉 be a Petri net with associated transition system
M = 〈S,Σ,∆, I,AP, `〉.

The reachability graph of N is the rooted, directed graph G = 〈S′,∆′,m0〉,
where S′ and ∆′ are the restrictions of S and ∆ to reach(N).

The reachability graph can be constructed in iterative fashion, starting with the
initial marking and then adding, step for step, all reachable markings.
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k -safeness

Definition: Let N be a net. If no reachable marking of N can contain more than k
tokens in any place (where k ≥ 0 is some constant), then N is said to be k -safe.

Example: The following net is 1-safe.
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Other example: the nets resulting from translating synchronous rendez-vous
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k -safeness and Termination

A k -safe net has at most (k + 1)|P| reachable markings; for 1-safe nets, the limit
is 2|P|.

In this case, there are finitely many reachable markings, and the construction of
the reachability graph terminates.

On the other hand, if a net is not k -safe for any k , then there are infinitely many
markings, and the construction will not terminate.
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Reachability problem for 1-safe nets

Let N be a Petri net and m be a marking. The reachability problem for N,m is to
determine whether m ∈ reach(N).

Theorem: The reachability problem for 1-safe Petri nets is PSPACE-complete.

Proof: (sketch)
upper bound: non-deterministically simulate net for at most 2|P| steps;
hardness by reduction from QBF.

Corollary: Given a 1-safe net N and a place p, it is PSPACE-complete to
determine whether reach(N) contains a marking m such that m(p) = 1.
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Algorithms for the reachability problem

The most straightforward way to solve the reachability problem on Petri nets is to
construct the reachability graph. However, this can be very inefficient:
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a b c

p2 p4

p3 p5

If there are n such components, then the reachability graph has size 2n.
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In fact, the reachability graph does not take advantage of the concurrent nature
of a Petri net.

Later, we shall study a method more adapted to concurrent systems. It
constructs a concise representation of the reachable markings called unfolding.

Given the unfolding of N, it is NP-complete to determine whether a given
marking is reachable in N. One can thus take advantage of the advances made
in SAT-checking.

First, we discuss a method to determine reachability information for non-safe
nets.

19



Unbounded nets: Coverability graphs



Use of reachability graphs

If the net is not k -safe for any k , then it has infinitely many reachable markings,
and one cannot effectively compute the reachability graph.

Nevertheless, the following problem is decidable: Given a (non-safe) net P and a
marking m, is m reachable in P?

This result is due to Mayr and Kosaraju (1981/82). However, the complexity of
the problem is in general non-elementary, and no efficient methods are known.

Most of the time, though, one is interested in checking whether m is part of a
reachable marking (one says that m is coverable in this case). This problem is
somewhat easier to solve in practice, and we shall discuss it.
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Example

Consider the following (slightly inept) attempt at modelling a traffic light:

R −> RY

RY −> G

Y −> R

G −> Y

p3 (green light)

p2 (yellow light)

p1 (red light)

22



Coverability Graphs

The reachability graph of the preceding net is infinite.

We will show the construction of a so-called coverability graph for it.

The coverability graph has the following properties:

It can be used to find out whether the reachability graph is infinte.

It is always finite, and its construction always terminates.

Even for unbounded nets, it still gathers some information about reachable
markings.
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Computing with ω

First we introduce a new symbol ω to represent “arbitrarily many” tokens.

We extend the arithmetic on natural numbers with ω as follows. For all n ∈ IN:
n + ω = ω + n = ω,
ω + ω = ω,
ω − n = ω,
0 · ω = 0, ω · ω = ω,
n ≥ 1⇒ n · ω = ω · n = ω,
n ≤ ω, and ω ≤ ω.

Note: ω − ω remains undefined, but we will not need it.
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ω-Markings

We extend the notion of markings to ω-markings. In an ω-marking, each place p
will either have n ∈ IN tokens, or ω tokens (arbitrarily many).

Note: This is a technical definition that we will need for constructing the
coverability graph! The nets that we use only have finite markings.

An ω-marking such as (1, ω,0) can also be interpreted as the set of
(non-ω)-markings that have one token on the first place, no token on the third
place, and any number of tokens on the second place.
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Firing Rule with ω-markings

The firing condition and firing rule (reproduced below) neatly extend to
ω-markings with the extended arithmetic rules:

Firing condition:
Transition t ∈ T is M-enabled, written M t−→, iff ∀p ∈ •t : M(p) ≥ W(p, t).

Firing rule:
An M-enabled transition t may fire, producing the successor marking M ′, where

∀p ∈ P : M ′(p) = M(p)−W(p, t) + W(t , p).

If a transition has a place with ω tokens in its preset, that place is considered to
have sufficiently many tokens for the transition to fire, regardless of the arc
weight.

If a place contains an ω-marking, then firing any transition connected with an arc
to that place will not change its marking.
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Definition of Covering

An ω-marking M ′ covers an ω-marking M, denoted M ≤ M ′, iff

∀p ∈ P : M(p) ≤ M ′(p).

An ω-marking M ′ strictly covers an ω-marking M, denoted M < M ′, iff

M ≤ M ′ and M ′ 6= M.
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Coverability and Transition Sequences (1/2)

Observation: Let M and M ′ be two markings such that M ≤ M ′.
Then for all transitions t , the following holds:

If M t−→ then M ′ t−→.

In other words, if M ′ has at least as many tokens as M has (on each place), then
M ′ enables at least the same transitions as M does.

This observation can be extended to sequences of transitions:

Define M
t1t2...tn−→ M ′ to denote:

∃M1,M2, . . . ,Mn : M
t1−→ M1

t2−→ M2 · · ·
tn−→ Mn = M ′.

Now, if M
t1t2...tn−→ and M ≤ M ′, then M ′

t1t2...tn−→ .
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Coverability and Transition Sequences (2/2)

Let M,M ′ be markings such that M < M ′, and assume that there is a sequence

of transitions such that M
t1t2...tn−→ M ′ holds.

Thus, there is a marking M ′′ with M ′
t1t2...tn−→ M ′′.

Let ∆M := M ′ −M (place-wise difference). Because M < M ′, the values of
∆M are non-negative and at least one value is non-zero.

Clearly, M ′′ = M ′+ ∆M = M + 2∆M.

M t1 t2 ... tn M’ t1 t2 ... tn M’’= =

∆Μ ∆Μ

Μ+∆Μ Μ+2∆Μ

...

=

...

29



By firing the transition sequence t1t2 . . . tn repeatedly we can “pump” an arbitrary
number of tokens to all the places having a non-zero marking in ∆M.

The basic idea for constructing the coverability graph is now to replace the
marking M ′ with a marking where all the places with non-zero tokens in ∆M are
replaced by ω.
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Coverability Graph Algorithm (1/2)

COVERABILITY-GRAPH(〈P,T ,F ,W ,M0〉)
1 〈V ,E , v0〉 := 〈{M0}, ∅,M0〉;
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;

5 Work := Work \ {M};
6 for t ∈ enabled(M)

7 do M ′ := fire(M, t);

8 M ′ := AddOmegas(M,M ′,V);

9 if M ′ /∈ V
10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {〈M, t ,M ′〉};
13 return 〈V ,E , v0〉;

The subroutine
AddOmegas(M,M ′,V) will
check if the sequences leading
to M ′ can be repeated, strictly
increasing the number of tokens
on some places, and replace
their values with ω.
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Coverability Graph Algorithm (2/2)
The following notation us used in the AddOmegas subroutine:

• M ′′ →∗ M iff the coverability graph currently contains a path (including the
empty path!) leading from M ′′ to M.

ADDOMEGAS(M,M ′,V)

1 repeat saved := M ′;
2 for all M ′′ ∈ V s.t. M ′′ →∗ M
3 do if M ′′ < M ′

4 then M ′ := M ′+ ((M ′ −M ′′) · ω);

5 until saved = M ′;
6 return M ′;

In other words, repeated check all the predecessor markings of the new marking
M ′ to see if they are strictly covered by M ′. Line 5 causes all places whose
number of tokens in M ′ is strictly larger than in the “parent” M ′′ to contain ω.
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Properties of the coverability graph (1)

Let N = 〈P,T ,F ,W ,M0〉 be a net.

The coverability graph has the following fundamental property:

If a marking M of N is reachable, then M is covered by some vertex of the
coverability graph of N.

Note that the reverse implication does not hold: A marking that is covered by
some vertex of the coverability graph is not necessarily reachable, as shown by
the following example:

t1

1 3

<1>

<ω>

t1

t1
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Properties of the coverability graph (2)

The coverability graph could thus be said to compute an overapproximation of
the reachable markings.

The construction of the coverability graph always terminates.
If N is bounded, then the coverabilibility graph is identical to the reachability
graph.

Coverability graphs are not unique,
i.e. for a given net there may be more than one coverability graph, depending on
the order of the worklist and the order in which firing transitions are considered.
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