Games and Automata:
From Boolean to
Quantitative Verification

- Habilitation thesis defense -

Laurent Doyen
CNRS

ENS Cachan, March 13th, 2012

Outline

Context and perspective

of a selection of results

Model-checking

?
M = ¢

Check if a Model satisfies a Property ?

...in an automated way

[Clarke, Emerson, Pnueli, Sifakis,...]

Model-checking

What kind of properties ?

Model-checking

What kind of properties ?

Avoid failures !

Model-checking

What kind of properties ?

&

Ensure responsiveness !

Model-checking

What kind of models ?

Model-checking

What kind of models ?

(@)

Reactive systems:

e Non-terminating
o Safety-critical
e Data abstraction

(& p

Model-checking

?
M = ¢

Example

grant) 2

Server 4 Clients | = o

request

Example

95{91192}> 2
Server 12| F o

<
r O{ry,)

Example

Server

g [{9:,9,})

<

7
=

r O{ry,)

« Every request is eventually
granted, no simultaneous
grants »

Example

Server

g [{9:,9,})

<

r O{ry,)

w-automaton

7

« Every request is eventually
granted, no simultaneous
grants »

Example

Server

g [{9:,9,})

<

7
=

r O{ry,)

Closure properties

Expressiveness /

Decidability

-

w-automaton

« Every request is eventually
granted, no simultaneous
grants »

?
M = ¢

Example

g [9,,9;} - « Every request is eventually
Server W12 = granted, no simultaneous
) r Oy, ot grants »
: ?
Closure properties M =

Expressiveness / \ O(r; — Ogi)A T=(g1 A go)

Translation to automata

Decidability
/ \

w-automaton LTL

Example

Server

g D{g 1192} N\

<

r O{ry,)

Closure properties

Expressiveness /

Decidability

-

w-automaton

- « Every request is eventually
2 || E granted, no simultaneous
grants »
7
M E ¢

O(r; — 0gi)A O=(g1 A g2)
Translation to automata

N

Trace LTL
inclusion

Yes/No answer

Example

Server

g [{9:,9,})

<

7
=

r O{ry,)

Closure properties

Expressiveness /

Decidability

-

w-automaton

v

Trace

inclusion

« Every request is eventually
granted, no simultaneous
grants »

O(r; — 0gi)A O=(g1 A g2)
Translation to automata

N

LTL

Automata-based approach to model-checking

[Vardi, Wolper,...]

Outline

From Boolean to quantitative verification

Outline

From Boolean to quantitative verification

e Boolean automata-based Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

Algorithm ?

Algorithm ?

M E ¢

Translation to automata

M

M

Algorithm ?

M E ¢

Translation to automata

Closure properties

Algorithm ?

M = ¢ L(M) € L)
Translation to automata L(M) C L(A,)
L(M)N L(A,)¢ =0

Closure properties L(M x A7) = @

This problem is PSPACE-complete

Algorithm ?

M E ¢ L(M) C L(y)

Translation to automata L(M) C L(A,)

Closure properties L(M x A7) = @

This problem is PSPACE-complete

even if A is given explicitly, even over

finite words, and even if L(M) = LA%) =@

Efficient Algorithm ?

(over finite words) L(A¢) = &

iff there is no path from inital to accepting
states in A°.

Efficient Algorithm ?

(over finite words) L(A¢) = &

iff there is no path from inital to accepting
states in A°.

1

Subset construction | (state-explosion
problem)

Subset Construction

b

a,b
G

a

Subset Construction

b

e
O—
{1}

-

a, b a,b
(y _a (] ,
@ X
a
7

C {3,4}

Subset Construction

g

ab

b

a

b

-

C {3,4}

Subset Construction

g

ab

b

Subset Construction

g

ab

b

Subset Construction

ab b

g

@ " " " —>.w u g {37 4}
ul - uJl Ul U

{1} . . . _ .

a

b

Subset Construction

g

ab b

a

b

)

1}

w
_—

. _—

Subset Construction

a,b b

) a ' a,b
¥o i ‘.@ b L(A%) = 2

@ L. . _w o, C{3,4}

a U U Ul . Ul

@ {1} . . . —_— .
Pruning is sound: either

b ®) e (1.2} —/—» (3,4} OF

Subset Construction

a,b b

) a ' a,b
¥o i ‘.@ b L(A%) = 2

@ " " " —>.w u g {37 4}
ul - uJl Ul U

S U
@ Pruning is sound: either
b @ ,{12}+{34}or
o {1,2} _Jw {34}

{1} _Fw, {3,4}

Subset Construction

ab

g

b

>

C {3,4}

Subset Construction

ab

g

b

-

C {3,4}

Subset Construction

ab

g

b

-

C {3,4}

Hence, L(A°)

= %]

Reachability

Init Final

Is there a (finite) path from Init to Final ?

Reachability

Is there a (finite) path from Init to Final ?

Structure in graphs

Init Final

Structure in graphs

Graph is partially ordered...

Structure in graphs

Graph is monotone...

Structure in graphs

{,2y . . . Y, .
U U Ul . Ul Key property

{1} . . . e .

Structure in graphs

{1,2} . , . W,

U U Ul Ul Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[1is a backward simulation relation in Ac

Structure in graphs

{1,2} . : ., Y

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2} . : ., Y

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search o

Structure in graphs

{1,2¢ . . . Y,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2} . : ., Y

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2¢ . . . Y,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2} . : ., Y

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2¢ . . . Y,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

Use [to prune the search

Structure in graphs

{1,2¢ . . . Y,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[is a forward simulation relation in Ac
Use [to prune the search

Antichain of promising states

Structure in graphs

{1,2} . , . W,

U U Ul Ul Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[1is a backward simulation relation in Ac

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure

post*(.) computes a sequence of [1-upward sets

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac |
iff post(.) preserves O-upward closure v

post*(.) computes a sequence of [1-upward sets

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[1is a backward simulation relation in Ac

iff post(.) preserves O-upward closure w
post*(.) computes a sequence of [1-upward sets

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[1is a backward simulation relation in Ac

iff post(.) preserves O-upward closure W
post*(.) computes a sequence of [1-upward sets

Structure in graphs

{1,2} . , . W,

U U Ul Ul Key property

{1} . . . —w>

Two interpretations:
[1is a forward simulation relation in Ac

[1is a backward simulation relation in Ac

iff post(.) preserves O-upward closure

post*(.) computes a sequence of [1-upward sets

Structure in graphs

{1,2¢y . . . X,

U Ul Ul . U Key property
{1} . . . — .

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure
post*(.) computes a sequence of [1-upward sets

Antichains as a symbolic representation
(minimal elements)

Structure in graphs

{1,2¢y . . . X,

U Ul Ul . U Key property
{1} . . . — .

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure
post*(.) computes a sequence of [1-upward sets

Antichains as a symbolic representation
(minimal elements)

Structure in graphs

{1,2¢y . . . X,

U Ul Ul . U Key property
{1} . . . — .

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure
post*(.) computes a sequence of [J-upward sets © e

Antichains as a symbolic representation
(minimal elements)

Structure in graphs

{1,2¢y . . . X,

U Ul Ul . U Key property
{1} . . . — .

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure

post*(.) computes a sequence of [1-upward sets
o

Antichains as a symbolic representation
(minimal elements)

Structure in graphs

{1,2¢y . . . X,

U Ul Ul . U Key property
{1} . . . — .

Two interpretations:
[1is a forward simulation relation in Ac

[is a backward simulation relation in Ac
iff post(.) preserves O-upward closure
post*(.) computes a sequence of [1-upward sets

Antichains as a symbolic representation
(minimal elements)

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:

[1is a forward simulation relation in Ac

Promising states

[1is a backward simulation relation in Ac

Symbolic representation

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

{1} . . . —w>

Two interpretations:

[1is a forward simulation relation in Ac

Promising states

[1is a backward simulation relation in Ac

Symbolic representation

Here the two interpretations coincide!

Structure in graphs

{1,2¢y . . . X,

U Ul Ul U Key property

S

Two interpretations:

[1is a forward simulation relation in Ac

Promising states "

Works with ANY forward simulation!

[1is a backward simulation relation in Ac

Symbolic representation

Works with ANY backward simuIation!J

Antichains everywhere!

Partial-observation Reachability/Parity games HSCC'06, CSL'06,
CONCUR'08, Inf&Comp’10

Finite automata (language inclusion, universality) CAV'06

Blichi automata (language inclusion, universality) TACAS'07, LMCS'09

LTL satisfiability and model-checking TACAS'08

QBF ATVA'11

Antichains everywhere!

Partial-observation Reachability/Parity games HSCC'06, CSL'06,
CONCUR'08, Inf&Comp’10

Finite automata (language inclusion, universality) CAV'06

Blichi automata (language inclusion, universality) TACAS'07, LMCS'09

LTL satisfiability and model-checking TACAS'08
QBF ATVA'11

J-F. Raskin M. De Wulf N. Maquet T. Henzinger D. Berwanger

Antichains everywhere!

Partial-observation Reachability/Parity games HSCC'06, CSL'06,
CONCUR'08, Inf&Comp’10

Finite automata (language inclusion, universality) CAV'06

Blichi automata (language inclusion, universality) TACAS'07, LMCS'09

LTL satisfiability and model-checking TACAS'08

QBF ATVA'11

Finite Tree Automata [Bouajjani et al. 08]
Program Termination [Vardi et al. 09]
Minimizing Alternating Blichi [Abdulla et al. 09]
LTL synthesis [Raskin et al. 09]

Blchi universality [Vardi et al. 10]

Simulation Subsumption [Abdulla et al. 10,11]

ATVA'O8

TACAS'09

Raskin et al.

http://www.antichains.be

Tools

Execution time (S)

=
N

=
o

e k. X CS

oo
\

= Alaska

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of states

NFA universality

Tools

Szymanski - Execution Time

1000

Reachability/Parity games
Finite automata (language

Blichi automata (languags pauka)
LTL satisfiability and mod(
LTL synthesis

Zp2 Zpa lzp

50 times faster than nuSMV...

LTL model-checking

Outline

From Boolean to quantitative verification

e Boolean Verification

1. Techniques to speed up well-known verification
algorithms by orders of magnitude

e Quantitative Verification
2. A surprising complexity result in game theory

3. A robust and decidable class of quantitative languages

Model-checking

?
M = ¢

Check if a Model satisfies a Property ?

...in an automated way

[Clarke, Emerson, Sifakis,...]

Model-checking

M E ¢

[Clarke, Emerson, Sifakis,...]

From graphs to games

Server

grant

<

»

request

Clients

« Every request is eventually
granted, no simultaneous
grants »

From graphs to games

grant « Every request is eventually
g . .
? 4 Clients granted, no simultaneous
request grants »

(Part of) the Model
IS not given

From graphs to games

grant « Every request is eventually
"/ Clients granted, no simultaneous
- <

request grants »

(Part of) the Model

IS not given
=» Construct a correct system
(typically reduces to game solving)

[Church, Buchi, Landweber, Rabin, Pnueli,...]

From graphs to games

grant « Every request is eventually
"/ Clients granted, no simultaneous
- <
request grants »
(Part of) the Model 0 noye ro
IS not given =1 Ty Tge Y

=» Construct a correct system
(typically reduces to game solving)

[Church, Buchi, Landweber, Rabin, Pnueli,...]

From Boolean to Quantitative spec

Server

grant

<

»

request

Clients

« Every request is eventually
granted, no simultaneous

grants »

Solution 1: grant within 106 years

Solution 2: grant even if no request

From Boolean to Quantitative spec

Server

grant

<

»

request

Clients

« Every request is eventually
granted, no simultaneous

grants »

Solution 1: grant within 106 years

Solution 2: grant even if no request

Boolean specs do not
distinguish correct systems

From Boolean to Quantitative spec

Server

grant

<

»

request

Clients

Solution 1: grant within 10° years

Solution 2: grant even if no request

v

« Minimize delays for pending

Switch to Quantitative Spec requests, minimize number of

grants »

From Boolean to Quantitative spec

Server

grant

<

»

request

« Every request is eventually
Clients granted, no simultaneous

grants »

Wrong solution 1: no grant at all

Wrong solution 2: 99% request granted

Boolean specs do not
distinguish wrong systems either!

From Boolean to Quantitative spec

grant

Server

<

»

request

Clients granted, ng&imultaneous

grants »

Wrong solution 1: no grant at all

Wrong solution 2: 99% request granted

v

« Maximize average number

Switch to Quantitative Spec of granted requests »

From Boolean to...

Boolean acceptance conditions separate good and
bad runs:
{Oll}w - {011}

E.g., (co)Buchi, Muller, parity, etc.

From Boolean to...

Boolean acceptance conditions separate good and
bad runs:
{Oll}w - {011}

E.g., (co)Buchi, Muller, parity, etc.

Quantitative value functions assign value to runs:
R® - R

Some value functions

For v = vgvy ... (’Ui c R), let (V- B {O 1})
e Sup(v) =sup{v, | n > 0}; (reachability)
e LimSup(v) = limsup wvp; (BUichi)
e LimInf(v) = liminf v,; (coBuchi)

n—0oo

Some value functions

For v = vguy . .. (v; € R), let
or v = Vg1 (?} c) e (Vi [] {0’1})
e Sup(v) = sup{v, | n > 0}; (reachability)
e LimSup(v) = limsup wvp; (BUichi)
e LimInf(v) = liminf v,; (coBuchi)
1 n—1

e LimAvg(v) =limsup — - Z v;; aka MeanPayoff(v)

n—oo T T

e given 0 < A < 1, Discy(v) = Z)\i - ;.
i=0

Outline

From Boolean to quantitative verification

e Quantitative Verification

2. Mean-payoff parity games are in NP n coNP

Example

Mean-payoff parity games

Example

Mean-payoff parity games

w-regular specifications
(reactivity, liveness,...)

Example

Mean-payoff parity games

w-regular specifications
(reactivity, liveness,...)

e Memoryless strategies
e NP n coNP

Example

Mean-payoff parity games

Quantitative specification w-reggl_ar sp_ecifications
(cost optimization,...) (reactivity, liveness,...)
e Memoryless strategies e Memoryless strategies

e NP n coNP e NP n coNP

Example

Mean-payoff Blchi games

qo

0
1

Visit q, infinitely often,
and maximize mean-payoff

Example

Mean-payoff Blchi games

0 a Visit q, infinitely often,

and maximize mean-payoff

Optimal strategy: spend more and more time in q,
0, -1,0,0, -1,0,0,0, -1,0,0,0,0, —-1,0,0,0,0,0, -1, 0, ...

Requires infinite memory...

Example

Mean-payoff parity games

qo

0
1

e Memanvi eqgies

e still in NP n coNP

Example

Mean-payoff parity games

0+ €

0+ € '

qo

—1+e¢

e Memanvi eqgies

e still in NP n coNP

1. Reduction to parity games
with positive counter

2. Finite-memory strategies
suffice

Example

Mean-payoff parity games

e Memanvi eqgies

e still in NP n coNP

04 ¢
04 ¢ '
—| 90 e 1. Reduction to parity games
11 with positive counter

2. Finite-memory strategies
suffice

3. Winning strategies can be decomposed into
memoryless strategies, and combined using counters.

4. Decomposition can be guessed in NP

Example

Mean-payoff parity games

e Memanvi eqgies

e still in NP n coNP

ICALP10

)

I i '::J;?
T

g7

G i
K. Chatterjee

§ \‘Mq

Outline

From Boolean to quantitative verification

e Quantitative Verification

3. A robust and decidable class of quantitative languages

Long-term goal

|s there a Quantitative Framework with

- an appealing mathematical formulation,
- useful expressive power, robustness and
- good algorithmic properties ?

(Like the boolean theory of w-regularity.)

Note: “Quantitative” is more than “timed” and “probabilistic”

[Henzinger,...]

Quantitative languages

A quantitative language is a function:

L:>% - R

L(w) can be interpreted as:

e the amount of some resource needed by the
system to produce w (power, energy, time consumption),

e a reliability measure (the average number of “faults” in w).

Quantitative languages

A quantitative language is a function:

L:>% - R

Classical Boolean languages are the special case where

L:3>%“ — {0,1}

L(w) can be interpreted as:

e the amount of some resource needed by the
system to produce w (power, energy, time consumption),

e a reliability measure (the average number of “faults” in w).

Languages & Automata

Boolean languages are generated by finite automata.

@

Languages & Automata

Boolean languages are generated by finite automata.

Quantitative languages are generated by weighted automata,
La(w) =

A is deterministic: value of (unique) run

A is non-deterministic: sup of run values

A is universal: inf of run values

A is alternating: value of game-outcome run (sup inf)

Quantitative Languages

det. | nondet. | univ. | alt.

Sup

LimSup

LimInf

LimAvg

Discy,

20 classes of quantitative languages...

Quantitative Languages

Decision problems

Given weighted automata A,B and v €

decide

Quant. emptiness Jw : La(w) > v
Quant. universality Vw : Lp(w) > v

Decision problems

Given weighted automata A,B and v €

decide

Quant. emptiness Jw :
Quant. universality Vw :

Quant. inclusion Yw :

Quant. equivalence Vvw

La(w) > v
La(w) > v

La(w) < Lp(w)

La(w) = Lg(w)

Decision problems

Given weighted automata A,B and v €

decide

Quant. emptiness Jw : La(w)

IV
N

Quant. universality Vw : La(w)

Y
N

[A

Lg(w)
Quant. equivalence Vw : Ly(w) = Lg(w)

Quant. inclusion Vw @ La(w)

det. | nondet. univ. alt. det. | nondet. univ. alt. det. | nondet. univ. alt. det. | nondet. univ. alt.
Sup P P PSpace | PSpace Sup P | PSpace | PSpace | PSpace Sup P | PSpacc | PSpace | PSpace Sup P | PSpacc | PSpace | PSpace
LimSup P r PSpace | PSpace LimSup I PSpace | PSpace | PSpace LimSup r PSpace | PSpace | PSpace LimSup r PSpace | PSpace | PSpace
Limlnf P P PSpace | PSpace LimInf 1> | P’Space | I’Space | I’Space LimInf > | PSpace | PSpace | PSpace LimInf > | PSpace | PSpace | PSpace
LimAvg r P undec. | undec. LimAvg P undce. | undee. | undee. LimAvg P undec. | undee. | undec. LimAvg P undec. | undee. | undec.
Discy, P P 7 ? Discx r ? ? ? Discx r ? ? ? Discx r ? ? ?

CSL'08, CSL'10, ToCL'10

Decision problems

Given weighted automata A,B and v €

decide
Quant. emptiness
Quant. universality

Quant. inclusion
Quant. equivalence

—Jw
Yw

Yw
Yw

La(w) > v

Undecidable for
LimAv(g.

Open question
for Disc.

La(w) < Lg(w) <—

La(w) = Lp(w)

((((((univ. det. uniy alt. det. | nondet univ det. | nondet.
Sup PSpace S Sup PSpa PSpa Sup PSpa PSpa S S PSpace S S
LimSup PSpace LimSup PSpa PSpa LimSup ISpa Space | PSpace Lim Sup PSpace | PSpace | PSpace
lelelele PSpace 5} LimInf 1> | P’Space | I’Space | I’Space LimInf PSpa PSpa S LimInf PSpace S S
LimAvg r undec. | undec. LimAvg | P | undce. | undece unde imAvg unded unde: cc.
2

CSL'08, CSL'10, ToCL'10

Quantitative Languages

EXpressiveness

Compare classes of quantitative languages
defined by weighted automata

O(20 x 20) comparisons...

EXpressiveness

Compare classes of quantitative languages
defined by weighted automata

O(20 x 20) comparisons...

LimAvg and Disc) cannot be determinized.

LICS'09, LMCS'10

Quantitative Languages

Operations

Ll,LQZZwHR

Operations on quantitative languages:

e max(L,,L,) L1 ULo
e min(L,,L,) L1 Nla
e complement(L,) = 1-L, 2%\ Ly

oL, +L,

Operations

Ll,LQZZwHR

Operations on quantitative languages:

e max(L,,L,) L1 ULo
e min(L,,L,) L1 Nla
e complement(L,) = 1-L, 2%\ Ly
el +L,

LimAvg Automata

Closure properties

LimAvg

max | min | Sum | comp.
Deterministic X X X Vi
Nondeterministic | +/ X X X
Alternating Vi V X vV

LICS'09, FCT'09

LimAvg Automata

Closure properties

Decision problems

LimAvg . . .
max | min | Sum | comp. | empt. | univ. | incl. | equiv.
Deterministic X X X Vi Vi V vV V
Nondeterministic | +/ X X X V X X X
Alternating vV vV X vV X X X X

LICS'09, FCT'09

LimAvg Automata

LimAvg

Decision problems

Closure properties

max | min | Sum | comp. | empt. | univ. | incl. | equiv.
Deterministic X X X Vi Vi V vV V
Nondeterministic | +/ X X X V X X X
Alternating vV vV X vV X X X X
v [VY A A v |V Vv

Expressions

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

E ::= A| max(E,E) | min(E,E) | Sum(E,E)

where A is a deterministic LimAvg-automaton.

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

E ::= A| max(E,E) | min(E,E) | Sum(E,E)

where A is a deterministic LimAvg-automaton.

E.g.: max(A; + A,, min(A;, A,))

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:
E ::= A| max(E,E) | min(E,E) | Sum(E,E)

where A is a deterministic LimAvg-automaton.

Closure properties:

LimAvg Closgre properties
max | min | Sum | comp.
Deterministic X X X V
Nondeterministic | +/ X X X
Alternating vV V4 X V
Expressions vV V WV V

LimAvg Automaton Expressions

LimAvg-automaton expressions are defined by:

E ::= A| max(E,E) | min(E,E) | Sum(E,E)

where A is a deterministic LimAvg-automaton.

Decision problems: all questions reduce to quant. emptiness

Jw : E(w) > v

Value set

Solve decision problems using the value set:

E.g.: E = max(A, + A,, min (A5, A,))

Value Set = { (Ly, (W),Ly, (W),La,(W),L,(W)) | w O 39} O R4

How to compute this set ?

Value set

Solve decision problems using the value set:

E.g.: E = max(A, + A,, min (A5, A,))

Value Set = { (Ly, (W),Ly, (W),La,(W),L,(W)) | w O 39} O R4

How to compute this set ?

Uses arguments in computational geometry, yields
4EXPTIME complexity for emptiness.

Value set

Solve decision problems using the value set:
E.g.: E = max(A, + A,, min (A5, A,))
Value Set = { (L, (W), L, (W), Lo, (W),Ln,(W)) | w DD 29} O R

E(2®) = { max(x+y, min(z,t)) | (x,y,z,t) O Value Set}
is a finite union of intervals.

Find maximum of E(Z®) to solve emptiness

LimAvg Automaton

Expressions

: Closure properties Decision problems
LimAvg
max | min | Sum | comp. | empt. | univ. | incl. | equiv.
Deterministic X X X V V vV V V
Nondeterministic | +/ X X X V X X X
Alternating V V X V X X X X
Expressions Va v v v vV Va v vV
?
Closure properties M E ¢
Expressiveness /
Decidability
LimAvg-automaton Quant. LimAvg-automaton

expression inclusion

expression

LimAvg Automaton

Expressions

: Closure properties Decision problems
LimAvg
max | min | Sum | comp. | empt. | univ. | incl. | equiv.
Deterministic X X X V V vV V vV
Nondeterministic | 4/ X X X V X X X
Alternating V V X V X X X X
Expressions Va v v v vV Va Vi vV
7
Closure properties =
CONCUR'10

Ial

.Henmngech

K. Chatterjee §

H. Edelsbrunner

N\

mAvg-automaton
expression

P. Rannou

Conclusion — Key results

1. Efficient antichain algorithms

2. Quantitative games

Mean-payoff parity games in NP n coNP

3. Quantitative generalization of languages

LimAvg automaton expressions: robust and decidable

Perspectives

1. Efficient antichain algorithms

Can we predict the performance of antichain algorithms ?

Complexity theory beyond worst-case...

Perspectives

2. Quantitative games

Mean-payoff parity games in NP n coNP

e Multi-dimensional mean-payoff games — complexity
e New classes of quantitative stochastic games

in progress, PhD thesis of Mahsa Shirmohammadi
* New classes of games on counter systems

in progress, PhD thesis of Julien Reichert

Perspectives

3. Quantitative generalization of languages

LimAvg automaton expressions: robust and decidable

e Discounted-sum “expressions” ?

e Incorporate Boolean conditions

e Theory of quantitative regularity
- analogous of Borel hierarchy
- safety vs. liveness

- logical characterization

Acknowledgments

The work in this thesis has been carried out in the following teams:

e Tom Henzinger (EPFL, 2006-2008)
e Jean-Francois Raskin (ULB, 2009)
e Alain Finkel (LSV, 2009-now)

T. Henzinger J-F. Raskin A. Finkel

Credits

With the following co-authors (students in blue):

e Dietmar Berwanger e Gilles Geeraerts e Joél Ouaknine

e Thomas Brihaye o Raffaella Gentilini e Tatjana Petrov

e Lubos Brim e Hugo Gimbert e Sangram Raje

e Véronique Bruyere e Tom Henzinger e Philippe Rannou

e Jakub Chaloupka e Barbara Jobstmann e Jean-Frangois Raskin

e Krishnendu Chatterjee e Axel Legay e Julien Reichert

e Aldric Degorre * Nicolas Maquet e Mahsa Shirmohammadi
e Martin De Wulf e Nicolas Markey e Rohit Singh

e Marc Ducobu e Thierry Massart e Szymon Torunczyk

e Herbert Edelsbrunner e Dejan Nickovic e James Worrell

The end

Thank you !

o)

% Questions ?

