Automatic Rectangular Refinement of Affine Hybrid Automata

Laurent Doyen

J ean-François Raskin

ULB

ULB

Tom Henzinger

EPFL

FORMATS 2005 - Sep 27th - Uppsala

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Overview

- Automatic analysis of affine hybrid systems

Overview

- Automatic analysis of affine hybrid systems Example:

$\left\{\begin{array}{l}\dot{x}=v \\ \dot{v}=A\left(v-v_{d}\right)\end{array}\right.$

Navigation Benchmark

Overview

- Automatic analysis of affine hybrid systems Example:

Overview

- Automatic analysis of affine hybrid systems Example:

Navigation Benchmark

Affine dynamics

Overview

- Automatic analysis of affine hybrid systems
- Example:

Discrete states +
$\left\{\begin{array}{l}\dot{x}=v \\ \dot{v}=A\left(v-v_{d}\right)\end{array}\right.$

Affine dynamics

Reminder

- Some classes of hybrid automata:
- Timed automata ($\dot{x}=1$)
- Rectangular automata ($\dot{x} \in[a, b]$)
- Linear automata ($\sum a_{i} \dot{x}_{i} \sim b$)

Reminder

- Some classes of hybrid automata:
- Timed automata ($\dot{X}=1$)
- Rectangular automata $(\dot{x} \in[a, b])$
- Linear automata ($\sum a_{i} \dot{x}_{i} \sim b$)

Limit for decidability of Language Emptiness

Reminder

- Some classes of hybrid automata:
- Timed automata ($\dot{X}=1$)
- Rectangular automata $(\dot{x} \in[a, b])$
- Linear automata ($\sum a_{i} \dot{x}_{i} \sim b$)
- Affine automata ($\sum a_{i} \dot{x}_{i}+b_{i} x_{i} \sim c$)
- Polynomial automata ($p\left(\dot{x}_{i}, x_{i}\right) \sim c$)
- etc.
\longrightarrow Limit for decidability of Language Emptiness

Reminder

- Some classes of hybrid automata:
- Timed automata ($\dot{x}=1$)
- Rectangular automata $(\dot{x} \in[a, b])$
- Linear automata ($\sum a_{i} \dot{x}_{i} \sim b$)
$\left[\begin{array}{l}\text { - Affine automata }\left(\sum a_{i} \dot{x}_{i}+b_{i} x_{i} \sim c\right) \\ \text { - Polynomial automata }\left(p\left(\dot{x}_{i}, x_{i}\right) \sim c\right) \\ \text { - etc. } \\ \rightarrow \text { Limit for symbolic computation of Post with HyTech }\end{array}\right.$
\longrightarrow Limit for decidability of Language Emptiness

Methodology

- Affine automaton A and set of states Bad Check that Reach(A) $\cap \operatorname{Bad}=\varnothing$

Methodology

- Affine automaton A and set of states Bad
- Check that Reach $(A) \cap$ Bad $=\varnothing$

Affine dynamics is too complex ? Abstract it !

Methodology

- Affine automaton A and set of states Bad
- Check that Reach $(\mathrm{A}) \cap \operatorname{Bad}=\varnothing$
- Affine dynamics is too complex ?
\Rightarrow Abstract it!
- Abstraction is too coarse?

Refine it!

HOW ?

Methodology

1. Abstraction: over-approximation

Affine dynamics

Rectangular dynamics

Methodology

- 1. Abstraction: over-approximation

Affine dynamics

Rectangular dynamics
$\dot{x}=2-x$
$0 \leq x \leq 3$

$\operatorname{Let}\left\{\begin{array}{l}f(x)=2-x \\ \operatorname{Inv}=\{0 \leq x \leq 3\}\end{array}\right.$
Then $[-1,2]=\left[\min _{x \in \operatorname{Inv}} f(x), \max _{x \in \operatorname{Inv}} f(x)\right]$

Methodology

2. Refinement: split locations by a line cut

Line $\boldsymbol{\ell} \equiv \boldsymbol{x}=\frac{3}{2}$

Methodology

2. Refinement: split locations by a line cut

Line $\boldsymbol{\ell} \equiv \boldsymbol{X}=\frac{3}{2}$

Methodology

Original Automaton

A

Abstract
$\operatorname{Reach}\left(\mathrm{A}^{\prime}\right) \cap \mathrm{Bad} \stackrel{?}{=} \varnothing$
Yes

Property verified

Methodology

Original Automaton

A
Abstract
$\operatorname{Reach}\left(\mathrm{A}^{\prime}\right) \cap \mathrm{Bad} \stackrel{?}{=} \varnothing$

Property verified

Methodology

Original Automaton

Refinement

2. Refinement: split locations by a line cut

- Which location(s) ?
- Loc $_{1}=$ Locations reachable in the last step
$-\mathrm{LoC}_{2}=$ Reachable locations that can reach Bad
- Better: replace the state space by Loc_{2}

Refinement

2. Refinement: split locations by a line cut

- Which location(s) ?
- Loc $_{1}=$ Locations reachable in the last step
$-\mathrm{LoC}_{2}=$ Reachable locations that can reach Bad
- Better: replace the state space by Loc_{2}
- Which line cut?
- The best cut for some criterion characterizing the goodness of the resulting approximation.

Notations

Notations

$\left[\dot{x}_{\text {min }}, \dot{x}_{\text {max }}\right]=f(P)$
$r_{x}=\dot{x}_{\text {max }}-\dot{x}_{\text {min }}$
$\left[\dot{y}_{\min }, \dot{y}_{\max }\right]=g(P)$
$r_{y}=\dot{y}_{\text {max }}-\dot{y}_{\text {min }}$

Notations

$$
P / \ell=\left\langle P^{+}, P^{-}\right\rangle
$$

Definition Let $A \subseteq P$ and $B \subseteq P$. We say that ℓ separates A and B if $A \subseteq P^{+}$and $B \subseteq P^{-}$.

Notations

$$
P / \ell=\left\langle P^{+}, P^{-}\right\rangle
$$

Definition Let $A \subseteq P$ and $B \subseteq P . \quad\left[a^{+}, b^{+}\right]=f\left(P^{+}\right) \quad\left[a^{-}, b^{-}\right]=f\left(P^{-}\right)$ We say that ℓ separates A and B if $A \subseteq P^{+}$and $B \subseteq P^{-}$.
$\left[c^{+}, d^{+}\right]=g\left(P^{+}\right) \quad\left[c^{-}, d^{-}\right]=g\left(P^{-}\right)$
sizeRange $\underset{x}{\sim}(P / \ell)=b^{\sim}-a^{\sim}$ sizeRange $\underset{y}{\sim}(P / \ell)=d^{\sim}-c^{\sim}$

$$
\sim \in\{+,-\}
$$

Goodness of a cut

- A good cut should minimize

$$
\max _{x \in \operatorname{Var}, \sim \in\{+,-\}} \text { sizeRange }_{x}^{\sim}(P / \ell) \quad ?
$$

Goodness of a cut

- A good cut should minimize

$$
\max _{x \in \operatorname{Var}, \sim \in\{+,-\}} \text { sizeRange }_{x}^{\sim}(P / \ell) \quad ?
$$

$$
\sum \quad \text { sizeRange } \tilde{x}_{x}^{\sim}(P / \ell)
$$

$$
x \in \operatorname{Var}, \sim \in\{+,-\}
$$

Goodness of a cut

- A good cut should minimize

$$
\begin{aligned}
& \max _{x \in \operatorname{Var}, \sim \in\{+,-\}} \operatorname{sizeRange}_{x}^{\sim}(P / \ell) \\
& \sum_{x \in \operatorname{Var}, \sim \in\{+,-\}} \text { sizeRange }_{x}^{\sim}(P / \ell)
\end{aligned} \quad ?
$$

Goodness of a cut

- A good cut should minimize

$$
\max _{x \in \operatorname{Var}, \sim \in\{+,-\}} \text { sizeRange }_{x}^{\sim}(P / \ell)
$$

$$
\sum \quad \text { sizeRange } \underset{x}{\sim}(P / \ell)
$$

$$
x \in \operatorname{Var}, \sim \in\{+,-\}
$$

Our choice

$$
\sum_{x \in \operatorname{Var}, \sim \in\{+,-\}}\left(\text { sizeRange }_{x}^{\sim}(P / \ell)\right)^{2} ?
$$

Finding the optimal cut

Extremal level sets of $f(x, y)$

$f(x, y)=\dot{x}_{\text {min }} \quad f(x, y)=\dot{x}_{\max }$

Extremal level sets of $\mathbf{g}(x, y)$

Example

Assume $r_{x}>r_{y}$

Example

Then any line separating $\{0\}$ and $\}$
Assume $r_{x}>r_{y}$ is better than any other line.

Example

Example

Let $\epsilon>0$ s.t.

$$
r_{x}-\epsilon>r_{y}
$$

Any line separating $\{0\}$ and \rangle is better than any other line.

Example

Let $\epsilon>0$ s.t.

$$
r_{x}-\epsilon>r_{y}
$$

Any line separating $\{0\}$ and \rangle is better than any other line.

Example

> Let $\epsilon>0$ s.t. $r_{x}-\epsilon>r_{y}$

Thus, for every $\epsilon<r_{x}-r_{y}$ the best line separates \mathbb{k} and

Example

Thus, for every $\epsilon<r_{x}-r_{y}$ the best line separates $/$ and

Example

Thus, for every $\epsilon<r_{x}-r_{y}$ the best line separates \mathbb{K} and

Example

Thus, for every $\epsilon<r_{x}-r_{y}$ the best line separates $/$ and

Example

Example

When $\epsilon=r_{x}-r_{y}$ the best line cut must separate both

Example

The best line cut must separate both

Example

The process continues because it is still possible to separate both \neq from $\%$ and ssmse from $\%$

Example

Example

Example

Example

Example

When a second intersection occurs...

Example

In this case, we have reached the "limit of separability"

Example

An optimal cut

How to compute the intersection?

How to compute the intersection ?

How to compute the intersection?

We have to find the minimal Δ such that:
$\exists u, v \in \mathbb{R}$:

- $(u, v) \in P$
- $f(u, v)=\dot{x}_{\max }-\epsilon-\Delta$
- $g(u, v)=\dot{y}_{\text {max }}-\Delta$ where $\epsilon=r_{x}-r_{y}$

This is a linear program!

The algorithm

Applies in the plane (2D)

- Several particular cases

The algorithm

- Applies in the plane (2D)
- Several particular cases
- What for higher dimension ?
- An option: discretize the problem using a grid
- Apply a (more) discrete algorithm
- The exact solution can be arbitrarily closely approximated

The algorithm

- Applies in the plane (2D)
- Several particular cases
- What for higher dimension ?
- An option: discretize the problem using a grid
- Apply a (more) discrete algorithm
- The exact solution can be arbitrarily closely approximated
N. B. : it is possible to define a general algorithm in nD, but it requires to solve difficult geometrical problems (parametric convex hulls).

The algorithm

- Applies in the plane (2D)
- Several particular cases

```
ine that solves the optimal cut problem for \(S\)
```

```
f
```

$\begin{array}{ll}\mathbf{5} & \Delta_{0} \leftarrow r_{y}-r_{x} ; \\ \mathbf{6} & \text { Let } \Delta \text { be a symbolic parameter ; } \\ \mathbf{7} & a_{\Delta} \leftarrow f_{2}^{-1}\left(\dot{y}_{\text {min }}+\Delta_{0}+\Delta\right) \cap f_{1}^{-1}\end{array}$

- What for higher dimension ?
- An option: discretize the probemusing a grid
- Apply a (more) discrëterealgorithma
- The exact solution cän bềmérbitrarily closely approximated

```
else if f}\mp@subsup{f}{2}{}(\mp@subsup{Q}{\mathrm{ min }}{})\mapsto[\mp@subsup{\dot{y}}{\mathrm{ max }}{}-\mp@subsup{\Delta}{0}{},\mp@subsup{\dot{y}}{\mathrm{ max }}{}]\not=\varnothing\mathrm{ then
    if }\mp@subsup{f}{2}{}(\mp@subsup{Q}{\mathrm{ max }}{\mathrm{ max }})\cap[\mp@subsup{\dot{y}}{\mathrm{ max }}{\mathrm{ max }
        return \ell}\equiv\mp@subsup{f}{2}{}(x,y)=\mp@subsup{\dot{y}}{\mathrm{ min }}{}+\frac{\mp@subsup{r}{y}{}}{2}
    else
    L return line(a}\mp@subsup{a}{\mp@subsup{\Delta}{1}{}}{},\mp@subsup{c}{\mp@subsup{\Delta}{1}{}}{})
```

N.B.: it is possible to define aineneral algorithm in nm, but it requires to solve problems (parametric Gonvex hulls).

Navigation benchmark

In each location, the dynamics has the form:

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\underbrace{A\left(v-v_{d}\right)}_{x_{1} \text { and } x_{2} \text { do not appear... }} \longrightarrow \text { We cut in the plane } \mathrm{v}_{1}-\mathrm{v}_{2}
\end{array}\right.
$$

Navigation benchmark

In each location, the dynamics has the form:

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\underbrace{A\left(v-v_{d}\right)}_{x_{1} \text { and } x_{2} \text { do not appear... }} \longrightarrow \text { We cut in the plane } \mathrm{v}_{1}-\mathrm{v}_{2}
\end{array}\right.
$$

Instance	Grid	Time	(PT)
NAV01	3×3	5 s	$(35 \mathrm{~s})$
NAV02	3×3	10 s	$(62 \mathrm{~s})$
NAV03	3×3	10 s	$(62 \mathrm{~s})$
NAV04	3×3	75 s	$\left(225 \mathrm{~s}^{i}\right)$
NAV07	4×4	11 mn	
obtained with a heuristic.			

Results

Initial states \square Bad states
\square Good states

Results: NAV 04

Forward

Backward

Results: NAV 04

Forward

Forward

Results: NAV 07

Backward

Conclusion

- Approximations

- Rectangular
- Over-approximations

Conclusion

- Approximations

- Rectangular
- Over-approximations
- Refinements
- Automatic
- Optimal split for some criterion (at least in 2D)

Conclusion

- Approximations
- Rectangular
- Over-approximations
- Refinements
- Automatic
- Optimal split for some criterion (at least in 2D)
- Possible future work
- Under-approximations
- Optimal split for some other criterion
- Combine with other approaches (barrier certificates, ellipsoïds, ..)

References

[FIO4] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In HSCC 2004, LNCS 2993, pp 326-341.
[Fre05] G. Frehse. Phaver: Al gorithmic verification of hybrid systems past hytech. In HSCC 2005, LNCS 3414, pp 258-273.

