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Why imperfect 
information ?



Example

void main () {     
int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                got_lock++;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}



Example

void main () {     
int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                got_lock++;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
6:           got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Wrong!



Example
void main () {     

int got_lock = 0;
do {

1:           if (*) {
2:                lock ();
3:                s0 | s1 | inc | dec;

}
4:           if (got_lock != 0) {
5:                unlock ();

}
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}
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s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

s0   ≡ got_lock = 0
s1   ≡ got_lock = 1
Inc  ≡ got_lock++
dec ≡ got_lock--



Example

Repair/synthesis as a game:

• System vs. Environment

• Turn-based game graph

• ω-regular objective
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void main () {     
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1:           if (*) {
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5:                unlock ();
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void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

A winning strategy may use 
the value of L to update 
got_lock accrodingly:

• if L==0 then play s0 (got_lock = 0)

• if L==1 then play s1 (got_lock = 1)



Example

Repair/synthesis as a game of 
imperfect information:

visible hidden

void main () {     
int got_lock = 0;
do {
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3:                s0 | s1 | inc | dec;

}
4:           if (got_lock != 0) {
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} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}
States that differ only by the value 
of L have the same observation
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Why Imperfect Information ?

• Program repair/synthesis

• Distributed synthesis of processes with
public/private variables

• Synthesis of robust controllers

• Synthesis of automata specifications

• Decision problems in automata theory

• Planning with partial observabillity, 
information flow secrecy, …



A model of 
imperfect 

information
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Imperfect information

System: actions ↓,↑

Environment: observations
,    ,    ,

↑ ↑ ↑ ↓A play:



Objectives

• Reachability: eventually observe a good event

• Safety: never observe a bad event

• Parity: observation priorities – least one seen
infinitely often is even

• nested reachability & safety

• generic for ω-regular specifications



Parity games with imperfect information

Questions: 

• decide if System wins from the initial state

• construct a winning strategy

Assumptions: 

• Visible objective

• Sure-winning



Algorithms



Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

initial cell
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Powerset construction [Reif84]:
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Classical solution

Memoryless strategies (in perfect-information) 
translate to finite-memory strategies

(memory automaton tracks set of possible positions)

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information



Complexity

• Problem is EXPTIME-complete
(even for safety and reachability)

• Exponential memory might be needed

The powerset solution [Reif84]

• is an exponential construction

• is not on-the-fly

• is independent of the objective

Can we do better ?



Antichains
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• Winning knowledge-sets are downward-closed:
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Antichains

• Winning knowledge-sets are downward-closed:

s’

s
If System wins from s, then
she also wins from s’

• Useful operations preserve downward-closedness

∩, ∪, Cpre

Cpre(X) = {Y from which System can force the play into X}



Antichains

• Winning knowledge-sets are downward-closed

• Useful operations preserve downward-closedness

Compact representation using
maximal elements → Antichains



Antichain algorithm

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains



Antichain algorithm

Y = {s1, s2, s3} set of winning positions so far

s1

s2

s3

Y

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

CPre(Y) = ?



s ∈ CPre(Y) 

if for all , there exists a set in Y that contains post↑(s) ∩

Antichain algorithm

s1

s2

s3

Y

s post↑

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains



Antichain algorithm

s1

s2

s3

Y

s

• combinatorially hard to compute

• implemented using BDDss ∈ CPre(Y) 

if for all , there exists a set in Y that contains post↑(s) ∩

post↑

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains



Antichain algorithm

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

• [Concur’08] computes winning strategy recursively for a 
combination of safety & reachability objectives



Antichain algorithm

• Safety: extract strategy from fixpoint

• Reachability: fixpoint is not sufficient

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

• [Concur’08] computes winning strategy recursively for a 
combination of safety & reachability objectives
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Reachability

Fixpoint of winning cells: {{1,2,3}}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Reachability

Fixpoint of winning (cell, action): {{1,2,3}a,{1,2}b}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Reachability

Winning strategy

Current knowledge K: select earliest (cell,action)

such that K ⊆ cell, play action

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a



Strategy simplification #1

1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play a
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1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play a

Strategy simplification #1
co

m
pu

te
d

la
te

r

Not necessary !

Rule 1: delete subsumed pairs computed later



Strategy simplification #2
co
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1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a



1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a

Strategy simplification #2
co

m
pu

te
d
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te

r

Not necessary !

Rule 2: delete strongly-subsumed pairs 



Alpaga

• Use antichains as compact representation of winning
sets of positions

• Compute Controllable Predecessor with BDDs

• Publish Reachability/Safety attractor moves to compose 
the strategy (earlier published move sticks)

• Strategy simplification

First prototype for solving parity games of imperfect
information



Alpaga

First prototype for solving parity games of imperfect
information

http://www.antichains.be/alpaga

• Implemented in Python + CUDD

• ≤1000 LoC

• Solves 50 states, 28 observations, 3 priorities (explicit 
game graph)



Some experiments

http://www.antichains.be/alpaga

Size Obs Priorities Time (s)

Game1 4 4 Reach. .1   .

Game2 3 2 Reach. .1   .

Game3 6 3 3 .1   .

Game4 8 5 5 1.4   .

Game5 8 5 7 9.4   .

Game6 11 9 10 50.7   .

Game7 11 8 10 579.0 .

Locking 22 14 Safety .6   .

Mutex 50 28 3 57.7



Alpaga

First prototype for solving parity games of imperfect
information

Outlook

• Symbolic game graph

• Compact representation of strategies

• Almost-sure winning

• Relaxing visibility



Questions ?

Thank you !

http://www.antichains.be/alpaga
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Alpaga demo
• Login on mtcserever
• Cd research/2008/StrategyConstruction/CodeMartin/Alpaga-2008-Aug-20/alpaga
• Help: python src/alpaga.py –h

• Locking example: python src/alpaga.py -t -i examples/locking.gii
– Interactive mode: >> go


	Alpaga demo

