
Antichains: A New Algorithm for Checking

Universality of Finite Automata⋆

M. De Wulf1, L. Doyen1⋆⋆, T. A. Henzinger2,3, and J.-F. Raskin1

1 CS, Université Libre de Bruxelles, Belgium
2 I&C, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3 EECS, University of California at Berkeley, U.S.A.

Abstract. We propose and evaluate a new algorithm for checking the
universality of nondeterministic finite automata. In contrast to the stan-
dard algorithm, which uses the subset construction to explicitly deter-
minize the automaton, we keep the determinization step implicit. Our
algorithm computes the least fixed point of a monotone function on the
lattice of antichains of state sets. We evaluate the performance of our
algorithm experimentally using the random automaton model recently
proposed by Tabakov and Vardi. We show that on the difficult instances
of this probabilistic model, the antichain algorithm outperforms the stan-
dard one by several orders of magnitude. We also show how variations
of the antichain method can be used for solving the language-inclusion
problem for nondeterministic finite automata, and the emptiness prob-
lem for alternating finite automata.

1 Introduction

The universality problem asks, given a nondeterministic finite automaton A over
the alphabet Σ, if the language of A contains all finite words over Σ, that is,
if Lang(A) = Σ∗. This problem is fundamental in automata theory, and several
important problems in verification reduce polynomially to this problem. The
standard algorithm for universality is to first determinize the automaton using
the subset construction, and then check for the reachability of a set containing
only nonaccepting states. The subset construction may construct a deterministic
automaton that is exponentially larger than the original automaton. This explo-
sion is in some sense unavoidable, as the universality problem is known to be
PSpace-complete [MS72]. Explicit determinization via the subset construction
is also useful to solve a wide range of other problems, such as checking the empti-
ness of alternating finite automata [CKS81,KV01], checking language inclusion
and language equivalence for two nondeterministic finite automata [HMU01],
and solving two-player safety games of incomplete information [Rei84].

⋆ This research was supported in part by the NSF grants CCR-0234690 and CCR-
0225610, and the Belgian FNRS grant 2.4530.02 of the FRFC project “Centre Fédéré
en Vérification.”

⋆⋆ Research fellow supported by the Belgian National Science Foundation (FNRS).

Recently, we showed that explicit determinization via the subset construction
can be avoided when solving two-player safety games of incomplete information.
To avoid the subset construction, we proposed in [DDR06] a lattice-theoretic so-
lution that comes in the form of a monotone function on the lattice of antichains
of state sets (an antichain is a set of ⊆-incomparable sets). The greatest fixed
point of this monotone function contains the solution to the strategy synthesis
problem. The three main advantages of the antichain method over the subset
construction are as follows. First, the new algorithm keeps determinization im-
plicit. Second, the antichain algorithm takes into account the safety objective of
the game and computes only what is necessary to establish the existence of a win-
ning strategy for that particular objective. Third, antichains of state sets allow
us to store only maximal subsets of states for which a winning strategy exists.
This is because if Player I has a strategy to keep the game in safe states starting
from a set s of states, then she also has such a strategy for all starting sets
s′ ⊆ s. We show in this paper that the idea of keeping determinization implicit
using antichains can also be applied to important problems of automata theory,
such as universality and language inclusion for nondeterministic automata, and
emptiness for alternating automata.

First, we show that the universality problem for nondeterministic finite au-
tomata can be solved on the lattice of antichains of state sets using a variation
of the monotone function proposed in our previous work. We reduce the uni-
versality problem to a two-player reachability game of incomplete information,
which can be solved by computing the least fixed point of this monotone func-
tion. We implemented this solution using NuSMV [CCGR99] and the CUDD

library [Som98]. To compare the performance of the antichain algorithm to the
performance of various implementations of subset-construction based algorithms,
we used a large set of examples generated in the probabilistic framework by
Tabakov and Vardi [TV05]. This framework was proposed with the express pur-
pose of comparing the performances of algorithms on finite automata. In their
experiments, the authors conclude that explicit determinization as implemented
in [Mø04] outperforms the algorithm of Brzozowski [BL80] as well as newer im-
plementations, which use symbolic methods for the subset construction. Our
experimental results show that our implementation of the antichain algorithm is
considerably faster, on the entire parameter space of the probabilistic framework,
than the most efficient implementation of the standard algorithm. In particular,
on the most difficult instances of the probabilistic framework, the antichain al-
gorithm outperforms [Mø04] by two orders of magnitude. For this comparison,
we are limited to automata with approximately 175 states, which is the limit
that the explicit-determinization approach can handle on the most expensive in-
stances of the probabilistic framework. On these difficult instances, the antichain
approach scales much better: we are able to successfully check universality for
automata with several thousands of states in less than 10 seconds.

Second, to show the generality of the antichain approach, we also give new
algorithmic solutions to the language-inclusion problem for nondeterministic au-
tomata, and to the emptiness problem for alternating automata. Again, no ex-

plicit determinization is performed. To solve the emptiness problem for alternat-
ing automata, we use the same lattice as for universality and only change the
monotone function that operates on the lattice. To solve the language-inclusion
problem for nondeterministic automata, we need a slightly richer lattice.

Structure of the paper In Section 2, we review some basic notions about finite au-
tomata. In Section 3, we introduce the lattice of antichains of state sets, and we
present the antichain algorithm for the universality problem for nondeterministic
automata. In Section 4, we report on two different symbolic implementations of
the antichain algorithm, and we compare their performances with the classical al-
gorithm that uses explicit determinization. In Section 5, we give antichain-based
solutions for nondeterministic language inclusion and alternating emptiness.

2 Finite Automata

Definitions A (nondeterministic) finite automaton, NFA for short, is a tu-
ple A = 〈Loc, Init, Fin, Σ, δ〉, where Loc is a finite set of states (or locations),
Init ⊆ Loc is the set of initial states, Fin ⊆ Loc is the set of accepting (or
final) states, Σ is a finite alphabet, and δ ⊆ Loc × Σ × Loc is a (nondeter-
ministic) transition relation. A deterministic finite automaton, DFA for short,
is an NFA A = 〈Loc, Init, Fin, Σ, δ〉 such that for all states ℓ ∈ Loc and all let-
ters σ ∈ Σ, there exists a unique state ℓ′ ∈ Loc such that δ(ℓ, σ, ℓ′). A run of
the NFA A = 〈Loc, Init, Fin, Σ, δ〉 over a finite word w = σ1 . . . σn is a sequence
r = ℓ0ℓ1 . . . ℓn of states such that (1) ℓ0 ∈ Init and (2) δ(ℓi, σi+1, ℓi+1) for all
0 ≤ i < n. The run r is accepting iff ℓn ∈ Fin. The language Lang(A) accepted
by A is the set of words w ∈ Σ∗ such that A has an accepting run over w.

Notations Given a finite word w = σ1 . . . σn of size |w| = n, we write w(i) = σi

for the i-th letter of w, and w(0) = ε for the empty word. Given an NFA
A = 〈Loc, Init, Fin, Σ, δ〉, a state set s ⊆ Loc, and a letter σ ∈ Σ, we define
postAσ (s) = {ℓ′ ∈ Loc | ∃ℓ ∈ s : δ(ℓ, σ, ℓ′)}, preA

σ (s) = {ℓ ∈ Loc | ∃ℓ′ ∈ s :
δ(ℓ, σ, ℓ′)}, and cpreA

σ (s) = {ℓ ∈ Loc | ∀ℓ′ ∈ Loc : δ(ℓ, σ, ℓ′) → ℓ′ ∈ s}. Note that
Loc \ cpreA

σ (s) = preA
σ (Loc \ s).

Operations Given two NFAs A and B, we denote by A ⊗ B the synchronous
product of the two automata, and by A ⊕ B the sum of the automata. The
language accepted by the product is Lang(A ⊗ B) = Lang(A) ∩ Lang(B) and
the language accepted by the sum is Lang(A ⊕ B) = Lang(A) ∪ Lang(B). Given
a DFA A, we denote by A the complement of A, which accepts the language
Lang(A) = Σ∗ \ Lang(A).

Problems The emptiness problem for NFAs is to decide, given an NFA A,
if Lang(A) = ∅. This problem is solvable in time linear in the size of A. The
universality problem for NFAs is to decide, given an NFA A, if Lang(A) = Σ∗.
This problem is much harder than emptiness: it is complete for PSpace [MS72].

The classical algorithm for deciding universality first determinizes A, and then
checks emptiness of the complement. The difficult step is the determinization, as
it may cause an exponential blow-up in the number of states of the automaton.
The language-inclusion problem for NFAs is to decide, given two NFAs A and B,
if Lang(A) ⊆ Lang(B). This problem is also complete for PSpace. The classical
algorithm for deciding language inclusion checks emptiness of the product of A

with the complement of B. In the next section, we propose a new approach to
solve the universality problem, which does not involve explicit determinization,
and later we extend the approach to solve also language inclusion.

3 A Fixed Point to Solve Universality

Two lattices of antichains Let Loc be a set (in our case, a set of states of some
automaton). An antichain over Loc is a set q ⊆ 2Loc such that ∀s, s′ ∈ q : s 6⊂ s′.
Thus q is a set of pairwise incomparable subsets of Loc (with regard to set
inclusion). We denote by L the set of antichains over Loc. We define the following
partial orders: for two antichains q, q′ ∈ L, let q ⊑ q′ if ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′,
and let q ⊑̃ q′ if ∀s ∈ q · ∃s′ ∈ q′ : s′ ⊆ s. The two partial orders ⊑ and ⊑̃
yield complete lattices on the set L of antichains. This can be seen as follows.
Given a set q ⊆ 2Loc (not necessarily an antichain), a set s ∈ q is maximal
in q iff ∀s′ ∈ q : s 6⊂ s′. Similarly, s ∈ q is minimal in q iff ∀s′ ∈ q : s′ 6⊂ s.
We write ⌈q⌉ (resp. ⌊q⌋) for the set of maximal (resp. minimal) elements of q.
Given two antichains q, q′ ∈ L, the ⊑-lub (least upper bound) of q and q′ is the
antichain q ⊔ q′ = ⌈{s | s ∈ q ∨ s ∈ q′}⌉; the ⊑-glb (greatest lower bound) is the
antichain q ⊓ q′ = ⌈{s ∩ s′ | s ∈ q ∧ s′ ∈ q′}⌉. Similarly, the ⊑̃-lub is q ⊔̃ q′ =
⌊{s | s ∈ q ∨ s ∈ q′}⌋, and the ⊑̃-glb is q ⊓̃ q′ = ⌊{s ∪ s′ | s ∈ q ∧ s′ ∈ q′}⌋.

These definitions can be extended to lub’s and glb’s of arbitrary sets in the

obvious way, yielding the operators
⊔

,
d

,
⊔̃

, and
d̃

. Adding suitable bottom
and top elements, we obtain the following lemma.

Lemma 1 〈L,⊑,
⊔

,
d

, ∅, {Loc}〉 and 〈L, ⊑̃,
⊔̃

,
d̃

, ∅, {∅}〉 are complete lattices.

We call these two lattices the lattice of antichains and the dual lattice of an-
tichains, respectively. We show how to solve the universality problem for nonde-
terministic finite automata using either lattice.

Game interpretation of universality Consider the following game played by
a protagonist and an antagonist. The protagonist wants to establish that a given
NFA A does not accept the language Σ∗. The protagonist has to provide a finite
word w such that, no matter which run of A over w the antagonist chooses, the
run does not end in an accepting state. This game is a one-shot game. However,
to obtain a fixed point solution to the universality problem, we can consider a
multi-round game interpretation of this problem: in each round of the game,
the protagonist provides a single letter σ, and the antagonist decides how to
update the state of A on input σ according to the nondeterministic transition

relation. To be equivalent to the one-shot game, the protagonist must not be able
to observe the state of the automaton, which is chosen by the antagonist. So,
we have to consider a game where the protagonist cannot distinguish between
states of the automaton: this is a game of imperfect information. We can solve
the universality problem by looking for the existence of winning strategies in such
games. In a recent paper, we showed that safety games of imperfect information
can be solved by computing the greatest fixed point of a monotone function
on the lattice of antichains [DDR06]. We show here that reachability games of
imperfect information can be solved by computing a least fixed point on this
lattice. This gives a new algorithm for checking universality.

Using the lattice of antichains to solve universality Given an NFA A =
〈Loc, Init, Fin, Σ, δ〉, we define the following monotone function on the lattice L

of antichains over Loc. For an antichain q ∈ L, let

CPreA(q) = ⌈{s | ∃s′ ∈ q · ∃σ ∈ Σ : s = cpreA
σ (s′)}⌉.

So, a set s of states belongs to the antichain CPreA(q) iff it is maximal and there
exist a state set s′ ∈ q and a letter σ ∈ Σ such that for all states ℓ ∈ s, the set
of states ℓ′ with δ(ℓ, σ, ℓ′) is in s′. This monotone function can be used to solve
the universality problem for NFAs. This is formalized in the next theorem.

Theorem 2 Let A = 〈Loc, Init, Fin, Σ, δ〉 be an NFA, and let F =
d{

q | q =

CPreA(q) ⊔ {Fin}
}
. Then Lang(A) 6= Σ∗ iff {Init} ⊑ F .

Proof. First, assume that Lang(A) is not universal. Let w ∈ Σ∗ \ Lang(A) be
a word of size |w| = n. Consider the sequence s0, s1, . . . , sn of state sets such
that (1) s0 = Init, (2) si = postA

w(i)(si−1) for all 1 ≤ i ≤ n, and (3) sn ⊆ Fin

(recall that A has no accepting run over w). We prove by induction on k that
{sn−k} ⊑ F . For k = 0, since sn ⊆ Fin, we obtain immediately {sn} ⊑ F .
For the inductive case, assume that {sn−k} ⊑ F for all 0 ≤ k < i, and let us
show that {sn−i} ⊑ F . Observe that by definition, for σ = w(n − i + 1) we
have postAσ (sn−i) = sn−i+1. Therefore {sn−i} ⊑ CPreA({sn+1−i}), and by the
monotonicity of CPreA and the induction hypothesis, we get {sn−i} ⊑ CPreA(F)
and {sn−i} ⊑ CPreA(F) ⊔ {Fin}, which is equivalent to {sn−i} ⊑ F , as F is a
fixed point. In particular, we have {s0} ⊑ F , that is, {Init} ⊑ F .

Second, assume that {Init} ⊑ F . We construct a word w 6∈ Lang(A). Consider
the infinite sequence q0, q1, q2, . . . of antichains defined by (1) q0 = ∅ and (2) qi =
CPreA(qi−1)⊔{Fin} for all i ≥ 1. By Tarski’s fixed point theorem, we know that
F = qn for some n ∈ N. We construct an integer k < n, a sequence s0, s1, . . . , sk

of k + 1 state sets, and a word w of size k such that {si} ⊑ CPreA(qn−i−1) and
postA

w(i+1)(si) ⊆ si+1 for all 0 ≤ i < k. We start with s0 = Init so that {s0} ⊑ qn.

Then, we have either {s0} ⊑ {Fin} or {s0} ⊑ CPreA(qn−1) (because {s0} is a
singleton). In the first case, we stop the construction with k = 0 and w = ε. In
the second case, we continue the construction inductively. Assume that we have
constructed {si−1} ⊑ CPreA(qn−i) for some i ≥ 1. By the definition of CPreA, we

know that there are σi ∈ Σ and si ∈ qn−i such that postAσi
(si−1) ⊆ si. We choose

w(i) = σi. Then {si} ⊑ qn−i, and thus either {si} ⊑ {Fin} and we stop with
k = i and w = σ1 . . . σi, or {si} ⊑ CPreA(qn−i−1). This construction stops for
some k < n, as q1 = {Fin} and {sk} ⊑ {Fin}. The sequence s0, s1, . . . , sk shows
that A has no accepting run over w, because (1) s0 = Init, (2) postAw(i)(si−1) ⊆ si

for all 1 ≤ i ≤ k, and (3) sk ⊆ Fin. Hence w 6∈ Lang(A). �

The algorithm that consists in computing the least fixed point F from Theorem 2
through the successive approximation sequence q0 ⊑ q1 ⊑ q2 ⊑ · · · (as defined in
the proof) is called the backward antichain algorithm. The computation is similar
to the subset construction used in the backward determinization of A, with the
essential difference that it maintains only sets of states that are maximal in the
subset-inclusion order.

Using the dual lattice of antichains to solve universality In the pre-
vious algorithm, the automaton is traversed backward starting from the set of
nonaccepting states. Using the dual lattice of antichains, we can formulate a
solution that traverses the automaton forward starting from the set of initial
states. Given an NFA A = 〈Loc, Init, Fin, Σ, δ〉 and an antichain q ∈ L, let

PostA(q) = ⌊{s | ∃s′ ∈ q · ∃σ ∈ Σ : s = postAσ (s′)}⌋.

This function is monotone on the dual lattice of antichains. We can solve the
universality problem for NFAs by iterating Post as follows, defining a forward
antichain algorithm.

Theorem 3 Let A = 〈Loc, Init, Fin, Σ, δ〉 be an NFA, and let F̃ =
d̃ {

q | q =

PostA(q) ⊔̃ {Init}
}
. Then Lang(A) 6= Σ∗ iff {Fin} ⊑̃ F̃ .

The computation of the least fixed point F̃ is similar to the standard, forward
subset construction used in the determinization of A, with the essential difference
that it maintains only minimal sets of states.

Relationship between forward and backward algorithms Given an NFA
A = 〈Loc, Init, Fin, Σ, δ〉, the reverse of A is the NFA B = 〈Loc, Fin, Init, Σ, δ′〉,
where for all states ℓ, ℓ′ ∈ Loc and all letters σ ∈ Σ, we have δ′(ℓ, σ, ℓ′) iff
δ(ℓ′, σ, ℓ). Note that for all σ ∈ Σ and all s ⊆ Loc, we have preA

σ (s) = postBσ (s).
For a set s ⊆ Loc, let s be the complement of s relative to Loc, that is, s = Loc\s.
For a set q ⊆ 2Loc, let q̃ = {s | s ∈ q}. Note that q̃ is an antichain iff q is an

antichain, and ⌊̃q⌋ = ⌈q̃⌉.

Lemma 4 Let A = (Loc, Init, Fin, Σ, δ) be an NFA, let B be its reverse, and let
q be an antichain over Loc. Then q′ = CPreA(q) iff q̃′ = PostB(q̃).

From this lemma, it follows that the forward and backward approaches are equiv-
alent in the following sense: for every instance A of the universality problem that

ℓ0 ℓ1 ℓ2 ℓk−1 ℓk

0, 1 0, 1

1 0, 1 0, 1 0, 1
. . .

0, 1

Fig. 1. A family of NFAs Ak, k ≥ 2, for Theorem 5.

is difficult for the forward antichain algorithm, there is an equally difficult in-
stance (namely, the reverse of A) for the backward antichain algorithm, and vice
versa. Indeed, let q0 ⊑ q1 ⊑ q2 ⊑ · · · be the sequence of antichains that are
constructed when computing the least fixed point F from Theorem 2 (as defined
in the proof of the theorem); and let q′0 ⊑̃ q′1 ⊑̃ q′2 ⊑̃ · · · be the sequence of
antichains that are constructed when computing the least fixed point F̃ from
Theorem 3, defined as follows: (1) q′0 = ∅ and (2) q′i = PostB(q′i−1) ⊔̃ {Fin} for
all i ≥ 1 (where B is the reverse of A1). Using Lemma 4 and induction, we can
prove that qi = q̃′i for all i ≥ 0.

Comparison with explicit determinization We call the classical algorithm
for solving the universality problem for NFAs the subset algorithm: it first deter-
minizes the NFA using a subset construction, and then checks if every reachable
state in the resulting DFA is accepting. The determinization is stopped whenever
a rejecting state is encountered. Usually, the DFA is constructed in a breadth-
first forward search, but it can also be done in a backward fashion.

Theorem 5 For checking universality, there exists an infinite family of NFAs Ak,
with k ≥ 2 states, for which the forward subset algorithm is exponential, and the
(forward and backward) antichain algorithms are polynomial. There also exists
an infinite family of NFAs Bk for which the backward subset algorithm is expo-
nential, and the antichain algorithms are polynomial.

Proof. Consider the family of NFAs Ak, k ≥ 2, over the alphabet Σ = {0, 1}
shown in Fig. 1. The automaton Ak has k + 1 states, ℓ0, . . . , ℓk, all accepting
except ℓk. There is only one initial state: Init = {ℓ0}. Every Ak is universal, as the
initial state has a self-loop labeled with Σ. The forward determinization of Ak

has 2k states. Hence the forward subset algorithm is exponential on the family
Ak, k ≥ 2. However, the backward antichain algorithm terminates in polynomial
time, as the sequence q0 = {{ℓk}}, and qi+1 = CPreAk(qi) ⊔ {{ℓk}} for i ≥ 0,
stabilizes after k iterations with qi = {{ℓk−i, . . . , ℓk}} for i < k, and qk =
qk−1. The test {Init} ⊑ qi requires linear time. The forward antichain algorithm
terminates after a single iteration with F̃ = {Init}, and the test {{ℓk}} ⊑̃ F̃ is
done in constant time.

1 Remember that Fin is the set of initial states in B.

Algorithm 1: Backward antichain algorithm for testing universality.

Data : a nondeterministic finite automaton A = 〈Loc, Init, Fin, Σ, δ〉.

begin

1 Start← {Init};
2 F ← {Fin};
3 Frontier← F ;
4 while (Frontier 6= ∅) ∧ (Start 6⊑ Frontier) do

5 Frontier← {q ∈ CPre
A(Frontier) | q 6⊑ F};

6 F ← F ⊔ Frontier ;

7 return (Start 6⊑ Frontier);

end

A similar proof holds for the second part of the theorem: for the family Bk,
k ≥ 2, choose each Bk to be the reverse of Ak. �

4 Implementation and Practical Evaluation

Two symbolic implementations of antichains We implemented our new
algorithm for testing universality on top of NuSMV [CCGR99] and the BDD
library CUDD [Som98]. We considered two encodings of NFAs in NuSMV, and
correspondingly, two encodings of antichains of state sets using BDDs.

Fully symbolic encoding In the first encoding, we associate a boolean variable
with each state of an NFA. A valuation of the variables corresponds to a state
set, and a BDD represents a set of state sets. Two valuations v1 and v2 for a set
X of variables are incomparable iff there exist x, y ∈ X such that v1(x) > v2(x)
and v1(y) < v2(y). If the BDD contains only valuations that are incomparable,
then it symbolically represents an antichain of state sets. We call this encoding
fully symbolic.

Semi-symbolic encoding In the second encoding, we associate an integer with
each state of the automaton. Then a single integer counter is used to encode the
current state. A BDD represents a set of integer values and so a set of states.
An antichain of state sets is represented by a set of BDDs that are incomparable
for valuation inclusion. We call this encoding semi-symbolic.

Algorithm For both encodings, we use the backward Algorithm 1 to check univer-
sality. To avoid computing CPre twice for the same set, the algorithm computes
iteratively CPre only on the frontier sets, which are the sets that were added to
the approximation F of the least fixed point F in the previous iteration. When
the automaton is not universal, then F is not fully computed, because we stop
the computation as soon as one of the sets in F contains all initial states.

The randomized model To evaluate the antichain algorithm and compare
with the subset algorithm, we use a random model to generate NFAs. This
model was recently proposed by Tabakov and Vardi to compare the efficiency
of some algorithms for automata [TV05]. In the model, the input alphabet is
fixed to Σ = {0, 1}, and for each letter σ ∈ Σ, a number kσ of different state
pairs (ℓ, ℓ′) ∈ Loc×Loc are chosen uniformly at random before the corresponding
transitions (ℓ, σ, ℓ′) are added to the automaton. The ratio rσ = kσ

|Loc| is called the

transition density for σ. This ratio represents the average outdegree of each state
for σ. In all experiments, we choose r0 = r1, and denote the transition density
by r. The model contains a second parameter: the density f of accepting states.
There is only one initial state, and the number m of accepting states is linear
in the total number of states, as determined by f = m

|Loc| . The accepting states

themselves are chosen uniformly at random. Observe that since the transition
relation is not always total, automata with f = 1 are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model
and argue that “interesting” automata are generated by the model as the two
parameters r and f vary. They have run large tests to evaluate the probability
for an automaton to be universal as a function of the parameters. We reproduced
those experiments for a greater space of parameter values and obtained a similar
distribution (Fig. 2). To generate each sample point, we checked the universality
of 200 random automata with 30 states.

Performance comparison We compare the performance of the backward an-
tichain algorithm with the tool dk.brics.automatondeveloped by Møller [Mø04],
which implements the forward subset algorithm and stops determinization when-
ever a rejecting state is encountered. According to the experiments of Tabakov
and Vardi, this tool, which uses explicit state representation, is the most effi-
cient one for checking universality [TV05]. For the comparison, we use the semi-
symbolic encoding of antichains, as that turns out to be much more efficient
than the fully symbolic encoding. The comparison is carried out on the whole
parameter space of the randomized model. All experiments are conducted on a
biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM). We only
measure the execution times for the universality test in both approaches, not the
time for parsing the input files and constructing the initial data structures.

In Fig. 3, Fig. 4, and Fig. 5, we present the execution times for checking
universality by the explicit subset algorithm and the semi-symbolic antichain
algorithm. To generate each sample point, we check the universality of 100 ran-
dom automata with |Loc| = 175 (this is roughly the largest size that the subset
algorithm is able to handle on the entire parameter space with the available
memory). In Fig. 3, we present the median execution times for testing universal-
ity by the subset approach as a function of r (transition density) and f (density
of accepting states). The figure shows that the universality test is most difficult
when r = 2 and f = 1. For the same instances, the median execution time of
our algorithm is always less than the time unit of the system clock (1ms).

In Fig. 4 and Fig. 5, we present the average execution times for testing uni-
versality by the subset approach and the semi-symbolic antichain approach, re-

Probability of being universal

D
ensity

of F
inal States

(f) Transition Density (r)

1

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2
43.532.521.510.50

1

0.8

0.6

0.4

0.2

0

Fig. 2. Probability of universal au-
tomata (|Loc| = 30).

Median time (ms)

D
ensity

of F
inal States

(f) Transition Density (r)

1400
1200
1000
800
600
400
200

0

0.8

0.6

0.4

0.2
43.532.521.510.50

1400
1200
1000
800
600
400
200
0

Fig. 3. Median execution time
for the subset algorithm
(|Loc| = 175).

Average time (ms)

D
ensity

of F
inal States

(f) Transition Density (r)

3000

2500
2000
1500

1000
500

0

0.8

0.6

0.4

0.2
43.532.521.510.50

3000
2500
2000
1500
1000
500
0

Fig. 4. Average execution time for the
subset algorithm (|Loc| = 175).

Average time (ms)

D
ensity

of F
inal States

(f) Transition Density (r)

70
60
50
40
30
20
10
0

0.8

0.6

0.4

0.2
43.532.521.510.50

70
60
50
40
30
20
10
0

Fig. 5. Average execution time for
the semi-symbolic antichain
algorithm (|Loc| = 175).

spectively. Both figures exhibit similar peaks, showing that the difficult instances
are roughly the same for both approaches. However, the antichain algorithm is
much faster. For the most difficult parameter values (r = 2 and f = 1), the an-
tichain algorithm is 165 times faster than the subset algorithm. Intuitively, these
instances are difficult for both algorithms for the following two reasons. First, the
probability to be universal for these parameter values is around 50 percent, and
we believe that most of these instances are neither trivially universal nor trivially
nonuniversal. Second, when an automaton is universal, the subset method has
to build the entire deterministic automaton, and the antichain method has to
complete the computation of the least fixed point.

In Fig. 6 we present the ratio of the average time for the subset approach and
the average time for the antichain approach as a function of the densities. The
comparison for r ≤ 1.4 and f ≤ 0.2 is not very significant, because the execution
times are very close to the precision of the system clock (1ms). For the rest
of the parameter space, the antichain algorithm performs always better (up to
200 times better). Finally, in Fig. 7, we show that the semi-symbolic antichain
approach scales well when the size of the automaton increases, in contrast to

(time explicit)/(time antichains)

D
ensity

of F
inal States

(f) Transition Density (r)

200

160

120

80

40

0

0.8

0.6

0.4

0.2
43.532.521.510.50

200

160

120

80

40

0

Fig. 6. Average execution time ratio
(|Loc| = 175).

Classical
Antichains

number of states

ti
m

e
(s

)

40003500300025002000150010005000

12

10

8

6

4

2

0

Fig. 7. Average execution times
for the subset and semi-
symbolic antichain algo-
rithms (transition density 2;
accepting-states density 1).

the subset approach. For the experiments we generated randomly 100 automata
per sample point for automaton sizes under 200 states, and 30 automata per
sample point for sizes over 200 states. The densities are again r = 2 and f = 1.
The antichain algorithm is able to handle random automata with 4000 states
in the average time of 12s. The average size of the final antichain (for universal
automata) is 217 state sets for automata with 4000 states. We did not pursue
experiments with larger automata, because we would have had to modify the
automaton generator, as it is not designed for such large automaton sizes. The
subset algorithm quickly exceeds the memory limit when the number of states
nears 200, so the curve is quite short in the left corner of Fig. 7.

As mentioned above, the semi-symbolic antichain encoding gives far better
performances on the random model than the fully symbolic encoding, as shown
in Table 1 for the difficult instances (r = 2 and f = 1). It also turns out that
the fully symbolic encoding does not scale well when the size of the automaton
increases. Each sample point is computed on a set of 50 random automata with
less than 100 states. For 175 states, the sample size is 100, and for more states,
the sample size is 30. The number of boolean variables of the BDDs that encode
antichains seems to be the reason for the difference in performances: the number
of boolean variables grows linearly with the number of states in the fully sym-
bolic encoding, but logarithmically in the semi-symbolic encoding. We have also
implemented the forward antichain algorithm with the semi-symbolic encoding.
On the random model, this approach is roughly twice as slow as the backward
antichain algorithm, which is still better by several orders of magnitude than
the subset algorithm. See Fig. 8 for the experimental results.

5 Beyond Universality

Language inclusion We show that language inclusion can be checked using
an antichain algorithm based on a slightly richer lattice. Consider two NFAs

Average time (ms)

D
ensity

of
F
inal States

(f) Transition Density (r)

Average time (ms)

140
120
100
80
60
40
20
0

0.8

0.6

0.4

0.2
0.1

43.532.521.510.5

140
120
100
80
60
40
20
0

Fig. 8. Average execution time for the forward semi-symbolic antichain algorithm
(|Loc|=175).

Table 1. Average execution times (ms) for checking universality with r = 2 and f = 1.

number of states 20 40 60 80 100 175 500 1000 1500 2000 2500 3000 3500 4000

subset algorithm 23 50 141 309 583 2257

fully symb. antich. 3 14 70 175 421 6400

semi-symb. antich. 1 2 2 3 5 14 76 400 973 1741 2886 5341 9063 13160

A = 〈LocA, InitA, FinA, Σ, δA〉 and B = 〈LocB, InitB, FinB, Σ, δB〉 over the same
alphabet. We wish to check whether Lang(A) ⊆ Lang(B). An antichain over

LocA × 2LocB is a set q ∈ 2LocA×2LocB such that for all (ℓ1, s1), (ℓ2, s2) ∈ q with
ℓ1 = ℓ2 and s1 6= s2, we have neither s1 ⊆ s2 nor s2 ⊆ s1. Given a set q ∈

2LocA×2LocB , an element (ℓ, s) ∈ q is maximal iff for every s′ with s′ ⊃ s, we
have (ℓ, s′) 6∈ q. We denote by ⌈q⌉ the set of maximal elements of q. Given two
antichains q and q′, we define

q ⊑l q′ iff ∀(ℓ, s) ∈ q · ∃(ℓ, s′) ∈ q′ : s ⊆ s′;
q ⊔l q′ = ⌈{(ℓ, s) | (ℓ, s) ∈ q ∨ (ℓ, s) ∈ q′}⌉;
q ⊓l q′ = ⌈{(ℓ, s ∩ s′) | (ℓ, s) ∈ q ∧ (ℓ, s′) ∈ q′}⌉.

Let CPrel (q) = ⌈{(ℓ, s) | ∃σ ∈ Σ · ∃(ℓ′, s′) ∈ q : ℓ′ ∈ δA(ℓ, σ) ∧ postBσ (s) ⊆ s′}⌉.

Theorem 6 Let A and B be two finite automata, and let Fl =
d

l{q | q =
CPrel (q) ⊔l (FinA × {FinB})}. Then Lang(A) 6⊆ Lang(B) iff there exists a state
ℓ ∈ InitA such that {(ℓ, InitB)} ⊑l Fl.

Typically, A is an “implementation” automaton, and B a “specification” au-
tomaton. Often A is given as a synchronous product of automata, that is,
A = A1 ⊗ · · · ⊗ An. Then we can apply our method with antichains over
LocA1

× · · · × LocAn
× 2LocB . However, in the common case where the imple-

mentation components Ai are deterministic (but the specification B is nonde-
terministic), an alternative approach is possible, and likely more efficient. The

following lemma shows that in this case, the language-inclusion problem can be
reduced in polynomial time to the universality problem. This reduction has the
advantage of avoiding the construction of the product of the implementation
components.

Lemma 7 For a set A1, . . . , An of DFAs and an NFA B, we define the sum C =
A1⊕· · ·⊕An⊕B. Then Lang(A1)∩ . . .∩Lang(An) ⊆ Lang(B) iff Lang(C) = Σ∗.

Emptiness of alternating automata The antichain algorithm for checking
the universality of NFAs can be generalized to checking the emptiness of alter-
nating automata, using the same lattice with a slight modification of the function
CPre. In alternating automata, the transitions are given by boolean formulas.
For example, ρ(ℓ, σ) = ℓ1∨(ℓ2∧ℓ3) means that in state ℓ, a word of the form σ ·w
is accepted if either w is accepted in ℓ1, or w is accepted in both ℓ2 and ℓ3. Our
formal definitions follow [KV01]. Let B+(Loc) be the set of monotone boolean
formulas over Loc, defined by the grammar ϕ ::= true | ℓ | ϕ ∧ ϕ | ϕ ∨ ϕ, where
ℓ ∈ Loc. A set s ⊆ Loc of states satisfies a formula ϕ ∈ B+(Loc) (denoted s |= ϕ)
iff ϕ is equivalent to true when the states in s are replaced by true, and the states
in Loc \ s by false.

An alternating finite automaton, or AFA, is a tuple A = 〈Loc, Init, Fin, Σ, ρ〉,
where Loc, Init, Fin, and Σ are as for NFAs, and ρ: Loc × Σ → B+(Loc) is
a transition function. The NFAs can be seen as a subclass of the AFAs: the
transition relation δ of an NFA can be translated into the transition function ρ

of AFA such that ρ(ℓ, σ) = ℓ1∨. . .∨ℓn for {ℓ1, . . . , ℓn} = {ℓ′ ∈ Loc | (ℓ, σ, ℓ′) ∈ δ}.
A run of the AFA A over a finite word w is a tree T = (N,⇒), whose nodes
are a prefix-closed set N ⊆ Loc+ of nonempty sequences of states. The level
of a node x = ℓ1 . . . ℓn in N is its size |x| = n, and the last element of x is
last(x) = ℓn. The set N contains a single node at level 1, the root, which is a
state in Init. We require that for all x ∈ N , we have |x| ≤ |w| + 1. The child
relation ⇒⊆ N × N satisfies the following condition: for all nodes x ∈ N , we
have (1) if x ⇒ x′, then x′ = x · ℓ for some ℓ ∈ Loc, and (2) if |x| ≤ |w|, then the
set s = {last(x′) | x ⇒ x′} is such that s |= ρ(last(x), w(|x|)). A leaf of T is a
node x of level |x| = |w| + 1. A run T is accepting iff last(x) ∈ Fin for all leaves
x of T . The language Lang(A) accepted by A is the set of words w ∈ Σ∗ such
that A has an accepting run over w.

The emptiness problem for AFAs is to decide, given an AFA A, whether
Lang(A) = ∅. Since complementation of AFAs is easy (by dualizing the transi-
tion function and complementing the set of accepting states), the universality
problem for AFAs (to decide, given an AFA A, if Lang(A) = Σ∗) is polynomi-
ally equivalent to emptiness. Given an AFA A = 〈Loc, Init, Fin, Σ, ρ〉, consider
the following monotone function on the lattice L of antichains over Loc: for an
antichain q ∈ L, let

CPrea (q) = ⌈{s | ∃s′ ∈ q · ∃σ ∈ Σ · ∀ℓ ∈ s : s′ |= ρ(ℓ, σ)}⌉.

This monotone function on L can be used to decide the emptiness problem for
AFAs, as shown in the following theorem.

Theorem 8 Let A = 〈Loc, Init, Fin, Σ, δ〉 be an AFA, and let Fa =
d{

q | q =

CPrea (q) ⊔ {Fin}
}
. Then Lang(A) 6= ∅ iff {Init} ⊑ Fa.

6 Conclusions

We showed that explicit determinization can be avoided when solving several
problems related to NFAs on finite words. Our new solutions to the universality
and language-inclusion problems for NFAs, and to the emptiness problem for
AFAs, evaluate the least fixed point of simple monotone functions on lattices of
antichains. They are goal-directed and leave determinization implicit. We imple-
mented the new algorithm for the universality problem and compared its perfor-
mance to that of the classical algorithm (which uses explicit determinization).
Our method outperforms the classical one dramatically on the entire parame-
ter space of a randomized model. On the difficult instances of the randomized
model, our algorithm is several orders of magnitude faster than the classical one.

We plan to pursue several future directions. First, as the performance of the
new algorithm on the randomized model is very encouraging, we want to apply
antichain algorithms to practical problems. Second, the antichain method does
not extend trivially to automata over infinite words. We need further research
to see if our results can be extended to such cases.

Acknowledgements We thank Deian Tabakov for his code and helpful answers
about the randomized model.

References

[BL80] J.A. Brzozowski and E.L. Leiss. On equations for regular languages, finite
automata, and sequential networks. Theoretical Computer Science, 10:19–35, 1980.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new
symbolic model verifier. In Computer Aided Verification, LNCS 1633, pages 495–499.
Springer, 1999.

[CKS81] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28:114–
133, 1981.

[DDR06] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games
of imperfect information. In Hybrid Systems—Computation and Control, LNCS 3927,
pages 153–168. Springer, 2006.

[HMU01] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. Computational Logic, 2:408–429, 2001.

[Mø04] A. Møller. dk.brics.automaton. http://www.brics.dk/automaton, 2004.
[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expres-

sions with squaring requires exponential space. In Symp. Foundations of Computer
Science, pages 125–129. IEEE Computer Society, 1972.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. J.
Computer and System Sciences, 29:274–301, 1984.

[Som98] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0. University
of Colorado at Boulder, 1998.

[TV05] D. Tabakov and M.Y. Vardi. Experimental evaluation of classical automata
constructions. In Logic for Programming, Artificial Intelligence, and Reasoning,
LNCS 3835, pages 396–411. Springer, 2005.

