Alpaga

A Tool for Solving Parity Games with
Imperfect Information

Dietmar Berwanger! Krishnendu Chatterjee?

Martin De Wulf> Laurent Doyen®** Tom Henzinger®

L ENS Cachan 2 UC Santa Cruz
3 ULB Brussels 4 EPFL Lausanne

TACAS 2009

Why imperfect
information ?

Example

void main () { void lock () {
int got_lock = 0; assert(L == 0);
do { L=1;
1: if (%) { }
2: lock ();
3: got_lock++;
}
4. if (got_lock !=0) {
5: unlock ();
} void unlock () {
6: got_lock--; assert(L ==1);
} while (*); L=0:
} }

Example

void main () { void lock () {
int got_lock = 0; assert(L == 0);
do { L=1;
1: if (*){ }
2: lock ();
3: got_lock++;
}
4: if (got_lock !=0) {
5: unlock ();
} void unlock () {
6: got_lock--; Wrong! assert(L == 1);
} while (*); L =0;
} }

Example

void main () {
int got_lock = 0;
do {
1 if (*) {
2: lock ();
3 } sO | s1

4: if (got_lock !=0) {
5.

unlock
1

6: sO | s1 | inc | dec;

} while (*);
}

| inc | dec;

();

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;

sO =got lock=0
s got _lock =1
Inc = got_lock++
dec = got_lock--

Example

void main () {
int got_lock = 0;
do {
1: if (*){
2. lock ();
3 } sO | s1

4: if (got_lock !=0) {
5.

unlock
1

6: sO | s1 | inc | dec;

} while (*);
}

| inc | dec;

();

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;

Repair/synthesis as a game:

e System vs. Environment
e Turn-based game graph

e w-regular objective

Example

void main () {
int got_lock = 0;
do { pe=1
1- i (%) { got_lock =0 L =0 S0, inc
2: lock (); € /
3: } sO | s1|inc | dec; 3
4; if (got_lock 1= 0) { 0 1[Jdec
o) unlock (); Sty
\ S0 nc
6: " sO*|_s1 | inc | dec; 4 4 4 §
: el () 0 1 1 11 10
‘6
void lock () { void unlock () {
assert(L == 0); assert(L == 1);
L=1; L =0;
} }

Example

void main () {
int got_lock = 0;
do {
1: if (*){
2: lock ();
3 } sO | s1

4: if (got_lock !=0) {
5: (); -

unlock
1

6: sO | s1 | inc | dec;

} while (*);
}

| inc | dec;

pc =1
got_lock = 0 L=0

4 N\

| A winning strategy may use

the value of L to update
got_Jock accrodingly:

o if /==0 then play s0 (got_lock = 0)
e if L==1 then play sl (got_/lock = 1)

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {
assert(L == 1);

L =0;

P ~

Example

void main () { _ _
int got_lock = 0; Repair/synthesis as a game of
1 o ey imperfect information:
2: lock ();
3 } sO | s1 | inc | dec; pc—l
4. if (gOt_lOCk = 0) { ggt lock = 0
5. unlock ();
!
6: sO | s1 | inc | dec;
} while (*);
}
visible hidden
void lock () { void unlock () {
assert(L == 0); assert(L ==
L=1; States that differ only by the value
}) of L have the same observation

Example

void main () {
int got_lock = 0;
do {
1 if (*) {
2: lock ();
3 } sO | s1

4. if (got_lock !=0) {
5.

unlock
1

6: sO | s1|inc | dec;

} while (*):
}

| inc | dec;

();

pc=1
got_lock =0

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;

Why Imperfect Information ?

e Program repair/synthesis

e Distributed synthesis of processes with
public/private variables

e Synthesis of robust controllers
e Synthesis of automata specifications
e Decision problems in automata theory

e Planning with partial observabillity,
information flow secrecy, ...

A model of
imperfect
iInformation

Imperfect information

<——= Token

Imperfect information

System: actions {,T

Imperfect information

Imperfect information

Imperfect information

K

Imperfect information

**’ e
K

Imperfect information

oo
00009,
L

Imperfect information

Objectives

e Reachability: eventually observe a good event

e Safety: never observe a bad event

e Parity: observation priorities — least one seen
infinitely often is even

e nested reachability & safety

e generic for w-regular specifications

Parity games with imperfect information

Questions:
e decide if System wins from the initial state

e construct a winning strategy

Assumptions:
e Visible objective

e Sure-winning

Algorithms

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

*

~ initial cell

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

* T%

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

*x T T%

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

* Ty T Tk

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

* T TRT R %

Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

Memoryless strategies (in perfect-information)
translate to finite-memory strategies

(memory automaton tracks set of possible positions)

Complexity

e Problem is EXPTIME-complete
(even for safety and reachability)

e Exponential memory might be needed

The powerset solution [Reif84]
e iS an exponential construction
e is not on-the-fly

e is independent of the objective

Can we do better ?

Antichains

Antichains

e Winning knowledge-sets are downward-closed:

If System wins from s, then
she also wins from s’

Antichains

e Winning knowledge-sets are downward-closed:

If System wins from s, then
she also wins from s’

o Useful operations preserve downward-closedness
N, U, Cpre

Cpre(X) = {Y from which System can force the play into X}

Antichains

e Winning knowledge-sets are downward-closed

o Useful operations preserve downward-closedness

Compact representation using
maximal elements — Antichains

ArA

Antichain algorithm

o [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

Antichain algorithm

o [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

Y

CPre(Y) =72

Y = {s1, s2, s3} set of winning positions so far

Antichain algorithm

o [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

s € CPre(Y)
if for all iir, there exists a set in Y that contains post,(s) Y

Y

Antichain algorithm

o [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

e combinatorially hard to compute

s < Cpre(y) |® IMplemented using BDDs

if for all iir, there exists a set in Y that contains post,(s))¢

Antichain algorithm

e [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

e [Concur'08] computes winning strategy recursively for a
combination of safety & reachability objectives

Antichain algorithm

e [CSL'06] computes winning sets of positions as a p-calculus
formula over the lattice of antichains

e [Concur'08] computes winning strategy recursively for a
combination of safety & reachability objectives

e Safety: extract strategy from fixpoint

e Reachability: fixpoint is not sufficient

Reachability

a b CL,b

(3 () ()

D O O ©

b

Reachability

a b a,b

O

Reachability

O 5. 8.8

@ 1. From {1} play a

Reachability

O -

@ 1. From {1} play a
2. From {1,2} play b

Reachability

@ e £

@ 1. From {1} play a
2. From {1,2} play b

3. From{1,2,3} play a

Reachability

O 5. 8.8

1. From {1} play a
@ 2. From {1,2} play b
3. From{1,2,3} play a

Fixpoint of winning cells: {{1,2,3}}
Winning strategy ??

Reachability

O 5. 8.8

@ 1. From {1} play a
2. From {1,2} play b
3. From{1,2,3} play a

Fixpoint of winning (cell, action): {{1,2,3},,{1,2}}
Winning strategy ??

Reachability

a b a,b
OENoENG NG

!

1. From {1} play a
@ 2. From {1,2} play b

3. From{1,2,3} play a

Winning strategy
Current knowledge K: select earliest (cell,action)

such that K < cell, play action

Strategy simplification #1

computed
later

e

AN o

From {1,2,3} play a

From ... play ...
From ... play ...
From ... play ...

From {2} play a

Strategy simplification #1

computed
later

1 1. From {1,2,3} play a
2. From ... play ...
3. From ... play ...
4. From ... play ...
5

e

. From=t23=pfava Not necessary !

Rule 1: delete subsumed pairs computed later

Strategy simplification #2

computed
later

e

A o

From {1,2}
From {3,4}
From {1,3}

D

D

D

From {3,5} p
From {1,2,3} play a

ay a
ay ...
ay a

ay ...

Strategy simplification #2

computed
later

Fron=E23play a Not necessary !
From {3,4} play ...
From {1,3} play a

From {3,5} play ...

A o

e

From {1,2,3} play a

Rule 2: delete strongly-subsumed pairs

Alpaga

First prototype for solving parity games of imperfect
information

e Use antichains as compact representation of winning
sets of positions

o Compute Controllable Predecessor with BDDs

e Publish Reachability/Safety attractor moves to compose

n

the strategy (earlier published move sticks)

e Strategy simplification

Alpaga

First prototype for solving parity games of imperfect
information

e Implemented in Python + CUDD
e <1000 LoC

e Solves 50 states, 28 observations, 3 priorities (explicit
game graph)

http://www.antichains.be/alpaga h

Some experiments

Size Obs Priorities | Time (s)
Gamel 4 4 Reach. 1
Game2 3 2 Reach. 1
Game3 6 3 3 1
Game4 8 5 5 1.4
Game5 8 5 7 9.4
Gameb 11 9 10 50.7
Game?/ 11 8 10 579.0
Locking 22 14 Safety .6
Mutex 50 28 3 57.7

http://www.antichains.be/alpaga

Alpaga

First prototype for solving parity games of imperfect
information

Outlook
e Symbolic game graph
e Compact representation of strategies

e Almost-sure winning

e Relaxing visibility l

Thank you !

o)

% Questions ?

http://www.antichains.be/alpaga

References

e [Reif84] J. H. Reif. The Complexity of Two-Player
Games of Incomplete Information. J. Comput. Syst.
Sci. 29(2): 274-301, 1984

e [CSL'06] K. Chatterjee, L. Doyen, T. A. Henzinger,
and J.-F. Raskin. Algorithms for Omega-regular Games
of Incomplete Information. Proc. of CSL, LNCS 4207,
Springer, 2006, pp. 287-302

e [Concur'08] D. Berwanger, K. Chatterjee, L. Doyen,
T. A. Henzinger, and S. Raje. Strategy Construction for
Parity Games with Imperfect Information. Proc. of
Concur, LNCS 5201, Springer, 2008, pp. 325-339

Alpaga demo

Login on mtcserever
Cd research/2008/StrategyConstruction/CodeMartin/Alpaga-2008-Aug-20/alpaga
Help: python src/alpaga.py —h

Locking example: python src/alpaga.py -t -i examples/locking.gii
— Interactive mode: >> go

	Alpaga demo

