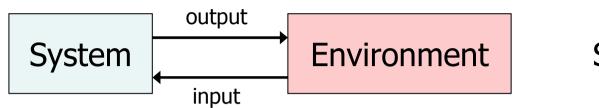
Energy and Mean-Payoff Parity Markov Decision Processes

Laurent Doyen LSV, ENS Cachan & CNRS

Krishnendu Chatterjee IST Austria

MFCS 2011

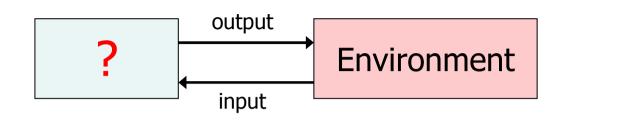
Games for system analysis



Spec: φ(input,output)

- Verification: check if a given system is correct
 - \rightarrow reduces to graph searching

Games for system analysis

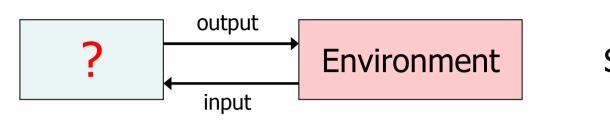


Spec: φ(input,output)

- Verification: check if a given system is correct
 - \rightarrow reduces to graph searching
- Synthesis : construct a correct system

 \rightarrow reduces to game solving – finding a winning strategy

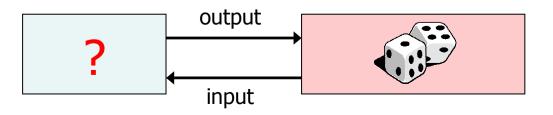
Games for system analysis



Spec: φ(input,output)

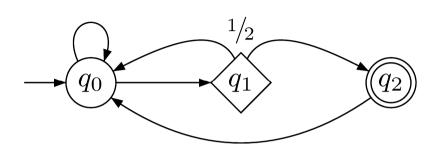
- Verification: check if a given system is correct
 - \rightarrow reduces to graph searching
- Synthesis : construct a correct system
 - \rightarrow reduces to game solving finding a winning strategy

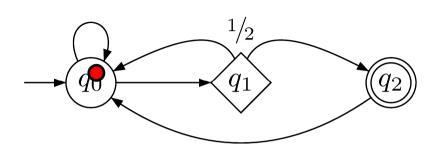
This talk: environment is abstracted as a stochastic process

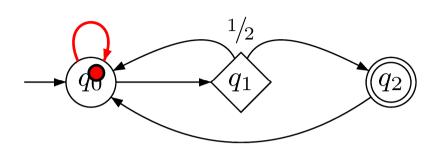


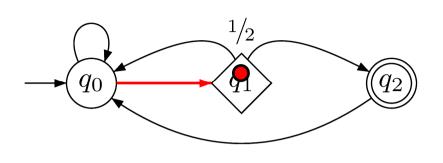
= Markov decision process (MDP)

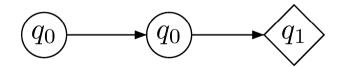
Markov decision process

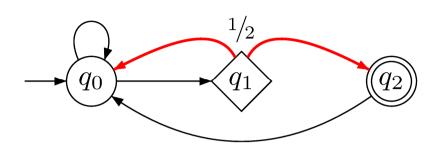


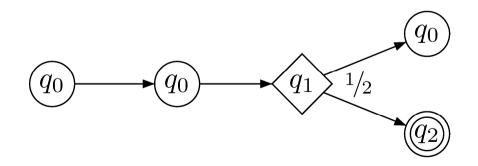


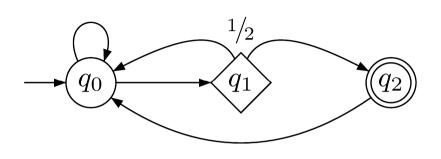


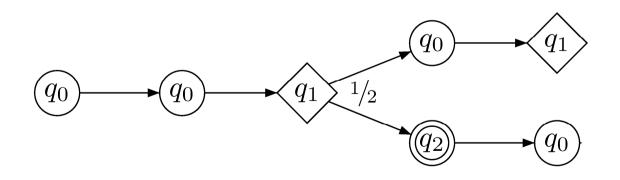


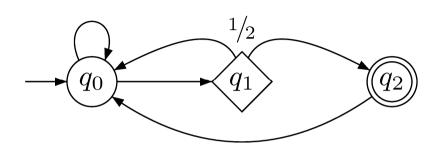




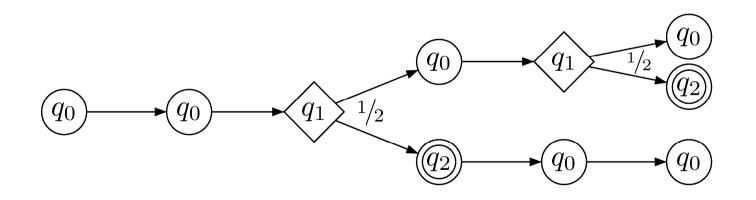


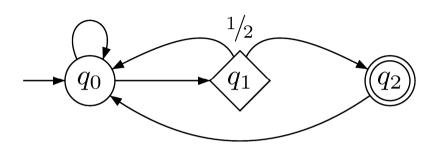






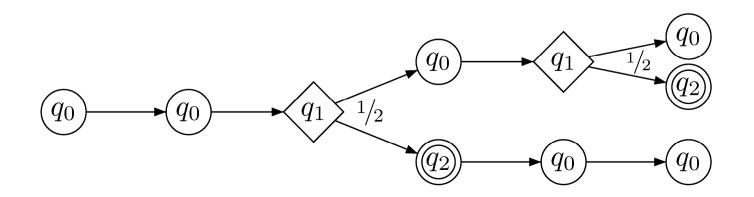
$$Q = Q_{\circ} \cup Q_{\diamond}$$

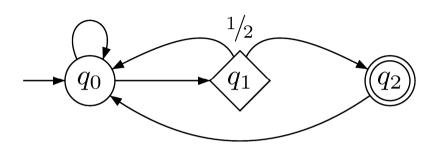




> Probabilistic

Strategy (policy) = recipe to extend the play prefix $\sigma: Q^* \cdot Q_{\circ} \to Q$

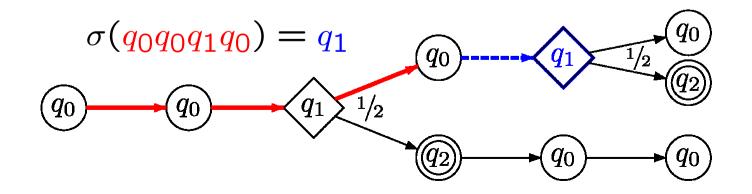


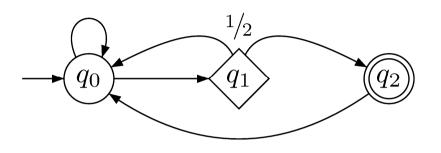


Probabilistic

 $Q = Q_{\circ} \cup Q_{\diamond}$

Strategy (policy) = recipe to extend the play prefix $\sigma : Q^* \cdot Q_{\circ} \rightarrow Q$





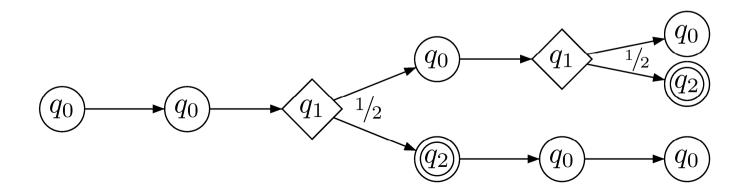
) Nondeterministic (player 1)

weak

Probabilistic (player 2)

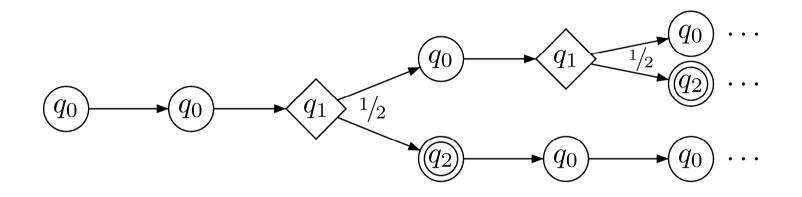
 $Q = Q_{\circ} \cup Q_{\diamond}$

Strategy (policy) = recipe to extend the play prefix $\sigma : Q^* \cdot Q_{\circ} \rightarrow Q$



Objective

Fix a strategy \rightarrow (infinite) Markov chain



Strategy is almost-sure winning, if with probability 1:

- Büchi: visit accepting states infinitely often.
- Parity: least priority visited infinitely often is even.

Given an MDP, decide whether there exists an almost-sure winning strategy for parity objective.

Given an MDP, decide whether there exists an almost-sure winning strategy for parity objective.

End-component = set of states U s.t.

- if $q \in U \cap Q_{\circ}$ then **some** successor of q is in U
- if $q \in U \cap Q_{\diamond}$ then **all** successors of q are in U
- strongly connected

strongly connected

Given an MDP, decide whether there exists an almost-sure winning strategy for parity objective.

End-component = set of states U s.t.

- if $q \in U \cap Q_{\circ}$ then **some** successor of q is in U
- if $q \in U \cap Q_{\diamond}$ then **all** successors of q are in U
- strongly connected

strongly connected

End-component is good if least priority is even

Almost-sure reachability to good end-components in PTIME

Given an MDP, decide whether there exists an almost-sure winning strategy for parity objective.

End-component = set of states U s.t.

- if $q \in U \cap Q_{\circ}$ then **some** successor of q is in U
- if $q \in U \cap Q_{\diamond}$ then **all** successors of q are in U
- strongly connected

strongly connected

End-component is good if least priority is even

Almost-sure reachability to good end-components in PTIME

Qualitative

Parity condition

ω-regular specifications (reactivity, liveness,...)

$$\Box \neg (g_1 \land g_2)$$
$$\Box (r \to \Diamond g)$$
$$\Box \Diamond r \to \Box \Diamond g$$

Objectives

Qualitative

Parity condition

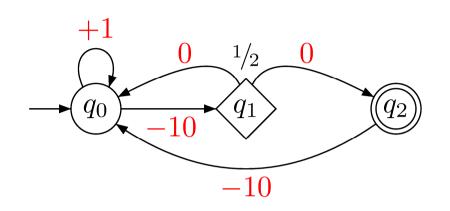
ω-regular specifications (reactivity, liveness,...)

$$\Box \neg (g_1 \land g_2)$$
$$\Box (r \to \Diamond g)$$
$$\Box \Diamond r \to \Box \Diamond g$$

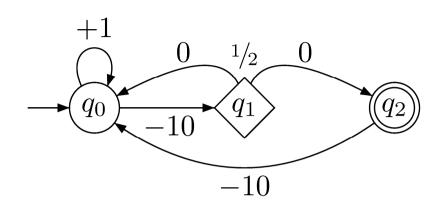
Quantitative

Energy condition

Resource-constrained specifications

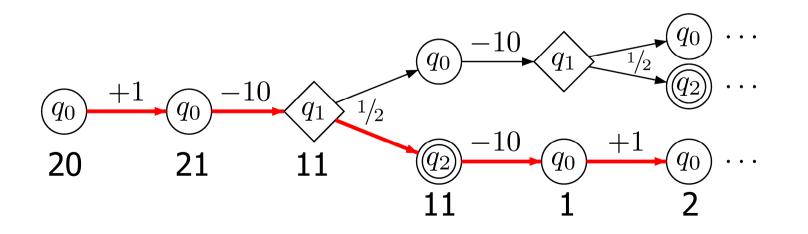


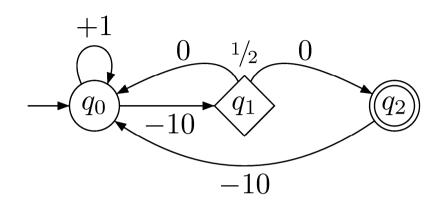
Positive and negative weights (encoded in binary)



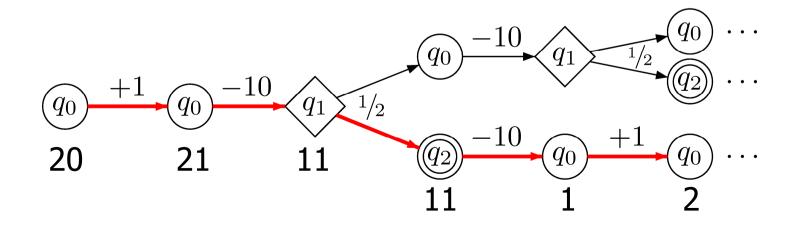
Positive and negative weights (encoded in binary)

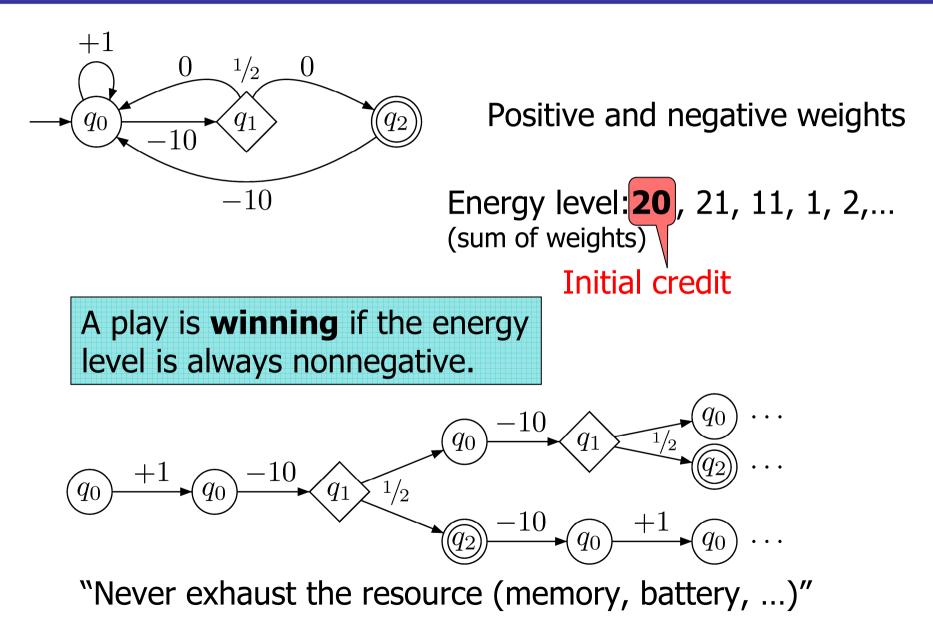
Energy level: 20, 21, 11, 1, 2,... (sum of weights)





Positive and negative weights



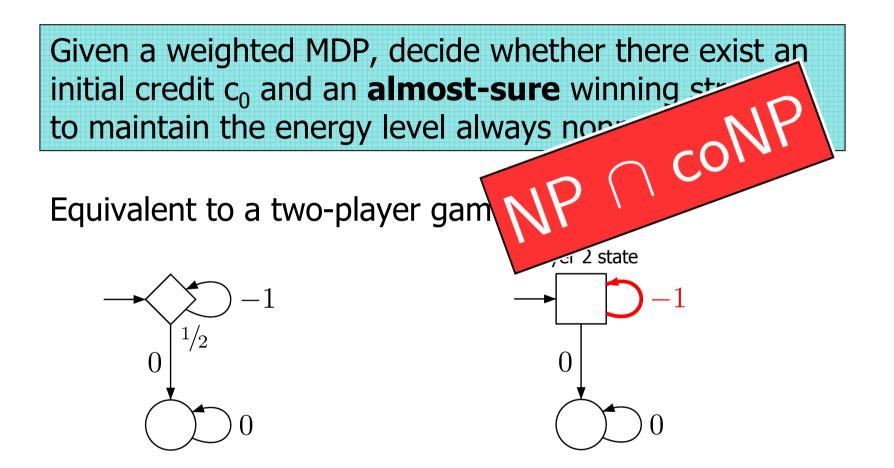


Given a weighted MDP, decide whether there exist an initial credit c₀ and an **almost-sure** winning strategy to maintain the energy level always nonnegative.

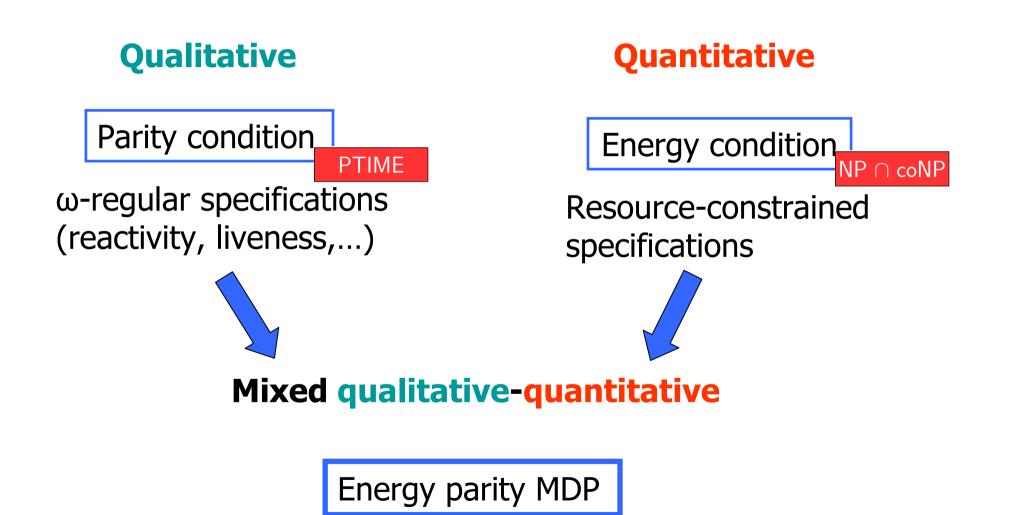
Given a weighted MDP, decide whether there exist an initial credit c₀ and an **almost-sure** winning strategy to maintain the energy level always nonnegative.

Equivalent to a two-player game:

If player 2 can force a negative energy level on a path, then the path is finite and has positive probability in MDP



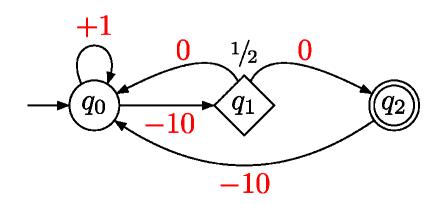
If player 2 can force a negative energy level on a path, then the path is finite and has positive probability in MDP



Strategy is almost-sure winning with initial credit c_0 , if with probability 1:

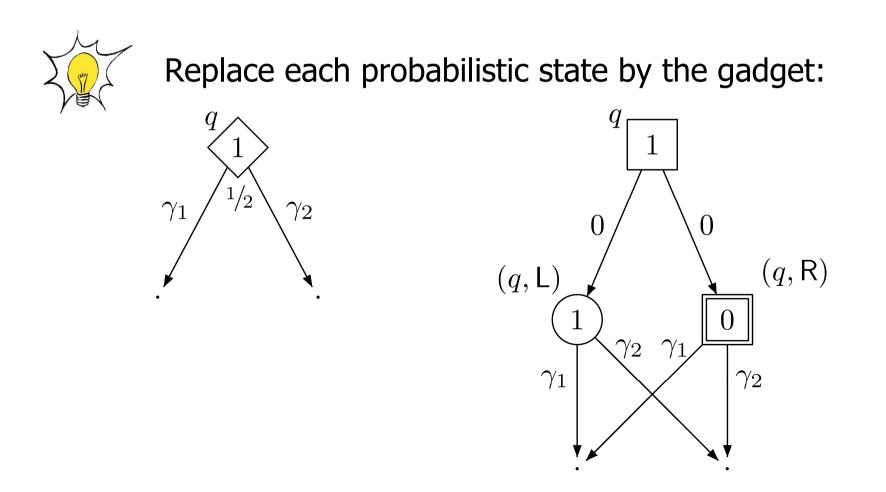
energy condition and parity condition hold

"never exhaust the resource" and "always eventually do something useful"



For parity, probabilistic player is my friend For energy, probabilistic player is my opponent

For parity, probabilistic player is my friend For energy, probabilistic player is my opponent



Reduction of energy Büchi MDP to energy Büchi game

Reduction of energy Büchi MDP to energy Büchi game

Reduction of energy parity MDP to energy Büchi MDP

Player 1 can guess an even priority 2i, and win in the energy Büchi MDP where:

- Büchi states are 2i-states, and
- transitions to states with priority <2i are disallowed

Mean-payoff

Mean-payoff value of a play = limit-average of the visited weights

$$\lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w_i$$

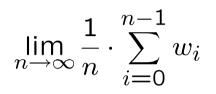
Optimal mean-payoff value can be achieved with a **memoryless** strategy.

Decision problem:

Given a rational threshold ν , decide if there exists a strategy for player 1 to ensure mean-payoff value at least ν with probability 1.

Mean-payoff

Mean-payoff value of a play = limit-average of the visited weights

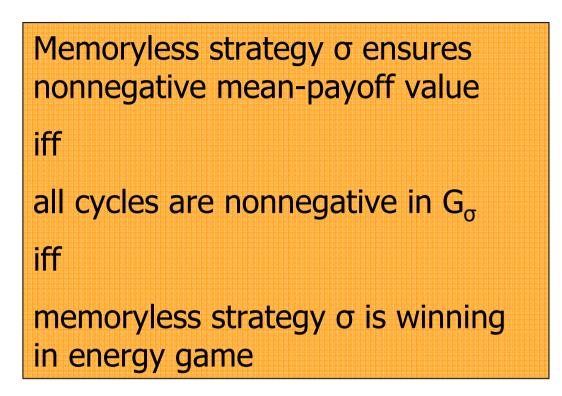


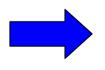
Optimal mean-payoff value can be achieved with a **memoryless** strategy.

Decision problem:

Given a rational threshold ν , decide if there exists a strategy for player 1 to ensure mean-payoff value at least ν with probability 1.

Mean-payoff games

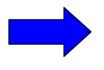




Mean-payoff games with threshold 0 are equivalent to energy games.

Mean-payoff games

Memoryless strategy σ ensures nonnegative mean-payoff value iff all cycles are nonnegative in G_{σ} iff memoryless strategy σ is winning in energy game



Mean-payoff games with thresh are equivalent to energy

on coNP

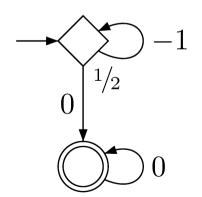
Mean-payoff vs. Energy

	Energy	Mean-Payoff	
Games	$\mathbf{NP} \cap \mathbf{coNP} \langle $	$\stackrel{NP}{\longrightarrow} O CONP$	
MDP	$\mathbf{NP} \cap \mathbf{coNP}$	PTIME	

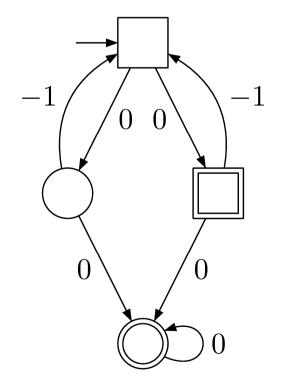
Mean-payoff parity MDPs

Find a strategy which ensures with probability 1:

- parity condition, and
- mean-payoff value $\geq \nu$
- Gadget reduction does not work:



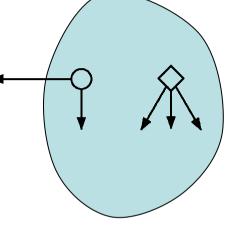
Player 1 almostsurely wins ($\nu = 0$)



Player 1 loses

Algorithm for mean-payoff parity

- End-component analysis
- almost-surely all states of end-component can be visited infinitely often
- optimal expected mean-payoff value of all states in end-component is same



strongly connected

End-component is good if

- least priority is even
- expected mean-payoff value $\geq \nu$

Almost-sure reachability to good end-component in PTIME

Algorithm for mean-payoff parity

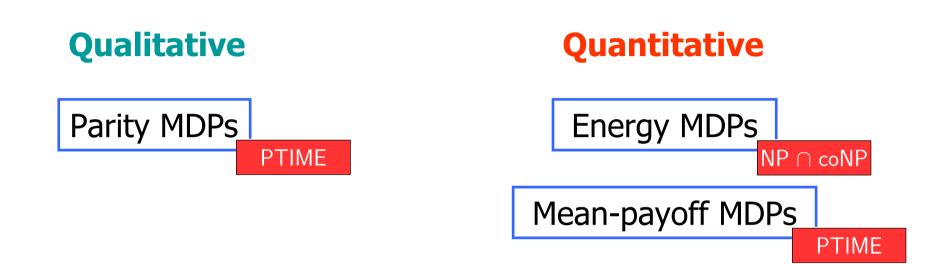
- End-component analysis
- almost-surely all states of end-compon can be visited infinitely often
- optimal expected mean-payoff value of all states in end-component is same

End-component is good if

- least priority is even
- expected mean-payoff value $\geq \nu$

Almost-sure reachability to even end-component in PTIME

MDP

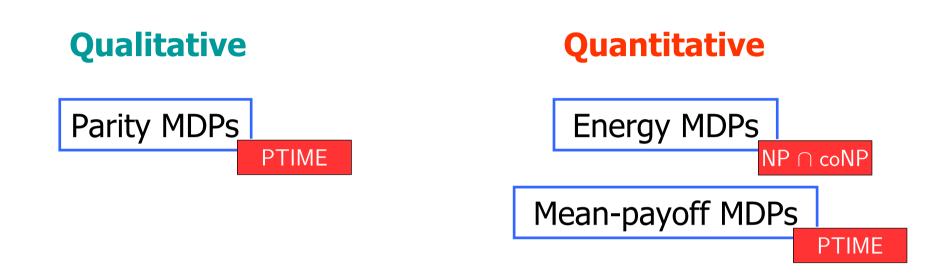


Mixed qualitative-quantitative

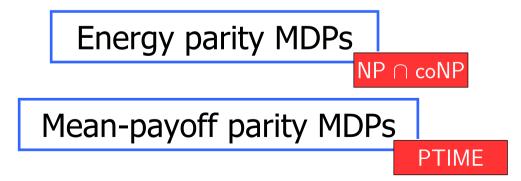
Energy parity MDPs

Mean-payoff parity MDPs

MDP



Mixed qualitative-quantitative



Summary

Algorithmic		
complexity	Energy parity	Mean-Payoff parity
Games	$NP \cap coNP$	$NP \cap coNP$
MDP	$NP \cap coNP$	PTIME

Summary

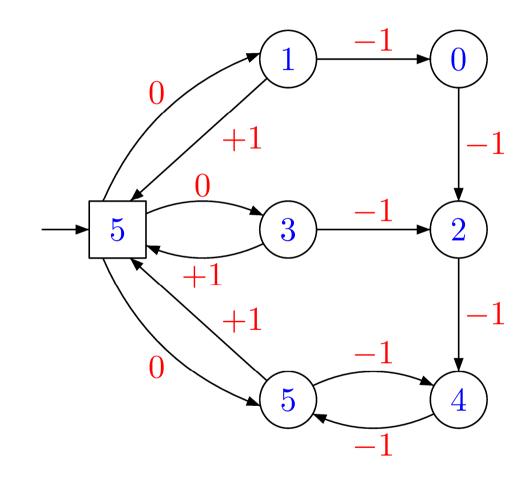
Algorithmic			
complexity	Energy parity	Mean-Payoff parity	
Games	$NP \cap coNP$	$NP \cap coNP$	
MDP	$NP \cap coNP$	PTIME	

Strategy
complexityEnergy parityMean-Payoff parityGamesn·d·WinfiniteMDP2·n·Winfinite

Thank you !

Questions ?

The end



References

[CdAHS03] A.Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. **Resource interfaces**, Proc. of EMSOFT: Embedded Software, LNCS 2855, Springer, pp.117-133, 2003

- [EM79] A. Ehrenfeucht, and J. Mycielski, Positional Strategies for Mean-Payoff Games, International Journal of Game Theory, vol. 8, pp. 109-113, 1979
- [BFL+08] P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba, Infinite Runs in Weighted Timed Automata with Energy Constraints, Proc. of FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS 5215, Springer, pp. 33-47, 2008
- [CHJ05] K. Chatterjee, T.A. Henzinger, M. Jurdzinski. **Mean-payoff Parity Games**, Proc. of LICS: Logic in Computer Science, IEEE, pp. 178-187, 2005.

Energy parity

Algo	Algorithm 1: SolveEnergyParityGame		
I	nput : An energy parity game $\langle G, p, w \rangle$ with state space Q .		
C	Output : The set of winning states in $\langle G, p, w \rangle$ for player 1.		
b	egin		
1	if $Q = \emptyset$ then return \emptyset ;		
2	Let k^* be the minimal priority in G. Assume w.l.o.g. that $k^* \in \{0, 1\}$		
	;		
3	Let G_0 be the game G ;		
4			
5	if $k^* = 0$ then		
6	$A_0 \leftarrow Q$ /* over-approximation of Player-1 winning states */;		
7	repeat		
8	$ A_i' \leftarrow \text{SolveEnergyGame}(G_i, w') \text{ (where } w' \text{ is defined in }$		
	Lemma ??);		
9	$X_i \leftarrow Attr_1(A'_i \cap p^{-1}(0));$		
10	Let G'_i be the subgraph of G_i induced by $A'_i \setminus X_i$;		
11	$Z_i \leftarrow (A'_i \setminus X_i) \setminus SolveEnergyParityGame(G'_i, p, w) ;$		
12	$A_{i+1} \leftarrow A'_i \setminus Attr_2(Z_i) ;$		
13	Let G_{i+1} be the subgraph of G_i induced by A_{i+1} ;		
14	$i \leftarrow i+1;$		
	until $A_i = A_{i-1};$		
15	$_$ return A_i ;		
16	if $k^* = 1$ then		
17	$B_0 \leftarrow Q$ /* over-approximation of Player-2 winning		
	states */;		
18	repeat $(B, \alpha, -1(1))$		
19	$\begin{cases} Y_i \leftarrow Attr_2(B_i \cap p^{-1}(1)); \\ \text{Let } C \qquad \text{be the subgraph of } C \text{ induced by } B \setminus Y; \end{cases}$		
20 21	Let G_{i+1} be the subgraph of G_i induced by $B_i \setminus Y_i$; $B_{i+1} \leftarrow B_i \setminus Attr_1(SolveEnergyParityGame(G_{i+1}, p, w))$;		
21	$\begin{vmatrix} D_{i+1} \leftarrow D_i \setminus Aut_1(\text{SolveLinergyrantyGame}(G_{i+1}, p, w)), \\ i \leftarrow i+1; \end{vmatrix}$		
–	until $B_i = B_{i-1}$;		
23	$\begin{vmatrix} \text{until} & D_i = D_{i-1}, \\ \text{return } Q \setminus B_i; \end{vmatrix}$		
e	nd		

Mean-payoff parity

 Input: a mean-payoff parity game MP = (G, p, r) such that p⁻¹(0) ≠ Ø and the game is parity winning for player 1. Output: a nonempty 1-closed subset of LV, and MP₁(v) for all v ∈ LV. 1. F = Attr₁(p⁻¹(0), G). 2. H = V \ F and H = G ↑ H. 3. MeanPayoffParitySolve(H) (Algorithm 3). 4. Construct the mean-payoff game G̃ as described in Subsection 3.1 and Solve 5. Let LV_{G̃} be the least value class in G̃ and l̃ be the least value. 6. LV = LV_{G̃} ∩ V, and MP₁(v) = l̃ for all v ∈ LV. 7. return (LV, l̃). 	Subroutine SetValues (J_i, j_i) 1. $g = \max\{Val(w) : w \in W_0 \text{ and } \exists v \in J_i \cap V_1. (v, w) \in E\}.$ 2.1 if $g > j_i$ then 2.2 $T_1 = \{v \in J_i \cap V_1 : \exists w \in W_0. Val(w) = g \text{ and } (v, w) \in E\}; \text{ and } W_0 = W_0 \cup UnivReach(T_1).$ 2.3 For every vertex $v \in UnivReach(T_1), \text{ set } Val(v) = g.$ 2.4 goto Step 6.3. of MeanPayoffParitySolve . 3. $l = \min\{Val(w) : w \in W_0 \text{ and } \exists v \in J_i \cap V_2. (v, w) \in E\}.$ 4.1 if $l < j_i$ then 4.2 $T_2 = \{v \in J_i \cap V_2 : \exists w \in W_0. Val(w) = l \text{ and } (v, w) \in E\}; \text{ and } W_0 = W_0 \cup UnivReach(T_2).$ 4.3 For every vertex $v \in UnivReach(T_2), \text{ set } Val(v) = l.$ 4.4 goto Step 6.3. of MeanPayoffParitySolve .	
Input: a mean-payoff parity game $\mathcal{MP} = (\mathcal{G}, p, r)$ such that $p^{-1}(0) = \emptyset$ and p^{-1} and the game is parity winning for player 1. Output: a nonempty 1. $F = Attr_2(p^{-1}(1)$ 2. $H = V \setminus F$ and \mathcal{H} 3. MeanPayoffParitit Imput: a mean-payoff parity game \mathcal{MP} . Output: the formula of th	the value function MP_1 . ing parity games. $W_0 = \emptyset. 4$. $\mathcal{G}_0 = \mathcal{G} \upharpoonright W_1$ and $V^0 = W_1$. 5. $i = 0$. p = p - 2. end while winning sets in \mathcal{G}_i . $\exists v \in W_2^i \cap V_1$. $(v, w) \in E$. $\exists v (w) = g$ and $(v, w) \in E$. $h(T_1)$, set $Val(v) = g$. $h(T_1)$, set $Val(v) = g$. $h(T_1)$, set $Val(v) = g$. $h(T_1) = \mathbf{ComputeLeastValueClass}(\mathcal{G}_i)$. y vertex $v \in L_i$, set $Val(v) = l_i$. $stValueClass}(\mathcal{G}_i)$.	

Complexity

	Strategy		Algorithmic
	Player 1	Player 2	complexity
Energy	memoryless	memoryless	$NP \cap coNP$
Parity	memoryless	memoryless	$NP \cap coNP$
Energy parity	exponential	memoryless	$NP \cap coNP$
Mean-payoff	memoryless	memoryless	$NP \cap coNP$
Mean-payoff parity	infinite	memoryless	$NP \cap coNP$