
Alpaga
A Tool for Solving Parity Games with

Imperfect Information

Dietmar Berwanger1 Krishnendu Chatterjee2

Martin De Wulf3 Laurent Doyen3,4 Tom Henzinger4

TACAS 2009

1 ENS Cachan 2 UC Santa Cruz
3 ULB Brussels 4 EPFL Lausanne

Why imperfect
information ?

Example

void main () {
int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: got_lock++;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Example

void main () {
int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: got_lock++;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: got_lock--;

} while (*);
}

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Wrong!

Example
void main () {

int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

s0 ≡ got_lock = 0
s1 ≡ got_lock = 1
Inc ≡ got_lock++
dec ≡ got_lock--

Example

Repair/synthesis as a game:

• System vs. Environment

• Turn-based game graph

• ω-regular objective

void main () {
int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Example
void main () {

int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Example
void main () {

int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

A winning strategy may use
the value of L to update
got_lock accrodingly:

• if L==0 then play s0 (got_lock = 0)

• if L==1 then play s1 (got_lock = 1)

Example

Repair/synthesis as a game of
imperfect information:

visible hidden

void main () {
int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}
States that differ only by the value
of L have the same observation

Example
void main () {

int got_lock = 0;
do {

1: if (*) {
2: lock ();
3: s0 | s1 | inc | dec;

}
4: if (got_lock != 0) {
5: unlock ();

}
6: s0 | s1 | inc | dec;

} while (*);
}

s0 | s1 | inc | dec;

s0 | s1 | inc | dec;

void lock () {
assert(L == 0);
L = 1;

}

void unlock () {
assert(L == 1);
L = 0;

}

Why Imperfect Information ?

• Program repair/synthesis

• Distributed synthesis of processes with
public/private variables

• Synthesis of robust controllers

• Synthesis of automata specifications

• Decision problems in automata theory

• Planning with partial observabillity,
information flow secrecy, …

A model of
imperfect

information

Imperfect information

Token

Imperfect information

System: actions ↓,↑

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

A play:

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

A play: ↑

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

A play: ↑ ↑

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

A play: ↑ ↑ ↑

Imperfect information

System: actions ↓,↑

Environment: observations
, , ,

↑ ↑ ↑ ↓A play:

Objectives

• Reachability: eventually observe a good event

• Safety: never observe a bad event

• Parity: observation priorities – least one seen
infinitely often is even

• nested reachability & safety

• generic for ω-regular specifications

Parity games with imperfect information

Questions:

• decide if System wins from the initial state

• construct a winning strategy

Assumptions:

• Visible objective

• Sure-winning

Algorithms

Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

initial cell

Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

↑

Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

↑ ↑

Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

↑ ↑ ↑

Classical solution

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

↑ ↑ ↑ ↓

Classical solution

Memoryless strategies (in perfect-information)
translate to finite-memory strategies

(memory automaton tracks set of possible positions)

Powerset construction [Reif84]:

• keeps track of the knowledge of System

• yields equivalent game of perfect information

Complexity

• Problem is EXPTIME-complete
(even for safety and reachability)

• Exponential memory might be needed

The powerset solution [Reif84]

• is an exponential construction

• is not on-the-fly

• is independent of the objective

Can we do better ?

Antichains

Antichains

• Winning knowledge-sets are downward-closed:

s’

s
If System wins from s, then
she also wins from s’

Antichains

• Winning knowledge-sets are downward-closed:

s’

s
If System wins from s, then
she also wins from s’

• Useful operations preserve downward-closedness

∩, ∪, Cpre

Cpre(X) = {Y from which System can force the play into X}

Antichains

• Winning knowledge-sets are downward-closed

• Useful operations preserve downward-closedness

Compact representation using
maximal elements → Antichains

Antichain algorithm

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

Antichain algorithm

Y = {s1, s2, s3} set of winning positions so far

s1

s2

s3

Y

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

CPre(Y) = ?

s ∈ CPre(Y)

if for all , there exists a set in Y that contains post↑(s) ∩

Antichain algorithm

s1

s2

s3

Y

s post↑

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

Antichain algorithm

s1

s2

s3

Y

s

• combinatorially hard to compute

• implemented using BDDss ∈ CPre(Y)

if for all , there exists a set in Y that contains post↑(s) ∩

post↑

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

Antichain algorithm

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

• [Concur’08] computes winning strategy recursively for a
combination of safety & reachability objectives

Antichain algorithm

• Safety: extract strategy from fixpoint

• Reachability: fixpoint is not sufficient

• [CSL’06] computes winning sets of positions as a μ-calculus
formula over the lattice of antichains

• [Concur’08] computes winning strategy recursively for a
combination of safety & reachability objectives

Reachability

Reachability

Reachability

1. From {1} play a

Reachability

1. From {1} play a

2. From {1,2} play b

Reachability

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a

Reachability

Fixpoint of winning cells: {{1,2,3}}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a

Reachability

Fixpoint of winning (cell, action): {{1,2,3}a,{1,2}b}

Winning strategy ??

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a

Reachability

Winning strategy

Current knowledge K: select earliest (cell,action)

such that K ⊆ cell, play action

1. From {1} play a

2. From {1,2} play b

3. From {1,2,3} play a

Strategy simplification #1

1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play a

co
m

pu
te

d
la

te
r

1. From {1,2,3} play a

2. From … play …

3. From … play …

4. From … play …

5. From {2} play a

Strategy simplification #1
co

m
pu

te
d

la
te

r

Not necessary !

Rule 1: delete subsumed pairs computed later

Strategy simplification #2
co

m
pu

te
d

la
te

r

1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a

1. From {1,2} play a

2. From {3,4} play …

3. From {1,3} play a

4. From {3,5} play …

5. From {1,2,3} play a

Strategy simplification #2
co

m
pu

te
d

la
te

r

Not necessary !

Rule 2: delete strongly-subsumed pairs

Alpaga

• Use antichains as compact representation of winning
sets of positions

• Compute Controllable Predecessor with BDDs

• Publish Reachability/Safety attractor moves to compose
the strategy (earlier published move sticks)

• Strategy simplification

First prototype for solving parity games of imperfect
information

Alpaga

First prototype for solving parity games of imperfect
information

http://www.antichains.be/alpaga

• Implemented in Python + CUDD

• ≤1000 LoC

• Solves 50 states, 28 observations, 3 priorities (explicit
game graph)

Some experiments

http://www.antichains.be/alpaga

Size Obs Priorities Time (s)

Game1 4 4 Reach. .1 .

Game2 3 2 Reach. .1 .

Game3 6 3 3 .1 .

Game4 8 5 5 1.4 .

Game5 8 5 7 9.4 .

Game6 11 9 10 50.7 .

Game7 11 8 10 579.0 .

Locking 22 14 Safety .6 .

Mutex 50 28 3 57.7

Alpaga

First prototype for solving parity games of imperfect
information

Outlook

• Symbolic game graph

• Compact representation of strategies

• Almost-sure winning

• Relaxing visibility

Questions ?

Thank you !

http://www.antichains.be/alpaga

References

• [Reif84] J. H. Reif. The Complexity of Two-Player
Games of Incomplete Information. J. Comput. Syst.
Sci. 29(2): 274-301, 1984

• [CSL’06] K. Chatterjee, L. Doyen, T. A. Henzinger,
and J.-F. Raskin. Algorithms for Omega-regular Games
of Incomplete Information. Proc. of CSL, LNCS 4207,
Springer, 2006, pp. 287-302

• [Concur’08] D. Berwanger, K. Chatterjee, L. Doyen,
T. A. Henzinger, and S. Raje. Strategy Construction for
Parity Games with Imperfect Information. Proc. of
Concur, LNCS 5201, Springer, 2008, pp. 325-339

Alpaga demo
• Login on mtcserever
• Cd research/2008/StrategyConstruction/CodeMartin/Alpaga-2008-Aug-20/alpaga
• Help: python src/alpaga.py –h

• Locking example: python src/alpaga.py -t -i examples/locking.gii
– Interactive mode: >> go

	Alpaga demo

