
Top-Down Complementation

of Automata on Finite Trees

Laurent Doyena

aCNRS & LMF, ENS Paris-Saclay, 4 av. des sciences, 91190 Gif-sur-Yvette, France

Abstract

We present a new complementation construction for nondeterministic au-
tomata on finite trees. The traditional complementation involves deter-
minization of the corresponding bottom-up automaton (recall that top-down
deterministic automata are less powerful than nondeterministic automata,
whereas bottom-up deterministic automata are equally powerful).

The construction works directly in a top-down fashion, therefore without
determinization. The main advantages of this construction are: (i) in the
special case of finite words it boils down to the standard subset construction
(which is not the case of the traditional bottom-up complementation con-
struction), and (ii) it illustrates the core argument of the complementation
lemma for infinite trees, central in the proof of Rabin’s tree theorem, in a
simpler setting where issues related to acceptance conditions over infinite
words and determinacy of infinite games are not present.

Keywords: Tree automata, Complementation, Games, Determinacy

1. Introduction

Finite automata running on finite trees [1, 2] generalize finite word au-
tomata and enjoy similar expressiveness, closure, and decidability proper-
ties [3]. Regular languages of finite trees are those recognizable by nonde-
terministic tree automata, and their closure properties under union, inter-
section, and complement enable a tight connection with logical formalisms,
prominently monadic second-order logic (MSO) on finite trees.

In this context, the most critical closure property is complementation, as
closure under union is straightforward with nondeterministic automata, and
closure under intersection then follows from closure under complementation.
As for finite words, the traditional approach to complementation of tree

Preprint submitted to Information Processing Letters April 19, 2024

automata is to first determinize the given automaton, then to complement it
by dualizing the acceptance condition [3, 4].

A crucial remark is that the notion of determinism in tree automata
has two different flavours that are not (expressively) equivalent. In the first
flavour, determinism is understood in a bottom-up fashion: given the states
of the automaton after processing the subtrees of a given position p in the
input tree and given the letter at the position p, there is a unique transition
that can be used to assign a state to p. In the second flavour, determinism
is understood in a dual top-down fashion: given the state of the automaton
at a given position p in the input tree and given the letter at the position p,
there is a unique transition that can be used to assign a state to each child
of p, from which to process the corresponding subtree.

Bottom-up determinization is always possible, as deterministic bottom-
up tree automata are as expressive as nondeterministic automata. In con-
trast, deterministic top-down tree automata are strictly less expressive than
nondeterministic automata, leading to several research directions [5] such as
deciding whether a regular tree language is recognizable by a deterministic
top-down automaton, which was solved in polynomial time only recently [6].

However, in the special case of words, the traditional approach to com-
plementation is akin to the top-down flavour of determinization (assuming
the input word, viewed as a particular tree, starts at the root). Of course,
bottom-up determinization could also be applied to word automata, but this
corresponds to first reversing all transitions and exchanging initial and final
states, then determinizing (using the classical approach by subset construc-
tion), and finally reversing again the resulting automaton. This does not
yield a deterministic automaton in the usual sense, but is indeed sufficient
for complementation. A natural question is then to find a simple comple-
mentation procedure for tree automata that does boil down to the classical
approach in the special case of word automata, yielding a top-down deter-
ministic word automaton. We present such a procedure in this paper. By the
above remarks, the construction yields a nondeterministic tree automaton,
that becomes deterministic only on words.

A more fundamental reason to look for top-down complementation is the
connection with automata on infinite trees, for which complementation is the
key ingredient to Rabin’s decidability theorem (for the logic MSO on infinite
trees), considered to be one of the most important (and difficult) decidability
result in the area of logics [3, 7, 8]. Over infinite trees, the complementation
procedure involves a combination of deep insights, prominently the deter-
minacy of infinite-state parity games and equivalence of various acceptance

2

conditions for infinite trees, notably due to the strictly lower expressive power
of both deterministic parity automata and nondeterministic Büchi automata,
as compared to nondeterministic parity automata [8]. We remark that in the
case of finite trees, only the difference in expressive power between deter-
ministic and nondeterministic automata remains an issue for top-down com-
plementation. Acceptance conditions are easy to dualize over finite trees,
and determinacy is required in a much simpler form, namely over finite-
duration games, which can be established using backward induction without
difficulty. Our complementation construction follows a modern approach [8],
using games and determinacy to circumvent determinization [9, 10]. It is
therefore a special case of the complementation for automata on infinite
trees, that illustrates the role of games and the power of determinacy in a
more accessible way thanks to the simpler setting of finite trees.

Finally, note that our construction involves an exponential blow up, which
is unavoidable already for words [11, 12].

2. Definitions

A (finite) tree is a finite nonempty prefix-closed set t ⊆ N
∗. The elements

of t are called positions and the root is the empty sequence ε. The children

of position p ∈ t are the positions p · c ∈ t where c ∈ N. We refer to p · c as
the child of p in direction c. A position with no children is a leaf.

Given a finite ranked alphabet Σ where each letter a ∈ Σ has a fixed arity
denoted by arity(a) ∈ N, a Σ-labeled tree is a pair ht, µi where t is a tree
and µ : t → Σ is a mapping that respects the arity, that is for every position
p ∈ t, if the letter µ(p) is of arity n = arity(µ(p)) ≥ 0, then the children of p
are p · 1, . . . , p ·n. In particular, the positions labeled by a constant (a letter
of arity 0) are leaves.

A (nondeterministic) tree automaton over alphabet Σ is a tuple A =
hQ,Qε, (Δa)a∈Σi consisting of a finite set Q of states, a set Qε ⊆ Q of initial
states, and for each letter a ∈ Σ a transition relation Δa ⊆ Q×Qn where n

is the arity of a and Qn = Q ×Qn−1 where by convention Q0 = {ε}. Given
a state q ∈ Q, we denote by Aq the tree autmoaton obtained from A by
replacing the set Qε of initial states by {q}. We view transition relations
as tiling systems where the elements of Δa are tiles, and a tiling associates
states to positions in the input tree ht, µi, such that if q is a state associated
with position p and q1, . . . , qn are states associated with the children of p,
then (q, q1, . . . , qn) ∈ Δa is a tile where a = µ(p) is the letter at position p

3

in t. We say that (q, q1, . . . , qn) is a tile from q with children q1, . . . , qn. We
may denote tiles associated with letter a by aq(q1, . . . , qn).

A run (or tiling) of A on an input tree ht, µi is a Q-labeled tree htr, ri
where tr = t and r : t → Q satisfies the following: for all positions p ∈ t,
if µ(p) = a, then (r(p), r(p · 1), . . . , r(p · n)) ∈ Δa where n = arity(a). A
run is initialized if r(ε) ∈ Qε. An input tree ht, µi is accepted by A if there
exists an initialized run on it. The language of A is the set L(A) of all
trees accepted by A. Note that L(A) =

�
q∈Qε

L(Aq). We denote by L(A)
the complement of L(A), that is the set of all Σ-labeled trees that are not
accepted by A. The languages accepted by nondeterministic tree automata
are called regular [3, Chapter 2]. While word automata have accepting states,
and a word is accepted if the state that labels its last position is accepting,
the symbol in the last position of a branch of a tree must be of arity 0, which
can be used in tree automata to mimic the acceptance mechanism of word
automata. For instance, we may say that a state q is accepting at a leaf

labeled by a (thus arity(a) = 0) if (q, ε) ∈ Δa.

Example. Let Σ = {f, a, b} be a ranked alphabet where f has arity 2, and
a, b have arity 0. Given k ≥ 1, consider the set Lk of all Σ-labeled trees having
two (distinct) leaves labeled by a that are k-cousin (where two positions are
0-cousin if they are equal, and inductively two positions are (k + 1)-cousin
if their parents are k-cousin). An example of a tree automaton accepting
Lk is defined by the state space Qk = {q0, . . . , qk} ∪ {q⊥}, the initial state
Qε = {q0}, and transitions Δa = {qk}, Δb = {q⊥}, and Δf as the following
tiles, for all states z ∈ Qk:

f q0(q1, q1) f qi(qi+1, z) (1 ≤ i < k) f q⊥(q⊥, q⊥)

f q0(q0, z) f qi(z, qi+1) (1 ≤ i < k) f q⊥(q1, z)

f q0(z, q0) f q⊥(z, q1).

Intuitively, from a position labeled by qi there is a branch of length k − i to
a leaf labeled by a, and the automaton checks that there exist two positions
labeled by qi that are i-cousin. The state q⊥ is used for unsuccessful labeling
of a position, discarding information about the length of branches from that
position. Figure 1 shows a partial tiling of an input tree in L3.

A tree automaton is bottom-up deterministic (or backward deterministic,
specially in the case of words) if the following holds: if (q, q1, . . . , qn) ∈ Δa

and (q′, q1, . . . , qn) ∈ Δa, then q = q′, that is the states at the children of a
position p determine the state at p (given the letter at p);

4

f q0

f q1 f q1

a q3 f q2 f f

aq3 bq⊥ a f b b

b a

Tiles:

etc.

f q0

q1 q1

f q1

q3 q2

f q2

q3 q⊥

Figure 1: Tiles and a (partial) tiling of an input tree.

A tree automaton is top-down deterministic (or forward deterministic,
specially in the case of words) if |Qε| = 1 and the following holds: if
(q, q1, . . . , qn) ∈ Δa and (q, q′1, . . . , q

′
n) ∈ Δa, then qi = q′i for all 1 ≤ i ≤ n,

that is the state at a position p determines the states at the children of p
(given the letter at p);

In the sequel we denote by Δ(q, a) the set of all tuples u such that (q, u) ∈
Δa. Note that specifying the setsΔ(q, a) for each state q ∈ Q and letter a ∈ Σ
is equivalent to specifying the transition relations (Δa)a∈Σ. In particular, if
a is of arity 0, then either Δ(q, a) = {ε} or Δ(q, a) = ∅.

3. Complementation

We recall the classical (bottom-up) construction for complementing a tree
automaton, and then we present our new construction, which follows a more
top-down approach.

3.1. Classical construction: bottom-up

The classical approach to complementation of a tree automaton A is to
construct a bottom-up deterministic automaton that accepts the same trees
as A, which is then easy to complement [3, 4].

The complement of A is the automaton B = hS, Sε, (Δ
d

a)a∈Σi where S =
2Q contains all subsets of Q, the set of initial states is Sε = {s ∈ S |
s ∩ Qε = ∅}, and the transition relation is defined, for all a ∈ Σ and for

5

all s, s1, . . . , sn ∈ S (where n = arity(a)), by:

(s1, . . . , sn) ∈ Δd(s, a)

iff

s = {q ∈ Q | ∃q1 ∈ s1 · · ·∃qn ∈ sn : (q1, . . . , qn) ∈ Δ(q, a)}.

Intuitively, the (unique) run of the automaton B on an input tree labels
a position p with the set of all states that may label the position p in a run
of the automaton A on the subtree rooted at p. The set Sε of initial states
in B ensures that no run of A labels the root with an initial state of A.

The automaton B is bottom-up deterministic. In the special case of words,
it corresponds to a backward-deterministic automaton, obtained by first re-
versing the automaton (i.e., reversing all transitions and exchanging initial
and final states), then determinizing (using the classical subset construction),
and finally reversing the resulting automaton. Hence, this construction does
not produce a deterministic (precisely, forward-deterministic) automaton in
the special case of words.

Theorem 1 ([1, Theorem 1 & 2]). L(B) = L(A).

3.2. New construction: top-down

The top-down complement of A is the automaton C = hS, Sε, (Δ
n

a)a∈Σi
where S = 2Q contains all subsets of Q, the set Sε = {Qε} is a singleton, and
the transition relation is defined, for all a ∈ Σ and for all s, s1, . . . , sn ∈ S

(where n = arity(a)), by:

(s1, . . . , sn) ∈ Δn(s, a)

iff

∀q ∈ s · ∀(q1, . . . , qn) ∈ Δ(q, a) · ∃1 ≤ i ≤ n : qi ∈ si. (1)

Given a letter a ∈ Σ, a tuple (s, s1, . . . , sn) is a tile associated with a in
C if for every state q ∈ s and every tile (q, q1, . . . , qn) associated with a in
A, some state qi in direction i appears in si. Intuitively, the transitions in C
from s can “distribute” the states along the children, as long as every possible
transition in A from a state q ∈ s has one of its children qi that appears in
the corresponding child si of the transition in C. Note that for a letter a of
arity 0, we have Δn(s, a) 6= ∅ (that is, Δn(s, a) = {ε}) if Δ(q, a) = ∅ for all
q ∈ s.

6

We prune the transition relation by keeping in Δn(s, a) only the elements
that are minimal with respect to component-wise set inclusion. This prun-
ing entails that in the special case of words, the automaton C is forward-
deterministic: it is the classical subset construction. Hence this construction
is deterministic for word automata, although it is nondeterministic for tree
automata. We present the main ideas for a correctness proof in Section 4.

In our example for L3 (Figure 1), the tiles representing Δn({q1}, f) are:

f {q1}({q2}, {q2}) f {q1}(Q3,∅) f {q1}(∅, Q3).

Theorem 2. L(C) = L(A).

4. Correctness

The correctness argument for Theorem 2 relies on a fundamental corre-
spondence between acceptance of a tree T = ht, µi by an automaton A and
winning in a two-player acceptance game GA,T associated with A and T .
This correspondence is the core of the (modern) proof of Rabin’s theorem,
showing that tree automata on infinite trees are closed under complementa-
tion [8, 9, 10]. We rephrase the argument in the simpler case of finite trees,
which highlights the role of games and determinacy in complementation of
tree automata and may be useful for pedagogical purpose.

The players in the acceptance game GA,T are called Automaton and
Pathfinder. Initially, the game starts in a node (ε, qε) where qε ∈ Qε is cho-
sen by Automaton. The game proceeds in rounds where each round starts
in a node (p, q) denoting a position p ∈ t of the input tree labeled by a state
q ∈ Q of the automaton, and is played as follows:

1. Automaton chooses a transition (q1, . . . , qn) ∈ Δ(q, a) where a = µ(p);
if no such transition exists (i.e., Δ(q, a) = ∅), then Automaton loses
(and Pathfinder wins);

2. then Pathfinder chooses a child 1 ≤ i ≤ n and the game proceeds to
the next round in node (p · i, qi); if n = 0 (i.e., the letter a has arity 0
and the position p is a leaf), then no such i exists and Pathfinder loses
(and Automaton wins);

Given an initial node (ε, qε), a strategy for Automaton is a map fA :
t×Q → Q∗ such that fA(p, q) ∈ Δ(q, µ(p)) for all p ∈ t and q ∈ Q. Playing
according to fA means that in every round, given the node (p, q) at the
beginning of the round, Automaton chooses the transition fA(p, q). The

7

strategy fA is winning if the acceptance game starting in node (ε, qε) ends
up in a leaf (p, q) whereΔ(q, µ(p)) = {ε} (thus Pathfinder loses) when playing
according to fA, regardless of the choices of Pathfinder.

It is straightforward to see that there exists a winning strategy for Au-
tomaton with initial node (ε, qε) if and only if there exists an initialized run
of A on T : (i) from a run ht, ri with r(ε) = qε we can construct a winning
strategy fA for Automaton defined by fA(p, q) = (r(p · 1), . . . , r(p · n)). Note
that when playing according to fA, in every round of the game the node (p, q)
at the beginning of the round is consistent with the run (that is, r(p) = q),
regardless of the choices of Pathfinder; (ii) from a winning strategy fA, de-
fine the initialized run ht, ri inductively by r(ε) = qε and, for all p ∈ t and
1 ≤ i ≤ n, by r(p · i) = qi where fA(p, r(p)) = (q1, . . . , qn).

In order to complement A, we need to construct an automaton C that
accepts a tree T if it can verify the non-existence of a winning strategy
for Automaton in the acceptance game GA,T , from every initial state qε ∈
Qε. For every fixed T = ht, µi, the game GA,T is of finite duration, and
therefore a simple argument shows that the game is determined, that is
the non-existence of a winning strategy for Automaton is equivalent to the
existence of a winning strategy for Pathfinder, where a strategy for Pathfinder
is a map fP : t×Q∗ → N such that fP (p, q1, . . . , qn) = i for some 1 ≤ i ≤ n

and the definition of winning is analogous to Automaton strategies.
A simple argument for determinacy is given by backward induction: we

mark the nodes (p, q) as either winning or losing (for Automaton), and for
non-leaf nodes we store an optimal choice (for Automaton if the node is win-
ning, for Pathfinder if the node is losing) as follows. We start at the leaf
nodes (p, q) (where p is a leaf in t, and thus a = µ(p) is of arity 0) and
mark them as winning if Δ(q, a) 6= ∅, as losing otherwise. Inductively, a
node (p, q) is marked as winning if there exists (q1, . . . , qn) ∈ Δ(q, µ(p)) such
that all nodes (p · i, qi) are winning, and define fA(p, q) = (q1, . . . , qn); the
node (p, q) is marked as losing otherwise, thus for all (q1, . . . , qn) ∈ Δ(q, µ(p))
there exists 1 ≤ i ≤ n such that the node (p · i, qi) is losing and we define
fP (p, q1, . . . , qn) = i. It is immediate that fA is a winning strategy for Au-
tomaton from winning nodes, and fP is a winning strategy for Pathfinder
from losing nodes.

Hence we need to construct an automaton C that verifies the existence
of a winning strategy for Pathfinder (from every initial state), in order to
ensure that the input tree is not accepted by A. A strategy for Pathfinder
is a map fP : t → (Q∗ × N), which can be viewed as a labeling of the tree t

that the automaton C will guess along with processing the input tree.

8

The guess is correct (and yields a run of C) if along every branch there
is a position p labeled by a state q such that Δ(q, µ(p)) = ∅. As the state q

labeling a position is chosen by Automaton, the guess must be verified for all
possible choices of Automaton. We store in the state space of the automaton
C the set s of all states that may label a position p (initially s = Qε for
p = ε), and we check that for all q ∈ s, and for all transitions (q1, . . . , qn) ∈
Δ(q, µ(p)), there exists a direction 1 ≤ i ≤ n such that Pathfinder wins
the acceptance game from the subtree rooted at the i-th child of p, in state
qi. Gathering in a set si the states chosen by Pathfinder along direction i

(across all such transitions), we obtain the transition relation of C as defined
in Condition (1). The correctness of the construction then follows from
determinacy of the acceptance game, and the correspondence between the
runs of C on input trees T and winning strategies for Pathfinder from the
nodes (ε, qε) with qε ∈ Qε in the acceptance games GA,T .

5. Concluding remarks

The constructions of Section 3 can be generalized to alternating tree au-
tomata, which are straightforwardly closed under complementation by du-
alizing the transition relation, to obtain a nondeterministic tree automaton
that accepts the same language as a given alternating tree automaton. This
is known for the construction of Section 3.1, showing that bottom-up deter-
ministic tree automata have the same expressive power as alternating tree
automata [3, Section 7.4]. Analogously, the idea of the construction in
Section 3.2 can be generalized to alternating tree automata as follows.

In alternating automata, the transition relation over a letter a ∈ Σ is
a mapping ϕa : Q → B+(Q × {1, . . . , n}) where n = arity(a) and B+(S)
is the set of positive Boolean formulas ϕ over the set S (viewed as a set
of variables), constructed from the elements of S ∪ {true, false} using the
connectives ∨ and ∧. For P ⊆ S, we write P |= ϕ if the formula ϕ is satisfied
under the assignment that sets the variables in P to true and the variables in
S \ P to false. For example, the transition relation Δa of a nondeterministic
automaton corresponds to ϕa(q) =

�
(q,q1,...,qn)∈Δa

�
1≤i≤n(qi, i). Note that for

n = 0 we have ϕa(q) = true if Δ(q, a) = {ε}, and ϕa(q) = false otherwise
(i.e., if Δ(q, a) = ∅). We further assume without loss of generality that
alternating automata have a single initial state qε ∈ Q [3, Lemma 7.3.1].

It is standard to define the runs of alternating tree automata [3, Definition
7.2.4], and the accepted language. Complementation is straightforward by
exchanging the connectives ∨ and ∧, as well as true and false in the transition

9

function (note that the initial state remains unchanged). A nondeterministic
tree automaton D = hS, Sε, (Δ

n

a)a∈Σi that accepts the same language as a
given alternating tree automaton A = hQ, qε, (ϕa)a∈Σi can be constructed in
a top-down fashion by setting S = 2Q and Sε = {{qε}} as in the automaton C
of Section 3.2, and the transition relation is defined, for all a ∈ Σ and for all
s, s1, . . . , sn ∈ S (where n = arity(a)), by:

(s1, . . . , sn) ∈ Δn(s, a)

iff

{(q, i) | q ∈ si, 1 ≤ i ≤ n} |=
�
q∈s

ϕa(q). (2)

In particular, when A is nondeterminisitic the condition (2) is equivalent
to condition (1) in Section 3.2. As before, we further prune the sets Δn(s, a)
to keep only their minimal elements.

Given s ⊆ Q, it is easy to show by induction on the height of input trees
that the set L(Ds) of all trees accepted by Ds is equal to the set

�
q∈s L(Aq)

of all trees accepted by all automata Aq for q ∈ s, and to conclude that
L(A) = L(D) since the initial state sε = {qε} in D is a singleton.

Finally, note that if the automaton A is top-down deterministic, then
in the constructed automaton C (or D) after pruning of the non-minimal
elements, the reachable states are singletons and the number of transitions
is at most N times the number of transitions in A where N is the largest
arity, thus the construction is linear (for a fixed alphabet) in that case.

Acknowledgment. The author is grateful to anonymous reviewers for in-
sightful feedback and suggestions, specially regarding the generalization of
our construction to alternating tree automata.

References

[1] J. W. Thatcher, J. B. Wright, Generalized finite automata theory with
an application to a decision problem of second-order logic, Math. Syst.
Theory 2 (1) (1968) 57–81.

[2] J. Doner, Tree acceptors and some of their applications, J. Comput.
Syst. Sci. 4 (5) (1970) 406–451.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
C. Löding, S. Tison, M. Tommasi, Tree Automata Techniques and Ap-
plications, 2008.

10

[4] C. Löding, W. Thomas, Automata on finite trees, in: Handbook of
Automata Theory, European Mathematical Society, 2021, pp. 235–264.

[5] W. Martens, F. Neven, T. Schwentick, Deterministic top-down tree au-
tomata: past, present, and future, in: Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas], Vol. 2 of Texts in Logic
and Games, Amsterdam University Press, 2008, pp. 505–530.

[6] S. Maneth, H. Seidl, Checking in polynomial time whether or not a
regular tree language is deterministic top-down, Inf. Process. Lett. 184
(2024) 106449.

[7] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Problem,
Perspectives in Mathematical Logic, Springer, 1997.

[8] W. Thomas, Languages, automata, and logic, in: Handbook of Formal
Languages, Vol. 3, Beyond Words, Springer, 1997, Ch. 7, pp. 389–455.

[9] J. R. Büchi, Using determinancy of games to eliminate quantifiers,
in: Proc. of FCT: Fundamentals of Computation Theory, LNCS 56,
Springer, 1977, pp. 367–378.

[10] Y. Gurevich, L. Harrington, Trees, automata, and games, in: Proc. of
STOC: Symposium on Theory of Computing, ACM, 1982, pp. 60–65.

[11] W. J. Sakoda, M. Sipser, Nondeterminism and the size of two way finite
automata, in: Proc. of STOC: Symposium on Theory of Computing,
ACM, 1978, pp. 275–286.

[12] J.-C. Birget, Partial orders on words, minimal elements of regular lan-
guages and state complexity, Theor. Comput. Sci. 119 (2) (1993) 267–
291.

11

