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Automata-based approach
to model-checking

® Programs and properties are formalized as
regular languages of infinite words ;

® Any regular language of infinite words is
accepted by a nondeterministic Buchi
automaton (NBW) ;

® [he verification problem: given a NBWV A
(that formalizes Prg) and a NBWV B (that
formalizes Prop), check if L(A) € L(B).




Automata-based approach
to model-checking

¢ The language inclusion problem for
NBW is PSpace-Complete ;

S0, the complexity is rather high but similar
(or easier than) to the complexity of many
other verification problems ;

Nevertheless, currently there is no practical
algorithms to solve this language inclusion
problem. The usual approach through explicit
complementation is difficult.




Plan of the talk

Complementation of NBW
Simulation pre-orders and fixed points

An improved algorithm for emptiness of
ABW

The universality and language inclusion
problems




Complementation
of NBW

A forty year Saga (M.Vardi)

1961, Buchi: doubly exponential construction

1986, Sistla Vardi Wolper : simply exponential construction 2°(?)

1988, Michel: lower bound 2°(legn)

1989, Safra: (nearly) optimal solution 2°("°g") construction using determinization
1991, Klarlund: 292" construction without determinization

1997, Kupferman Vardi : 292" similar to Klarlund but more modular

2004, Yan: slightly better lower bound (0.76n)"

2004, Friedgut Kupferman Vardi: slightly better upper bound (0.97n)"




Complementation
of NBW

¢ Few attempts to implement the successive procedures:

® Safra procedure have been implemented by Tasiran et
al. (1995) and Thomas et al.(2005): need of intricate

data structures and very low scalability
(6 states);

KV procedure implemented by Gurumurthy et al.
(2003): use several optimisations (based on

simulation equivalences) but very low scalability
(6 states);

Recently, Tabakov (2006) implemented KV with
BDDs for checking universality but very low
scalability (8 states).




KV construction
ABW and AcoBW

The KV construction uses alternating Buchi word
(ABW) and alternating coBuchi word (AcoBWV) automata

Alternating automata are generalizations of
nondeterministic Buchi automata

¢ Let A=(Q,q0,%,8,x)

® in nondeterministic automata:
0(q,0)= {q1,92,-.,qn}

in alternating automata:
0(q,0)= {{q1,92,...qn},{r1,r2,...,rm},...}




KV construction
ABW and AcoBW

The KV construction uses alternating Buchi word
(ABW) and alternating coBuchi word (AcoBWV) automata

Alternating automata are generalizations of
nondeterministic Buchi automata

¢ Let A=(Q,q0,%,8,x)

® in hondeterministic automata:
0(q,0)= {q1,92,..,qn} equivalent to {{q1},{q2},...{qn}}

in alternating automata:
0(q,0)= {{q1,92,...qn},{r1,r2,...,rm},...}




Run of an ABW A=(Q,q.,2,0,X)
on a word W=woWw....Wh...

Jo

l Wo

Choose {q,,q,..,.q.} € 0(qo,wo)




Run of an ABW A=(Q,q.,2,0,X)
on a word W=woWw....Wh...




Run of an ABW A=(Q,q.,2,0,X)
on a word W=woWw....Wh...

l

Choose {r,r,..,} € 0(q,w)

for each g of previous layer




Run of an ABW A=(Q,q.,2,0,(X)
on a word W=woWw....Wh...

The run is accepting if every branch
intersects infinitely often




Run of an AcoBW A=(Q,q,,2,0,X)
on a word W=woWw....Wh...

The run is accepting if every branch
intersects only finitely often




KV construction

Input:A an

B an that accepts the
of A

C an that accepts the same
language as B

Output: D an that accepts the
same language as C




This step is
trivial

O(l)

KV construction

Input:A an

>

B an that accepts the
of A

C an that accepts the same
language as B

Output: D an that accepts the
same language as C



KV construction

Let A be an NBW with transition relation O :

Let B be an AcoBW identical to A but with transition relation
0’ defined as follows: for all g€Q: for all €2

if 0(q,0)={{q1},{q2}.-..{qn}} then &’(q,0) ={{q!,q2,...qn}};

So in B, we have dualized the transition relation: a run of the
AcoBW on a word w is the tree that contains the set of all runs
of the NBW on w ;

... and the accepting condition: B has an accepting run (tree) on w
iff all the runs of A are rejecting ;

So, B accepts the complement of A.




KV construction

Input:A an

B an that accepts the

This step is
> P of A

conceptually
interesting

and costs
o) C an

that accepts the same
language as B

Output: D an that accepts the
same language as C




Accepting runs of
AcoBW

® Accepting runs of AcoBWV are
memoryless (Emerson and Jutla, 1991).

® Memoryless runs are structured and that
structure can be exploited to transform an
AcoBW into an ABW (Kupferman and

Vardi, 1997).




KV construction

Input:A an

B an that accepts the
of A

This step is C an that accepts the same

conceptually language as B
simple but

‘:Z%S(gf Output: D an that accepts the
same language as C




Accepting runs of
ABW

level i: all paths has visited &

level j: all paths has visited &
at least twice.

VIR

A NBW can guess a run by maintaing pairs (S,0):
S states of a level and OCS states that need a visit to K.




Miyano-Hayashi
construction

® Given an ABW C=(Q,q0,2,0,&), the NBWV that accepts the same language is
given by D=(2°x2°,({q0},9), 2,0’,&’) where:

® for any (5,0)e 2°x2°, for any o€2.:

if O#£D then 0’((S,0),0) is the set of elements {(S’,0’'\x)} s.t.
O’cS’, VqeSs: dTed(q, 0):TSS’, and VqeO: dTed(q, 0):T<cO’.

if 0= then 0’((S,0),0) is the set of elements {(S’,0’\X)} s.t.
0'=S’, Vqes: ATed(q, 0):TCS'

o’=2x%{J}




Miyano-Hayashi
construction

® Given an ABW C=(Q,q0,2,0,&), the NBWV that accepts the same language is
given by D=(2°x2%,({q0},D), Z,0’,&’) where:

® for any (S.0)e 2°x2°, for any g€2:

Unfortunately, this automaton is
(usually) huge as it is constructed on

the set of locations
2% 2




Miyano-Hayashi
construction

° leen an ABW C=(C

This explains the poor
performances reported for
current implementations
Unfortun of the construction
(usually) hu

the set of locations
2% 2




But, we do not need explicit
complementation ...

® To check universality of A, we do not need to
construct D explicitely;

® ... we only need to check if D is empty or not;

® _.similarly to check inclusion,i.e. L(A)SL(B), we

do not need to construct the complement of B
but we need to check that L(A)NL<(B) is empty.




But, we do not need explicit
complementation ...

® To check universality of A, we do hot need to
construct D explicitely;

® Ne only heed to che

How can we check efficiently the
emptiness of D !




Emptiness of
NBW

To evaluate emptiness of A=(Q,q,2,0,X)

Check if

QEVYy.uUx.(Pre(x) U (Pre(y) N x))




Simulation pre-orders
and fixed points

Let A= be a NBWY,
<CQxQ is a simulation pre-order iff

for any qi, q2, g3 € Q, for any O0€2,

qs
if <
qi




Simulation pre-orders
and fixed points

Let A= be a NBWY,
<CQxQ is a simulation pre-order iff

for any qi, q2, g3 € Q, for any O0€2,

then there exists g4 € Q s.t.:
g3 o > q4
if < <
0)
qi > q2




Simulation pre-orders
and fixed points

Let A= be a NBWY,
<CQxQ is a simulation pre-order iff

for any qi, q2, g3 € Q, for any O0€2,

then there exists g4 € Q s.t.:
g3 o > q4
if < <
0)
qi > q2

and, for any qi,q2€Q: if q1=<q2 and q;€x then q,ex




Simulation pre-orders
and fixed points

Let A= be a NBWYV,
<CQxQ is a simulation pre-order iff

for any qi, q2, g3 € Q, for any O0€2,

then there exists g4 € Q s.t.:
g3 o —> J4
if < <
o)
q > Q2

2) and, for any qi,q2€Q: if q1<q2 and g€ then q e




Simulation pre-orders
and fixed points

® |Lemma:for any NBW A=(Q,q.,2,0,(X), for
any simulation pre-order <, for any
<=closed S, TCQ:

(I) for all o€2: Pre(0)(S) is <=closed;
(2) SUT and SNT are ==closed;

(3) & is <=closed;




Simulation pre-orders
and fixed points




Simulation pre-orders
and fixed points




Simulation pre-orders
and fixed points




Simulation pre-orders
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Simulation pre-orders
and fixed points




Simulation pre-orders
and fixed points




Simulation pre-orders
and fixed points

® |emma:for any NBW A=(Q,q,,2,0,), for
any simulation pre-order <, for any
<=closed S,TCQ:

(I) for all o€2: Pre(0)(S) is <=closed;

S0, all the sets that we manipulate in

Vy . Ux . ( Pre(x) U ( Pre(y) N @) )

are <-closed.




Simulation pre-orders
and fixed points

® |emma:for any NBW A=(Q,q,,2,0,), for
any simulation pre-order <, for any

<-closed sets can be represented ! d:
symbolically by their maximal

elements only
S0, all the set

Vy . ix . ( Pre(x) U ( Pre(y) N &) )

are <-closed.




Simulation pre-orders
and fixed points

WWe can potentially compute

® | emma:fo Vy . ix . ( Pre(x) U ( Pre(y) N o))

any simu

Y4 .1Y-Y.] more efficiently by working on
<. maximal elements only.

(1) for|zos y

symbolically by their maximal

elements only
S0, all the set

Vy . ix . ( Pre(x) U ( Pre(y) N &) )

are <-closed.




Good news !

The NBWV that results from the KV procedure
is equipped by construction
with a simulation pre-order =.

Idea: do not construct the huge NBVV but
check emptiness directly and evaluate the
fixed point efficiently
by exploiting the <=-pre=-order.




lllustration:
emptiness of ABW

® Remember that given an ABW A=(Q,q0,2,0,X), the Miano-
Hayashi construction specifies an
NBW B= (2°x2%,({q0},5}),2,0’,&).

® The following relation < € 2°9x2° defined by
(S,0) < (5°,0°) iff (1) (0=Q iff 0°=) and (2) SCS’ and OCO’

is a simulation pre-order on B.

Note that the <-closure of a pair (§,0) contains an
exponential number of elements in the size of S and O!




lllustration:
emptiness of ABW

® Remember that given an ABW A=(Q,q0,2,0,X), the Miano-

Hayashi construction specifies an
NBW B= (2°x2%,({q0},5}),2,0’,&).

® The following relation < € 2°9x2° defined by
(S,0) < (5°,0°) iff (1) (0= iff 0°=J) and (2) SCS’ and OCO’

is a simulation [ )
We can check emptiness of B by

manipulating <-closed sets
represented by their maximal
elements only.

Note that the <-cl
exponential nu




Illlustration:
emptiness of ABW

® Remember that given an ABW A=(Q,q0,2,0,X), the Miano-
Hayashi construction specifies an

ed by

This potentially saves us an
nd (2) SSS’ and OO’

exponential !

_emptiness of B by
L <=closed sets
exponential nu ' = : :
represented by their maximal
elements only.




lllustration:
emptiness of ABW

e Remember that g VVe have a pQIynomlal time
Hayashi constructi algorithm that

given (S5,0) and 0€2, compute a

compact representation of

This potentiall Pre(c)(1(S,0))

expone

.emptiness of B by
L <=closed sets
exponential nu ' = : :
represented by their maximal
elements only.




Implicit

Implicit

Implicit

Practical evaluation
Universality

Input:A an

B an that accepts the
of A

C an that accepts the same
language as B

Output: D an that accepts the
same language as C



Practical evaluation
Universality

" Input:Aan ) ),/

Implicit VWVe evaluate the fixed point for
emptiness directly, that is, without
constructing the automaton specified
Implicit by the construction.
We evaluate this fixed point by
manipulating <=closed sets through
Iylil<I 3 their maximal elements only.




Practical evaluation

® We have implemented our new algorithm to check
universality of NBWV;

Evaluation on a randomized model proposed
by Tabakov and Vardi (2005) that generates random
NBW (two parameters: r;f);

On that randomized model Tabakov’s BDD
implementation can handle 6 states on the most
difficult instances with median time <20s.




Practical evaluation
Universality

Table 1. Automata size for which the median execution time for checking universality is less
than 20 seconds. The symbol o means more than 1500.

¢ '102104|06(08|10[1.2]14]1.6]1.8

0.1 60 | 40 | 30
0.3 40 | 30 | 40
0.5 60 | 60 | 90
0.7 70 | 80
0.9 80

For r=2, {=0.5, Tabakov can handle 8 states while
our algorithm handles 120 states in less than 20s.




Practical evaluation
Universality

To compare,
bakov’s BDD
implementation was
e to handle
automata of size 6 on
the entire state space
(within 20s as in our
expermients).




Conclusions

® |n the automata-based approach to model-checking:
keep implicit the complementation step and check
for emptiness efficiently by exploiting simulation
pre-orders that exists by construction ;

Implementation for universality problem shows
promising results: several orders of magnitude
on the randomized model !




Future Works

® |mplement and evaluate the new
language inclusion algorithm ;

® Evaluate beyond the randomized model ;

® Revisit the LTL model-checking problem:
do not construct the NBW of the
negation of the formula but use ABW and
check directly for emptiness.




