Weighted automata with pebbles and weighted FO logic with transitive closures

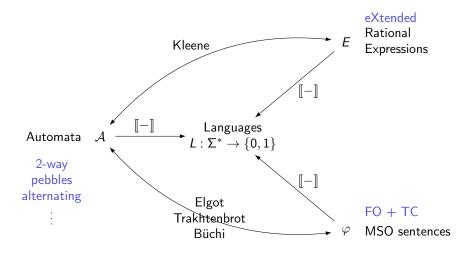
Paul Gastin

Benedikt Bollig, Benjamin Monmege, Marc Zeitoun LSV, ENS Cachan, CNRS, INRIA.

Dagstuhl Dec. 13-17, 2010

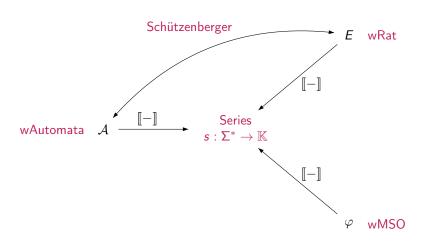
Preliminary version at ICALP'10

Motivation: The Paradise for weights



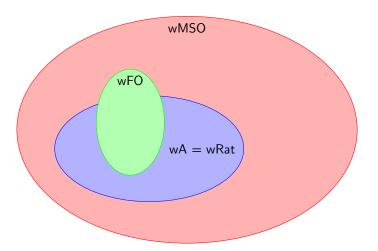
Boolean: $\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$

Motivation: The Paradise for weights

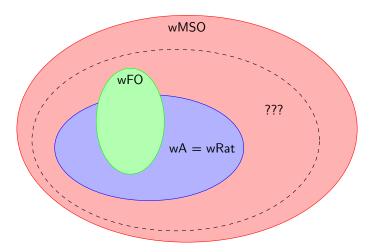


Quantitative: $\mathbb{K} = (K, +, \times, 0, 1)$

Expressivity in weighted setting



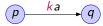
Expressivity in weighted setting



Find a robust class containing both wFO and wAutomata.

Weighted automata

▶ Transitions carry weights from a semiring \mathbb{K} : $\mu: \Sigma \to K^{Q \times Q}$.



• Weight of a run on $w = a_1 a_2 \cdots a_n$: product in the semiring.

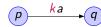
$$\mathsf{weight}(p_0 \xrightarrow{k_1 a_1} p_1 \xrightarrow{k_2 a_2} \cdots \xrightarrow{k_n a_n} p_n) = k_1 k_2 \cdots k_n$$

▶ Value of a word: sum of all weights of runs on this word.

$$\llbracket \mathcal{A} \rrbracket(w) = \sum_{\rho \text{ run of } \mathcal{A} \text{ on } w} \mathsf{weight}(\rho) = \lambda \cdot \mu(w) \cdot \gamma$$

Weighted automata

▶ Transitions carry weights from a semiring \mathbb{K} : $\mu: \Sigma \to K^{Q \times Q}$.



▶ Weight of a run on $w = a_1 a_2 \cdots a_n$: product in the semiring.

weight(
$$p_0 \xrightarrow{k_1 a_1} p_1 \xrightarrow{k_2 a_2} \cdots \xrightarrow{k_n a_n} p_n$$
) = $k_1 k_2 \cdots k_n$

▶ Value of a word: sum of all weights of runs on this word.

$$\llbracket \mathcal{A} \rrbracket(w) = \sum_{\rho \text{ run of } \mathcal{A} \text{ on } w} \mathsf{weight}(\rho) = \lambda \cdot \mu(w) \cdot \gamma$$

Example: Semirings: $\mathbb{K} = (K, +, \times, 0, 1)$

$$\blacktriangleright \mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$

$$\mathbb{P}=(\mathbb{R}^+,+,\times,0,1)$$

$$\mathbb{N} = (\mathbb{N}, +, \times, 0, 1)$$

$$\blacksquare = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$$

Examples of weighted automata

▶ Alphabet Σ , on $(\mathbb{N}, +, \times, 0, 1)$

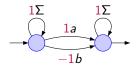
$$[\![\mathcal{A}]\!](u) = 2^{|u|}$$
 (deterministic)

Examples of weighted automata

▶ Alphabet Σ , on $(\mathbb{N}, +, \times, 0, 1)$

$$[\![\mathcal{A}]\!](u) = 2^{|u|}$$
 (deterministic)

• Alphabet $\Sigma = \{a, b\}$, on $(\mathbb{Z}, +, \times, 0, 1)$



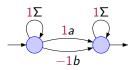
$$\llbracket \mathcal{A} \rrbracket (u) = |u|_{a} - |u|_{b}$$

Examples of weighted automata

▶ Alphabet Σ , on $(\mathbb{N}, +, \times, 0, 1)$

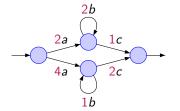
$$[\![\mathcal{A}]\!](u) = 2^{|u|}$$
 (deterministic)

• Alphabet $\Sigma = \{a, b\}$, on $(\mathbb{Z}, +, \times, 0, 1)$



$$\llbracket \mathcal{A} \rrbracket (u) = |u|_{a} - |u|_{b}$$

▶ Alphabet $\{a, b, c\}$, on $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$



$$\llbracket \mathcal{A} \rrbracket (ab^nc) = \min(3+2n,6+n)$$

Weighted automata cannot compute large weights

Remark

 $\mathcal{A} = (Q, \mu)$ weighted automaton on \mathbb{N} . There exists M such that

$$\llbracket \mathcal{A} \rrbracket(u) = O(M^{|u|}).$$

▶ There are $|Q|^{|u|+1}$ runs on $u = a_1 a_2 \cdots a_n$,

$$\rho = p_0 \xrightarrow{k_1 a_1} p_1 \xrightarrow{k_2 a_2} \cdots \xrightarrow{k_n a_n} p_n$$

▶ The weight of a run is exponential in |u|:

$$\operatorname{weight}(\rho) = k_1 k_2 \cdots k_n \leq (\max\{\mu(a)_{p,q} \mid a \in \Sigma \text{ and } p, q \in Q\})^{|u|}.$$

Weighted MSO

Definition: Syntax of wMSO

$$\varphi ::= {\color{red} k \mid P_{a}(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, \varphi \mid \forall x \, \varphi \mid \exists X \, \varphi \mid \forall X \, \varphi}$$

where $k \in K$, $a \in \Sigma$, x, y are first-order variables, X is a set variable.

Definition: Semantics

- ▶ A formula φ without free variables defines a mapping $\llbracket \varphi \rrbracket : \Sigma^+ \to K$.
- First order variables are interpreted as positions in the word.
- $ightharpoonup P_a(x)$ means "position x carries an a".
- \triangleright $x \le y$ means "position x is before position y".

Weighted MSO

Definition: Syntax of wMSO

$$\varphi ::= {\color{red} k \mid P_{a}(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, \varphi \mid \forall x \, \varphi \mid \exists X \, \varphi \mid \forall X \, \varphi}$$

where $k \in K$, $a \in \Sigma$, x, y are first-order variables, X is a set variable.

Definition: Semantics

- ▶ A formula φ without free variables defines a mapping $\llbracket \varphi \rrbracket : \Sigma^+ \to K$.
- First order variables are interpreted as positions in the word.
- $ightharpoonup P_a(x)$ means "position x carries an a".
- \triangleright $x \le y$ means "position x is before position y".
- $\qquad \qquad \llbracket \varphi_1 \vee \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket + \llbracket \varphi_2 \rrbracket \text{ and } \llbracket \varphi_1 \wedge \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \times \llbracket \varphi_2 \rrbracket.$

Remember:
$$\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$$
 and $\mathbb{K} = (K, +, \times, 0, 1)$.

Weighted MSO

Definition: Syntax of wMSO

$$\varphi ::= {\color{red} k \mid P_{a}(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, \varphi \mid \forall x \, \varphi \mid \exists X \, \varphi \mid \forall X \, \varphi}$$

where $k \in K$, $a \in \Sigma$, x, y are first-order variables, X is a set variable.

Definition: Semantics

- ▶ A formula φ without free variables defines a mapping $\llbracket \varphi \rrbracket : \Sigma^+ \to K$.
- First order variables are interpreted as positions in the word.
- $ightharpoonup P_a(x)$ means "position x carries an a".
- \triangleright $x \le y$ means "position x is before position y".
- ▶ $\llbracket \varphi_1 \lor \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket + \llbracket \varphi_2 \rrbracket$ and $\llbracket \varphi_1 \land \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \times \llbracket \varphi_2 \rrbracket$. Remember: $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$ and $\mathbb{K} = (K, +, \times, 0, 1)$.
- $ightharpoonup \exists x \varphi$ interpreted as a sum over all positions.
- $\triangleright \forall x \varphi$ interpreted as a product over all positions.

recognizable

recognizable

recognizable

•
$$[\exists x \ P_a(x)](u) = \sum_{i \in pos(u)} [P_a(x)](u,i) = |u|_a$$
 recognizable

▶
$$[\![\forall y \ 2]\!](u) = \prod_{i \in pos(u)} [\![2]\!](u,i) = 2^{|u|}$$
 recognizable

▶
$$\llbracket \forall x \, \forall y \, 2 \rrbracket(u) = \prod_{i \in pos(u)} \llbracket \forall y \, 2 \rrbracket(u,i) = (2^{|u|})^{|u|} = 2^{|u|^2}$$
. not recognizable w-Automata are not closed under universal quantification.

recognizable

recognizable

▶ $\llbracket \forall x \, \forall y \, 2 \rrbracket(u) = \prod_{i \in pos(u)} \llbracket \forall y \, 2 \rrbracket(u, i) = (2^{|u|})^{|u|} = 2^{|u|^2}$. not recognizable w-Automata are not closed under universal quantification.

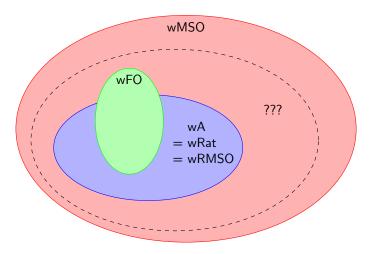
Theorem (Droste & Gastin'05)

wAutomata = wRMSO

wRMSO is a fragment of wMSO with

- $\triangleright \forall X$ restricted to boolean formulae
- \blacktriangleright $\forall x$ restricted to $\bigvee \bigwedge$ of constants and boolean formulae

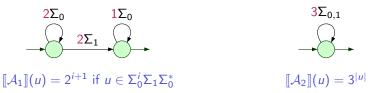
Extending instead of Restricting?



We aim at a robust class extending both wFO and wAutomata.

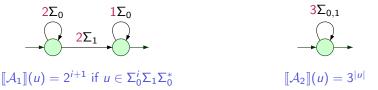
Nested automata (= 1-way pebble automata)

A 0-nested wA is a classical weighted automaton.



Nested automata (= 1-way pebble automata)

A 0-nested wA is a classical weighted automaton.

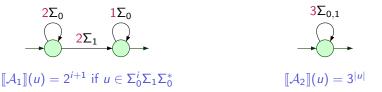


Each transition $p \stackrel{a}{\to} q$ of an r-nested wA \mathcal{A} calls an (r-1)-nested wA $\mathcal{A}_{p,a,q}$ with the current position i marked.

 $\mathcal{A}_{p,a,q}$ restarts on (u,i) and computes the weight $p \xrightarrow{\llbracket \mathcal{A}_{p,a,q} \rrbracket(u,i)a} q$.

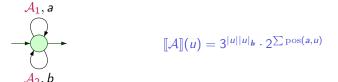
Nested automata (= 1-way pebble automata)

A 0-nested wA is a classical weighted automaton.



Each transition $p \xrightarrow{a} q$ of an r-nested wA \mathcal{A} calls an (r-1)-nested wA $\mathcal{A}_{p,a,q}$ with the current position i marked.

 $\mathcal{A}_{p,\mathbf{a},q} \text{ restarts on } (u,i) \text{ and computes the weight } p \xrightarrow{\llbracket \mathcal{A}_{p,\mathbf{a},q} \rrbracket(u,i)\mathbf{a}} q.$



An *r*-nested automaton does $1+|u|+|u|^2+\cdots+|u|^r$ 1-way runs on a word u.

Nested automata are closed under $\exists \ \forall$

Proof: $\forall x \, \mathcal{A}(x)$

$$\mathcal{A}, \Sigma$$

$$\llbracket \mathcal{B} \rrbracket(u) = \prod_{i=1}^{|u|} \llbracket \mathcal{A} \rrbracket(u,i)$$

Nested automata are closed under $\exists \ \forall$

Proof: $\forall x \ \mathcal{A}(x)$

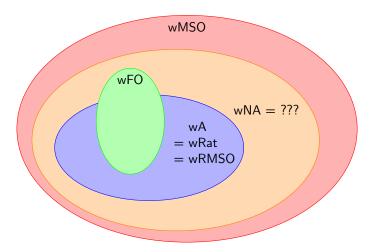
$$\llbracket \mathcal{B} \rrbracket(u) = \prod_{i=1}^{|u|} \llbracket \mathcal{A} \rrbracket(u,i)$$

Proof: $\exists x \ \mathcal{A}(x)$

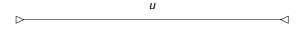
$$\begin{array}{c|c}
1\Sigma & 1\Sigma \\
A, \Sigma & \\
\end{array}$$

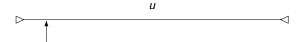
$$\llbracket \mathcal{B} \rrbracket(u) = \sum_{i=1}^{|u|} \llbracket \mathcal{A} \rrbracket(u,i)$$

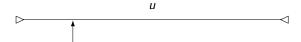
Nested weighted Automata vs wFO

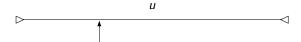


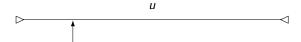
We aim now at a logical characterization of w-Nested-Automata.

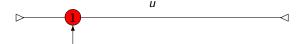


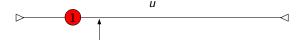


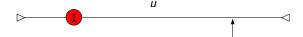


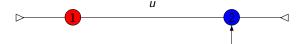


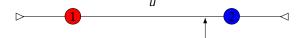


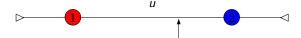




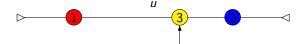




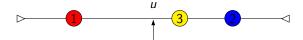




▶ Automaton with 2-way mechanism and pebbles $\{1, ..., r\}$.

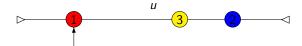


Automaton with 2-way mechanism and pebbles $\{1, \ldots, r\}$.



Applicable transitions depend on current (state,letter,pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.

Automaton with 2-way mechanism and pebbles $\{1, \ldots, r\}$.

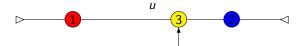


- Applicable transitions depend on current (state,letter,pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.
- ► Stack policy: only the most recently dropped pebble may be lifted

▶ Automaton with 2-way mechanism and pebbles $\{1, ..., r\}$.

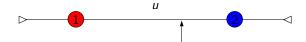
- Applicable transitions depend on current (state,letter,pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.
- Stack policy: only the most recently dropped pebble may be lifted
- ▶ Weak policy: pebble may be lifted only when the head scans its position.

Automaton with 2-way mechanism and pebbles $\{1, \ldots, r\}$.



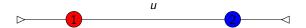
- Applicable transitions depend on current (state, letter, pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.
- Stack policy: only the most recently dropped pebble may be lifted
- ▶ Weak policy: pebble may be lifted only when the head scans its position.

▶ Automaton with 2-way mechanism and pebbles $\{1, ..., r\}$.



- Applicable transitions depend on current (state,letter,pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.
- Stack policy: only the most recently dropped pebble may be lifted
- ▶ Weak policy: pebble may be lifted only when the head scans its position.

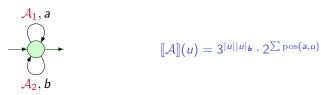
Automaton with 2-way mechanism and pebbles $\{1, \ldots, r\}$.



- Applicable transitions depend on current (state,letter,pebbles). (p, ka, Pebbles, D, q), where $D \in \{\leftarrow, \rightarrow, lift, drop\}$.
- ► Stack policy: only the most recently dropped pebble may be lifted
- ▶ Weak policy: pebble may be lifted only when the head scans its position.
- ▶ Note. For Boolean word automata, this does not add expressive power.

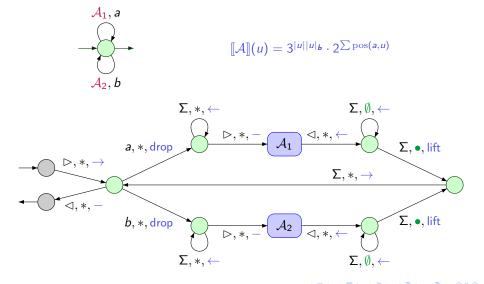
wPA can simulate wNA

Proof by example: Consider the 1wNA



wPA can simulate wNA

Proof by example: Consider the 1wNA



Transitive closure logics: TC and BTC

▶ For $\varphi(x, y)$ with (at least) two first order free variables, define

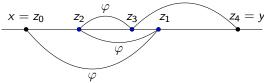
$$\varphi^{1}(x,y) = \varphi(x,y)$$

$$\varphi^{n}(x,y) = \exists z_{0} \cdots \exists z_{n} \Big(x = z_{0} \land z_{n} = y \land \mathsf{diff}(z_{0}, \ldots, z_{n}) \land \big[\bigwedge_{1 \leq \ell \leq n} \varphi(z_{\ell-1}, z_{\ell}) \big] \Big).$$

$$\varphi$$

$$x = z_{0} \qquad z_{2} \qquad \varphi$$

$$z_{1} \qquad z_{2} = y$$



Transitive closure logics: TC and BTC

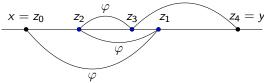
ightharpoonup For $\varphi(x,y)$ with (at least) two first order free variables, define

$$\varphi^{1}(x,y) = \varphi(x,y)$$

$$\varphi^{n}(x,y) = \exists z_{0} \cdots \exists z_{n} \Big(x = z_{0} \land z_{n} = y \land \mathsf{diff}(z_{0}, \dots, z_{n}) \land \big[\bigwedge_{1 \leq \ell \leq n} \varphi(z_{\ell-1}, z_{\ell}) \big] \Big).$$

$$x = z_{0}$$

$$z_{2} \xrightarrow{\varphi} z_{3} \xrightarrow{z_{1}} z_{4} = y$$



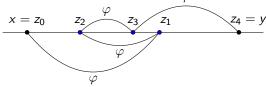
▶ The transitive closure operator is defined by $TC_{xy}\varphi = \bigvee_{n>1} \varphi^n$.

Transitive closure logics: TC and BTC

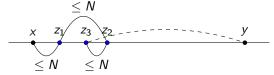
▶ For $\varphi(x, y)$ with (at least) two first order free variables, define

$$\varphi^{1}(x,y) = \varphi(x,y)$$

$$\varphi^{n}(x,y) = \exists z_{0} \cdots \exists z_{n} \Big(x = z_{0} \land z_{n} = y \land \mathsf{diff}(z_{0}, \ldots, z_{n}) \land \big[\bigwedge_{1 \leq \ell \leq n} \varphi(z_{\ell-1}, z_{\ell}) \big] \Big).$$



- ▶ The transitive closure operator is defined by $TC_{xy}\varphi = \bigvee_{n>1} \varphi^n$.
- ▶ Bounded transitive closure : N-TC_{xy} φ = TC_{xy}($\varphi \land |x y| \le N$)



Express N-TC_{xy} φ with 2 additional pebbles:

Given p-pebble automaton \mathcal{A} on Σ_{xy} recognizing $\llbracket \varphi \rrbracket$ and a word (u,i,j)

Express N-TC_{xy} φ with 2 additional pebbles:

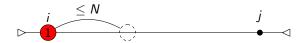
Given p-pebble automaton $\mathcal A$ on Σ_{xy} recognizing $[\![arphi \!]\!]$ and a word (u,i,j)

1. \mathcal{B} goes to i and drops pebble 1

Express N-TC_{xy} φ with 2 additional pebbles:

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. $\mathcal B$ simulates $\mathcal A$ on w where x and y are mapped to the positions of pebbles

Express N-TC_{xy} φ with 2 additional pebbles:



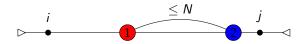
- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. \mathcal{B} simulates \mathcal{A} on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.

Express N-TC_{xy} φ with 2 additional pebbles:

Given p-pebble automaton \mathcal{A} on Σ_{xy} recognizing $\llbracket \varphi \rrbracket$ and a word (u,i,j)

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. $\mathcal B$ simulates $\mathcal A$ on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xv} φ with 2 additional pebbles:



- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. \mathcal{B} simulates \mathcal{A} on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xy} φ with 2 additional pebbles:

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. \mathcal{B} simulates \mathcal{A} on w where x and y are mapped to the positions of pebbles
- 4. \mathcal{B} lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xy} φ with 2 additional pebbles:

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. $\mathcal B$ simulates $\mathcal A$ on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xy} φ with 2 additional pebbles:

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. \mathcal{B} simulates \mathcal{A} on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xy} φ with 2 additional pebbles:

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. \mathcal{B} simulates \mathcal{A} on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

Express N-TC_{xv} φ with 2 additional pebbles:

Given p-pebble automaton \mathcal{A} on Σ_{xy} recognizing $\llbracket \varphi \rrbracket$ and a word (u,i,j)

- 1. \mathcal{B} goes to i and drops pebble 1
- 2. \mathcal{B} drops nondeterministically pebble 2 on a position at distance $\leq N$
- 3. $\mathcal B$ simulates $\mathcal A$ on w where x and y are mapped to the positions of pebbles
- 4. $\mathcal B$ lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
- 5. If pebble 1 is not on j then goto 2 else stop.

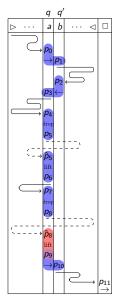
Expressiveness

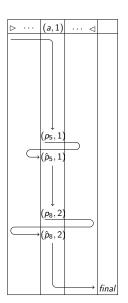
Theorem (Bollig, Gastin, Monmege, Zeitoun)

$$w(FO + BTC) = wPA = wNA$$

- ▶ Proof of $w(FO + BTC) \subseteq wPA$ done in the previous slides
- Proof of wPA ⊆ wNA: Generalization of the translation of 2-way automata to 1-way automata.
- Proof of wNA ⊆ w(FO + BTC): Generalization of a proof showing that weighted automata are expressible with transitive closure.

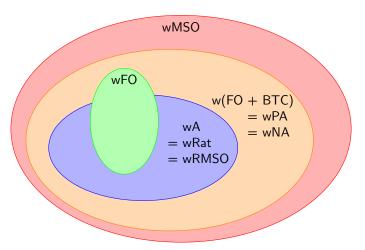
Flavor of the proof of 1-pebble \subseteq 1-nested





Summary

- ▶ Pebbles and nesting add expressive power in weighted automata.
- ▶ 2-way wA = 0-pebble wA = 0-nested wA = 1-way wA
- ► SAT of w(FO + BTC) is decidable for positive semiring



Some closely related questions:

- 1. Unbounded steps in transitive closure?
- 2. Weak pebbles vs. strong pebbles?
- 3. Extended wRat for wPA?
- 4. Algorithms on wPA or wNA?

Some closely related questions:

- 1. Unbounded steps in transitive closure?
- 2. Weak pebbles vs. strong pebbles?
- 3. Extended wRat for wPA?
- 4. Algorithms on wPA or wNA?

Extensions to other structures: Trees (ranked or unranked)

- ▶ Tree walking automata (TWA) are 2-way automata
- ▶ 1-way TWA = Depth First Search Automata (DFSA)
- ► Main Theorem (almost): w-Nested-DFSA = $w(FO + BTC^{<})$

Some closely related questions:

- 1. Unbounded steps in transitive closure?
- 2. Weak pebbles vs. strong pebbles?
- 3. Extended wRat for wPA?
- 4. Algorithms on wPA or wNA?

Extensions to other structures: Trees (ranked or unranked)

- ▶ Tree walking automata (TWA) are 2-way automata
- ▶ 1-way TWA = Depth First Search Automata (DFSA)
- ► Main Theorem (almost): w-Nested-DFSA = w(FO + BTC[<])
- ▶ pebble TWA [?] nested DFSA

Some closely related questions:

- 1. Unbounded steps in transitive closure?
- 2. Weak pebbles vs. strong pebbles?
- 3. Extended wRat for wPA?
- 4. Algorithms on wPA or wNA?

Extensions to other structures: Trees (ranked or unranked)

- ▶ Tree walking automata (TWA) are 2-way automata
- ▶ 1-way TWA = Depth First Search Automata (DFSA)
- ► Main Theorem (almost): w-Nested-DFSA = w(FO + BTC[<])
- ▶ pebble TWA [?] nested DFSA
- Quantitative query languages: wXPath, wRXPath

