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Games for Verification and Synthesis – in a Nutshell

Systems I Models

Specifications I Logics

security, dependability
concurrency, real-time
usability, . . .
non-terminating dynamics
modularity & interaction

avoid failure AG¬
ensure progress AGEF¬ψ
assume – guarantee ||ψ
compositionality
interactive analysis

uniform framework
modular and interactive;

Games

compile
Synthesis Verification
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Why imperfect 
information ?



Example

void main () {     
int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                got_lock++;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}
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Wrong!



Example
void main () {     

int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                s0 | s1 | inc | dec;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

s0   ≡ got_lock = 0
s1   ≡ got_lock = 1
Inc  ≡ got_lock++
dec ≡ got_lock--



Example

Repair/synthesis as a game:

• System vs. Environment

• Turn-based game graph

• ω-regular objective
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Example
void main () {     

int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                s0 | s1 | inc | dec;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

A winning strategy may use 
the value of L to update 
got_lock accrodingly:

• if L==0 then play s0 (got_lock = 0)

• if L==1 then play s1 (got_lock = 1)



Example

Repair/synthesis as a game of 
imperfect information:

visible hidden

void main () {     
int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                s0 | s1 | inc | dec;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}
States that differ only by the value 
of L have the same observation
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Transition structure with imperfect information

States

Player 1 – actions: ↑, ↓
Transitions
Player 2 – observations:

Play: ↓ ↑ ↑ ↑ ↑ . . .
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Algorithms



Imperfect information

Games of imperfect information can be solved by a 
reduction to games of perfect information.

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

subset 
construction

classical 
techniques



Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.
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Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.

Initial knowledge: cell

Current knowledge: cell

Player 1 plays σ,

Player 2 chooses v2.



Subset construction

After a finite prefix of a play, Player 1 has a 
partial knowledge of the current state of the 
game: a set of states, called a cell.

Subset construction [Reif84]:

• keeps track of the knowledge

• yields equivalent game of perfect
information with macro-states (=cell)



Classical solution

Memoryless strategies (in perfect-information) 
translate to finite-memory strategies

(memory automaton tracks set of possible positions)

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information



Complexity

• Problem is EXPTIME-complete
(even for safety and reachability)

• Exponential memory might be needed

The powerset solution [Reif84]

• is an exponential construction

• is not on-the-fly

• is independent of the objective

Can we do better ?



Imperfect information

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

subset 
construction

classical 
techniques

Exponential 
blow-up



Imperfect information
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Imperfect information

G,Obs G’ Winning region 

Imperfect 
information

Perfect 
information

implicit

Direct symbolic algorithm

Intuition: if s is winning, then s’ ⊆ s is also winning.

The set of  winning cells is downward-closed.



Symbolic algorithm

copy the strategy from s

Intuition: if s is winning, then s’ ⊆ s is also winning.

The set of  winning cells is downward-closed.



Antichains

• Winning knowledge-sets are downward-closed

• Useful operations preserve downward-closedness

Compact representation using
maximal elements → Antichains



Antichains

The antichain {{1,2,3},{3,4}}

represents the set of cells

{1,2,3}

{1,3}

{2,3}{1,2}

{1}   {2}

{3,4}

{4}{3}

i.e. the downward-closure of {{1,2,3},{3,4}}

= ↓{{1,2,3},{3,4}}



Structure of antichains
Membership

∈
?



Structure of antichains
Inclusion

⊆
?



Structure of antichains
Inclusion

⊆
?

partial order on antichains



Structure of antichains
Union

∪



Structure of antichains
Union

∪

maximal elements of

Computing is polynomial.
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Structure of antichains
Intersection

∩

maximal elements of

Computing is exponential !



Structure of antichains

Independent set 
(pairwise non-adjacent vertices) 



Structure of antichains

Independent set
(pairwise non-adjacent vertices) 

Computing largest independent set is NP-hard



Structure of antichains
Consider a graph

The sets of vertices that do no contain edge (v,w) are 
represented by the antichain

Hence, the maximal independent sets of G are defined by 

Computing is exponential (unless P=NP)



Structure of antichains
Intersection

∩

maximal elements of

Computing is exponential !

Antichains partially-ordered by     is 

a complete lattice 



Symbolic algorithm
Controllable predecessor operator

CPre(Y) = cells from which Player 1 has an action ( )

such that for all       chosen by Player 2 

the cell is in Y

in Y

in Y

in Y



Symbolic algorithm
Controllable predecessor operator

If Y is downward-closed, then ...

Y



Symbolic algorithm
Controllable predecessor operator

Cpre() preserves downward-closedness.

If Y is downward-closed, then CPre(Y) is downward-closed.

YCPre(Y)
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Symbolic algorithm
Controllable predecessor operator

CPre(Y) = cells from which Player 1 has an action ( )

such that for all       chosen by Player 2 

the cell is in Y

Y

• combinatorially hard to compute

• implemented using BDDs



Symbolic algorithm
Safety game: avoid Bad

is downward-closed !



Symbolic algorithm
Safety game: avoid Bad

is downward-closed !

cells winning in 1 step:  Good ∩ CPre(Good)



Symbolic algorithm
Safety game: avoid Bad

is downward-closed !

cells winning in 2 steps:  Good ∩ CPre(Good) ∩ CPre(X1)



Symbolic algorithm
Safety game: avoid Bad

is downward-closed !

cells winning in k steps:

...

...



Symbolic algorithm
Safety game: avoid Bad

is downward-closed !

cells winning in k steps:

Fixpoint after at most O(2n) iterations

Computing CPre() is O(2|obs|)

…but exponentially more succinct sets ! 



Strategy construction
Safety game: avoid Bad

From every winning cell, Player 1 has an 
action to stay in the set of winning cells

Winning cells



Strategy construction
Safety game: avoid Bad

From every winning cell, Player 1 has an 
action to stay in the set of winning cells

Strategy automaton

(Moore machine)

Winning cells



Symbolic algorithm
Reachability game: reach Target

cells winning in k steps:

...

...



Reachability



Reachability

1. From {1} play a
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Reachability

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Reachability

Fixpoint of winning cells: {{1,2,3}}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Reachability

Fixpoint of winning (cell, action): {{1,2,3}a,{1,2}b}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Reachability

Winning strategy

Current knowledge K: select earliest (cell,action)

such that K ⊆ cell, play action

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Strategy simplification #1

1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play b

co
m

pu
te

d
la

te
r



1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play b

Strategy simplification #1
co

m
pu

te
d

la
te

r

Not necessary !

Rule 1: delete subsumed pairs computed later



Strategy simplification #2
co

m
pu

te
d

la
te

r

1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a



1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a

Strategy simplification #2
co

m
pu

te
d

la
te

r

Not necessary !

Rule 2: delete strongly-subsumed pairs 



Alpaga

• Use antichains as compact representation of winning
sets of positions

• Compute Controllable Predecessor with BDDs

• Publish Reachability/Safety attractor moves to compose 
the strategy (earlier published move sticks)

• Strategy simplification

First prototype for solving parity games of imperfect
information



Alpaga

First prototype for solving parity games of imperfect
information

http://www.antichains.be/alpaga

• Implemented in Python + CUDD

• ≤1000 LoC

• Solves 50 states, 28 observations, 3 priorities (explicit 
game graph)



Some experiments

http://www.antichains.be/alpaga

Size Obs Priorities Time (s)

Game1 4 4 Reach. .1   .

Game2 3 2 Reach. .1   .

Game3 6 3 3 .1   .

Game4 8 5 5 1.4   .

Game5 8 5 7 9.4   .

Game6 11 9 10 50.7   .

Game7 11 8 10 579.0 .

Locking 22 14 Safety .6   .

Mutex 50 28 3 57.7



Alpaga

First prototype for solving parity games of imperfect
information

Outlook

• Symbolic game graph

• Compact representation of strategies

• Almost-sure winning

• Relaxing visibility



Questions ?

Thank you !

http://www.antichains.be/alpaga
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