Imperfect-Information Games for System Design

Dietmar Berwanger ${ }^{1}$ Laurent Doyen ${ }^{2}$

${ }^{1}$ LSV, CNRS \& ENS Cachan
${ }^{2}$ Université Libre de Bruxelles

PSY Grenoble, June 2009

Games for Verification and Synthesis - in a Nutshell

Systems 1 Models

Games for Verification and Synthesis - in a Nutshell

Systems - Models

security, dependability concurrency, real-time usability, ...
non-terminating dynamics modularity \& interaction

Games for Verification and Synthesis - in a Nutshell

Systems 1 Models

Specifications Logics

Games for Verification and Synthesis - in a Nutshell

Systems 1 Models

Specifications Logics

avoid failure $A G \neg$ ensure progress AGEF $\neg \psi$ assume - guarantee $\| \psi$
compositionality
interactive analysis

Games for Verification and Synthesis - in a Nutshell

Systems - Models

Specifications Logics

Games

- uniform framework
- modular and interactive

Games for Verification and Synthesis - in a Nutshell

Games for Verification and Synthesis - in a Nutshell

Why imperfect information ?

Example

```
void main () {
    int got_lock = 0;
    do {
1: if (*) {
2: lock ();
3: got_lock++;
if (got_lock != 0) {
unlock ();
    }
6: got_lock--;
    } while (*);
}
```

```
void lock () {
    assert(L == 0);
    L = 1;
}
```

void unlock () \{
assert(L == 1);
L = 0;
\}

Example

```
void main () {
    int got_lock = 0;
    do {
1: if (*){
2: lock ();
3: got_lock++;
        if (got_lock != 0) {
5: unlock ();
    }
6: got_lock--;
    } while (*);
}
```

Wrong!

```
void lock () {
        assert(L == 0);
    L = 1;
}
```

void unlock () \{
assert(L == 1);
$\mathrm{L}=0$;
\}

Example

Example

Repair/synthesis as a game:

- System vs. Environment
- Turn-based game graph
- ω-regular objective

Example

Example

Example

Example

Transition structure with imperfect information

- States

Transition structure with imperfect information

- States
- Player 1 - actions: $\uparrow \downarrow$

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: $\uparrow \downarrow$
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play:

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: E

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: ㅌ \downarrow ㅌ

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: \quad E \downarrow ■ \uparrow

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: $\quad \downarrow$ ■ \uparrow 『 \uparrow ■

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: ㅌ \downarrow ㅌ \uparrow 区 \uparrow ㅌ \uparrow ㅌ

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Play: $\mathbb{E} \downarrow$ 투 \uparrow ㅌ \uparrow ㅌ \uparrow 区

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Transition structure with imperfect information

- States
- Player 1 - actions: \uparrow, \downarrow
- Transitions

Algorithms

Imperfect information

Games of imperfect information can be solved by a reduction to games of perfect information.

G,Obs
Imperfect information

G^{\prime}
Perfect information
subset
construction
\rightarrow Winning region

classical techniques

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: a set of states, called a cell.

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: a set of states, called a cell.

Initial knowledge: cell $\{\widehat{v}\}$

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: a set of states, called a cell.

Initial knowledge: cell $\{\widehat{v}\}$

Player 1 plays σ,
Player 2 chooses V_{2}.
Current knowledge: cell $\left\{v_{2}, v_{3}\right\}$

$\operatorname{Post}_{\sigma}(\{\hat{v}\}) \cap o_{2}$

Subset construction

After a finite prefix of a play, Player 1 has a partial knowledge of the current state of the game: a set of states, called a cell.

Subset construction [Reif84]:

- keeps track of the knowledge
- yields equivalent game of perfect information with macro-states (=cell)

Classical solution

Powerset construction [Reif84]:

- keeps track of the knowledge of System
- yields equivalent game of perfect information

Memoryless strategies (in perfect-information) translate to finite-memory strategies
(memory automaton tracks set of possible positions)

Complexity

- Problem is EXPTIME-complete (even for safety and reachability)
- Exponential memory might be needed

The powerset solution [Reif84]

- is an exponential construction
- is not on-the-fly
- is independent of the objective

Can we do better ?

Imperfect information

G,Obs
Imperfect information

subset
construction
Exponential
blow-up
\rightarrow Winning region

classical techniques

Imperfect information

G,Obs
 \rightarrow
 G^{\prime}
 \rightarrow Winning region
 implicit
 Imperfect information
 Perfect information

 Direct symbolic algorithm

Imperfect information

G,Obs Imperfect
information
G^{\prime}
\rightarrow Winning region
implicit

\section*{| |
| :--- |
| Direct symbolic algorithm |}

Intuition: if s is winning, then $\mathrm{s}^{\prime} \subseteq \mathrm{s}$ is also winning.
The set of winning cells is downward-closed.

Symbolic algorithm

Intuition: if s is winning, then $\mathrm{s}^{\prime} \subseteq \mathrm{s}$ is also winning.
The set of winning cells is downward-closed.

Antichains

- Winning knowledge-sets are downward-closed
- Useful operations preserve downward-closedness

> Compact representation using maximal elements \rightarrow Antichains

Antichains

The antichain $\{\{1,2,3\},\{3,4\}\}$
represents the set of cells

i.e. the downward-closure of $\{\{1,2,3\},\{3,4\}\}$

Structure of antichains

Membership

$$
s \in \downarrow q^{\prime} \text { iff } \exists s^{\prime} \in q^{\prime}: s \subseteq s^{\prime}
$$

Structure of antichains

Inclusion

$$
q=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

Structure of antichains

Inclusion

$$
q=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

$$
q \sqsubseteq q^{\prime} \text { iff } \forall s \in q \cdot \exists s^{\prime} \in q^{\prime}: s \subseteq s^{\prime}
$$

\sqsubseteq partial order on antichains

Structure of antichains

Union

Structure of antichains

Union

$$
q=\left\{s_{1}, s_{2}\right\}
$$

$q \sqcup q^{\prime}=$ maximal elements of $q \cup q^{\prime}$.

Computing $q_{1} \sqcup q_{2} \sqcup \ldots \sqcup q_{n}$ is polynomial.

Structure of antichains

Intersection

$q=\left\{s_{1}\right\}$

$q^{\prime}=\left\{s_{1}^{\prime}\right\}$

Structure of antichains

Intersection

$$
q=\left\{s_{1}\right\}
$$

Structure of antichains

Intersection

$$
q=\left\{s_{1}, s_{2}\right\}
$$

$q \sqcap q^{\prime}=$ maximal elements of $\left\{s \cap s^{\prime} \mid s \in q \wedge s^{\prime} \in q^{\prime}\right\}$.

Computing $q_{1} \sqcap q_{2} \sqcap \ldots \sqcap q_{n}$ is exponential !

Structure of antichains

Independent set

(pairwise non-adjacent vertices)

Structure of antichains

Independent set
 (pairwise non-adjacent vertices)

Computing largest independent set is NP-hard

Structure of antichains

Consider a graph $G=(V, E)$

The sets of vertices that do no contain edge (v, w) are represented by the antichain $\{V \backslash\{v\}, V \backslash\{w\}\}$

Hence, the maximal independent sets of G are defined by

$$
\prod_{(v, w) \in E}\{V \backslash\{v\}, V \backslash\{w\}\}
$$

Computing $q_{1} \sqcap q_{2} \sqcap \ldots \sqcap q_{n}$ is exponential (unless $\mathrm{P}=\mathrm{NP}$)

Structure of antichains

Intersection

$q \sqcap q^{\prime}=$ maximal elements of $\left\{s \cap s^{\prime} \mid s \in q \wedge s^{\prime} \in q^{\prime}\right\}$.

Computing $q_{1} \sqcap q_{2} \sqcap \ldots \sqcap q_{n}$ is exponential !

Symbolic algorithm

Controllable predecessor operator
CPre $(\mathrm{Y})=$ cells s from which Player 1 has an action (σ) such that for all obs chosen by Player 2 the cell post $_{\sigma}(s) \cap o b s$ is in Y

Symbolic algorithm

Controllable predecessor operator
If Y is downward-closed, then ...

Symbolic algorithm

Controllable predecessor operator
If Y is downward-closed, then $\mathrm{CPre}(\mathrm{Y})$ is downward-closed.

Cpre() preserves downward-closedness.

Symbolic algorithm

Controllable predecessor operator
CPre $(\mathrm{Y})=$ cells s from which Player 1 has an action (σ) such that for all obs chosen by Player 2 the cell post $_{\sigma}(s) \cap o b s$ is in Y

Symbolic algorithm

Controllable predecessor operator
CPre $(\mathrm{Y})=$ cells s from which Player 1 has an action (σ) such that for all obs chosen by Player 2 the cell post $_{\sigma}(s) \cap o b s$ is in Y

$$
s \subseteq \widetilde{\operatorname{pre}}_{\sigma}\left(s_{i} \cup \bar{o}_{1}\right)
$$

Symbolic algorithm

Controllable predecessor operator
CPre $(\mathrm{Y})=$ cells s from which Player 1 has an action (σ) such that for all obs chosen by Player 2 the cell post $_{\sigma}(s) \cap o b s$ is in Y

Symbolic algorithm

Controllable predecessor operator
CPre $(\mathrm{Y})=$ cells s from which Player 1 has an action (σ) such that for all obs chosen by Player 2 the cell post $_{\sigma}(s) \cap o b s$ is in Y

- combinatorially hard to compute

$$
\operatorname{CPre}(Y)=\bigsqcup_{\sigma \in \Sigma} \prod_{o \in \mathrm{Obs}} \bigsqcup_{s^{\prime} \in Y}\left\{\tilde{\operatorname{pre}}_{\sigma}\left(s^{\prime} \cup \bar{o}\right)\right\}
$$

- implemented using BDDs

Symbolic algorithm

Safety game: avoid Bad

Good $=\{s \mid s \cap$ Bad $=\varnothing\} \quad$ Good is downward-closed!

Symbolic algorithm

Safety game: avoid Bad

Good $=\{s \mid s \cap$ Bad $=\varnothing\} \quad$ Good is downward-closed!
cells winning in 1 step: Good \cap CPre(Good)

Symbolic algorithm

Safety game: avoid Bad

Good $=\{s \mid s \cap$ Bad $=\varnothing\} \quad$ Good is downward-closed !
cells winning in 2 steps: Good $\cap \mathrm{CPre}($ Good $) \cap \mathrm{CPre}\left(\mathrm{X}_{1}\right)$

Symbolic algorithm

Safety game: avoid Bad

Good $=\{s \mid s \cap$ Bad $=\varnothing\} \quad$ Good is downward-closed!
cells winning in k steps: $\nu X \cdot \operatorname{Good} \cap \operatorname{CPre}(X)$

Symbolic algorithm

Safety game: avoid Bad

Good $=\{s \mid s \cap$ Bad $=\varnothing\} \quad$ Good is downward-closed !
cells winning in k steps: $\nu X \cdot \operatorname{Good} \cap \operatorname{CPre}(X)$

Fixpoint after at most $\mathrm{O}\left(2^{n}\right)$ iterations
Computing CPre() is $\mathrm{O}\left(2^{\text {|obs }}\right)$
...but exponentially more succinct sets !

Strategy construction

Safety game: avoid Bad

From every winning cell, Player 1 has an action to stay in the set of winning cells

Winning cells

Strategy construction

Safety game: avoid Bad

From every winning cell, Player 1 has an action to stay in the set of winning cells

Strategy automaton (Moore machine)
Winning cells

Symbolic algorithm

Reachability game: reach Target

cells winning in k steps: $\mu X \cdot$ Target $\cup \operatorname{CPre}(X)$

Reachability

Reachability

1. From $\{1\}$ play a

Reachability

Reachability

1. From $\{1\}$ play a
2. From $\{1,2\}$ play b
3. From $\{1,2,3\}$ play a

Reachability

Fixpoint of winning cells: $\{\{1,2,3\}\}$
Winning strategy ??

Reachability

Fixpoint of winning (cell, action): $\left\{\{1,2,3\}_{a},\{1,2\}_{b}\right\}$
Winning strategy ??

Reachability

Winning strategy
Current knowledge K: select earliest (cell,action)
such that $\mathrm{K} \subseteq$ cell, play action

Strategy simplification \#1

1. From $\{1,2,3\}$ play a
2. From ... play ...
3. From ... play ...
4. From ... play ...
5. From $\{2\}$ play b

Strategy simplification \#1

8

1. From $\{1,2,3\}$ play a
2. From ... play ...
3. From ... play ...
4. From ... play ...
5. From 2 子 play Not necessary !

Rule 1: delete subsumed pairs computed later

Strategy simplification \#2

8

1. From $\{1,2\}$ play a
2. From $\{3,4\}$ play ...
3. From $\{1,3\}$ play a
4. From $\{3,5\}$ play ...
5. From $\{1,2,3\}$ play a

Strategy simplification \#2

4

1. Fromp $\frac{1}{1,2\}}$, playa

Not necessary !
2. From $\{3,4\}$ play ...
3. From $\{1,3\}$ play a
4. From $\{3,5\}$ play ...
5. From $\{1,2,3\}$ play a

Rule 2: delete strongly-subsumed pairs

Alpaga

First prototype for solving parity games of imperfect information

- Use antichains as compact representation of winning sets of positions
- Compute Controllable Predecessor with BDDs
- Publish Reachability/Safety attractor moves to compose the strategy (earlier published move sticks)
- Strategy simplification

Alpaga

First prototype for solving parity games of imperfect information

- Implemented in Python + CUDD
- ≤ 1000 LoC
- Solves 50 states, 28 observations, 3 priorities (explicit game graph)
http://www.antichains.be/alpaga

Some experiments

	Size	Obs	Priorities	Time (s)
Game1	4	4	Reach.	.1
Game2	3	2	Reach.	.1
Game3	6	3	3	.1
Game4	8	5	5	1.4
Game5	8	5	7	9.4
Game6	11	9	10	50.7
Game7	11	8	10	579.0
Locking	22	14	Safety	.6
Mutex	50	28	3	57.7

http://www.antichains.be/alpaga

Alpaga

First prototype for solving parity games of imperfect information

Outlook

- Symbolic game graph
- Compact representation of strategies
- Almost-sure winning
- Relaxing visibility

Thank you!

Questions?

http://www.antichains.be/alpaga

References

- [Reif84] J. H. Reif. The Complexity of Two-Player Games of Incomplete Information. J. Comput. Syst. Sci. 29(2): 274-301, 1984
- [CSL'06] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for Omega-regular Games of Incomplete Information. Proc. of CSL, LNCS 4207, Springer, 2006, pp. 287-302
- [Concur'08] D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strategy Construction for Parity Games with Imperfect Information. Proc. of Concur, LNCS 5201, Springer, 2008, pp. 325-339

