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Abstract

In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite
sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running
sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights
by tuples, and the limit average (resp., running sum) of each coordinate must be (resp., remain) nonnegative.
These games have applications in the synthesis of resource-bounded processes with multiple resources.

We prove the finite-memory determinacy of multi-energy games and show the inter-reducibility of multi-
mean-payoff and multi-energy games for finite-memory strategies. We also improve the computational com-
plexity for solving both classes of games with finite-memory strategies: while the previously best known
upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound.
For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the
protagonist is NP-complete. Finally we present the first solution of multi-mean-payoff games with infinite-
memory strategies. We show that multi-mean-payoff games with mean-payoff-sup objectives can be decided
in NP ∩ coNP, whereas multi-mean-payoff games with mean-payoff-inf objectives are coNP-complete.

1. Introduction

Graph games and multi-objectives. Two-player games on graphs are central in many applications of computer
science. For example, in the synthesis problem, implementations of reactive systems are obtained from
winning strategies in games with a qualitative objective formalized by an ω-regular specification [30, 29, 1].
In these applications, the games have a qualitative (Boolean) objective that determines which player wins.
On the other hand, games with quantitative objectives which are natural models in economics (where players
have to optimize a real-valued payoff) have also been studied in the context of automated design [31, 17, 32].
In the recent past, there has been considerable interest in the design of reactive systems that work in
resource-constrained environments (such as embedded systems). The specifications for such reactive systems
are quantitative, and give rise to quantitative games. In most system design problems, there is no unique
objective to be optimized, but multiple, potentially conflicting objectives. For example, in designing a
computer system, one is interested not only in minimizing the average response time but also the average
power consumption. In this work we study such multi-objective generalizations of the two most widely used
quantitative objectives in games, namely, mean-payoff and energy objectives [19, 32, 8, 3].

✩Preliminary versions appeared in the Proceedings of the IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, 2010, pp. 505-516,
and in the Proceedings of the 14th International Conference on Foundations of Software Science and Computational Structures
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Multi-mean-payoff games. A multi-mean-payoff game is played on a finite weighted game graph by two
players. The vertices of the game graph are partitioned into positions that belong to player 1 and positions
that belong to player 2. Edges of the graphs are labeled with k-dimensional vectors w of integer values,
i.e., w ∈ Zk. The game is played as follows. A pebble is placed on a designated initial vertex of the
game graph. The game is played in rounds in which the player owning the position where the pebble lies
moves the pebble to an adjacent position of the graph using an outgoing edge. The game is played for
an infinite number of rounds, resulting in an infinite path through the graph, called a play. The value
associated to a play is the mean value1 in each dimension of the vectors of weights labeling the edges of
the play. Accordingly, the winning condition for player 1 is defined by a vector of rational values v ∈ Qk

that specifies a threshold for each dimension. A play is winning for player 1 if its vector of mean values is
at least v. All other plays are winning for player 2, thus the game is zero-sum. We are interested in the
problem of deciding the existence of a winning strategy for player 1 in multi-mean-payoff games. In general
infinite memory may be required to win multi-mean-payoff games, but in many practical applications such
as the synthesis of reactive systems with multiple resource constraints, the multi-mean-payoff games with
finite memory is the relevant problem. Also they provide the framework for the synthesis of specifications
defined by mean-payoff conditions [2, 10, 11], and the synthesis question for such specifications under regular
(ultimately periodic) words correspond to multi-mean-payoff games with finite-memory strategies. Hence we
study multi-mean-payoff games both for general strategies as well as finite-memory strategies.

Multi-energy games. In multi-energy games, the winning condition for player 1 requires that, given an initial
credit v0 ∈ Nk, the sum of v0 and all the vectors labeling edges up to position i in the play is nonnegative,
for all i ∈ N. The decision problem for multi-energy games asks whether there exists an initial credit v0 and
a strategy for player 1 to maintain the energy nonnegative in all dimensions against all strategies of player 2.

Contributions. In this paper, we study the strategy complexity and computational complexity of solving
multi-mean-payoff and multi-energy games. The contributions are as follows.

First, we show that multi-energy and multi-mean-payoff games are determined when played with finite-
memory strategies. When considering finite-memory strategies, those games correspond to the synthesis
question with ultimately periodic words, and they enjoy pleasant mathematical properties like existence of
the limit of the mean value of the weights. We also establish that multi-energy and multi-mean-payoff games
are not determined for memoryless strategies. Additionally, we show for multi-energy games determinacy
under finite-memory coincides with determinacy under arbitrary strategies, and each player has a winning
strategy if and only if he has a finite-memory winning strategy. In contrast, we show for multi-mean-
payoff games that determinacy under finite-memory and determinacy under arbitrary strategies do not
coincide. Moreover, for multi-mean-payoff games when the strategies for player 1 is restricted to finite-
memory strategies, the winning set for player 1 remains unchanged irrespective of whether we consider
finite-memory or infinite-memory counter strategies for player 2.

Second, we show that under the restriction that either both players play finite-memory or both play mem-
oryless strategies, the decision problems for multi-mean-payoff games and multi-energy games are equivalent.

Third, we study the computational complexity of the decision problems for multi-mean-payoff games
and multi-energy games, both for finite-memory strategies and the special case of memoryless strategies.
Our complexity results can be summarized as follows. (A) For finite-memory strategies, we provide a
nondeterministic polynomial-time algorithm for deciding negative instances of the problems2. Thus we show
that the decision problems are in coNP. This significantly improves the complexity as compared to the
EXPSPACE algorithm that can be obtained by reduction to Vass (vector addition systems with states) [5].
Furthermore, we establish a coNP lower bound for these problems by reduction from the complement of the
3SAT problem, hence showing that the problem is coNP-complete. (B) For the case of memoryless strategies,
as the games are not determined, we consider the problem of determining if player 1 has a memoryless winning
strategy. First, we show that the problem of determining if player 1 has a memoryless winning strategy is

1The mean value can be either the mean-payoff-sup or the mean-payoff-inf value defined as the limsup (resp., liminf) of the
means of the weights of the finite prefixes.

2Negative instances are those where player 1 is losing, and by determinacy under finite-memory, where player 2 is winning.
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in NP, and then show that the problem is NP-hard even when the weights are restricted to {−1, 0, 1} and
two dimensions.

Finally, we study the computational complexity of multi-mean-payoff games for infinite-memory strate-
gies. Our complexity results are summarized as follows. (A) We show that multi-mean-payoff games with
mean-payoff-sup objectives can be decided in NP ∩ coNP (in the same complexity as for games with sin-
gle mean-payoff objectives). Moreover, we also show that if mean-payoff games with single mean-payoff
objective can be solved in polynomial time, then multi-mean-payoff games with mean-payoff-sup objectives
can also be solved in polynomial time. (B) Multi-mean-payoff games with mean-payoff-inf objectives are
coNP-complete. (C) Finally, we show that multi-mean-payoff games with combination of mean-payoff-sup
and mean-payoff-inf objectives are also coNP-complete.

In summary, our results establish optimal computational complexity results for multi-mean-payoff and
multi-energy games under finite-memory, memoryless, and infinite-memory strategies.

Discussion on applications. We discuss two concrete applications where multi-dimensional mean-payoff
games are useful. The first problem is related to synthesis from incompatible specifications studied in [7],
where given several specifications all of which cannot be satisfied simultaneously, the goal is to obtain an
implementation that minimizes the violation of the specifications. It was shown in [7] that the problem of
synthesis from incompatible specifications reduces to games with multi-dimensional mean-payoff objectives.
Second, multi-dimensional objectives have been used in the analysis of real-time scheduling algorithms, where
one objective is to maximize the average utility (one mean-payoff objective) while ensuring that the average
energy consumption is below a threshold (the other mean-payoff objective) [14]. In the above applications,
the restriction to finite-memory strategies leads to multi-energy objectives.

Related works. Mean-payoff games, which are the one-dimension version of our multi-mean-payoff games,
have been extensively studied starting with the works of Ehrenfeucht and Mycielski in [19] where they prove
memoryless determinacy for these games. Because of memoryless determinacy, it is easy to show that the
decision problem for mean-payoff games lies in NP ∩ coNP, but despite large research efforts, no polynomial
time algorithm is known for that problem. A pseudo-polynomial time algorithm has been proposed by Zwick
and Paterson in [32], and improved in [6], and certain special cases can be solved in polynomial time [13].
The one-dimension special case of multi-energy games have been introduced in [8] and further studied in [3]
where log-space equivalence with classical mean-payoff games is established. Several variants of multi-energy
games such as resource consumption games [4] and finitary versions [12] have also been studied. Multi-energy
games can be viewed as games played on Vass (vector addition systems with states) where the objective is
to avoid unbounded decreasing of the counters. A solution to such games on Vass is provided in [5] (see
in particular Lemma 3.4 in [5]) with a PSPACE algorithm when the weights are {−1, 0, 1}, leading to an
EXPSPACE algorithm when the weights are arbitrary integers. We improve the EXPSPACE upper-bound
by providing a coNP algorithm for the problem, and we also provide a coNP lower bound even when the
weights are restricted to {−1, 0, 1}. Finally the work in [20] considers multi-dimension energy games with
fixed initial credit, as well as variants of energy games with upper and lower energy bounds.

2. Definitions

Well quasi-orders. A relation � over a set D is a well quasi-order if the following conditions hold: (a) � is
transitive and reflexive, and (b) for all f : N→ D, there exist i1, i2 ∈ N such that i1 < i2 and f(i1) � f(i2).
It is known that (Nk,≤) is a well quasi-order and that the Cartesian product of two well quasi-ordered sets
is a well quasi-ordered set [18].

Multi-weighted two-player game structures. A multi-weighted two-player game structure (or simply a
game) is a tuple G = (S1, S2, E, w) where S1 ∩ S2 = ∅, and Si (i = 1, 2) is the finite set of player-i states
(we denote by S = S1 ∪ S2 the state space), E ⊆ S × S is the set of edges such that for all s ∈ S, there
exists s′ ∈ S such that (s, s′) ∈ E, and w : E → Zk is the multi-weight labeling function. The parameter
k ∈ N is the dimension of the multi-weights. The game G is a one-player game if S2 = ∅. The subgraph of
G induced by a set T ⊆ S is G ↾ T = (S1 ∩ T, S2 ∩ T,E ∩ (T × T ), w). Note that G ↾ T is a game structure
if for all s ∈ T , there exists s′ ∈ T such that (s, s′) ∈ E.
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A play in G from an initial state sinit ∈ S is an infinite sequence π = s0s1 . . . sn . . . of states such
that (i) s0 = sinit, and (ii) (si, si+1) ∈ E for all i ≥ 0. The prefix of length n of π is the finite sequence
π(n) = s0s1 . . . sn, its last element sn is denoted Last(π(n)) and its length |π(n)|. The set of all plays in G
is denoted Plays(G).

The energy level vector of a play prefix ρ = s0s1 . . . sn is EL(ρ) =
∑i=n−1

i=0 w(si, si+1), and the mean-payoff
vectors of a play π = s0s1 . . . sn . . . are defined as follows (in dimension 1 ≤ j ≤ k): the mean-payoff-sup value
is MP(π)j = lim supn→∞

1
n
·EL(π(n))j , and the mean-payoff-inf value is MP(π)j = lim infn→∞

1
n
·EL(π(n))j .

Strategies. A strategy of player i (i ∈ {1, 2}) in G is a function λi : S
∗ · Si → S such that (s, λi(ρ · s)) ∈ E

for all ρ ∈ S∗ and all s ∈ Si. A play π = s0s1 · · · ∈ Plays(G) is consistent with a strategy λi of player i if
sj+1 = λi(s0s1 . . . sj) for all j ≥ 0 such that sj ∈ Si. The outcome from a state sinit of a pair of strategies,
λ1 for player 1 and λ2 for player 2, is the (unique) play from sinit that is consistent with both λ1 and λ2. We
denote this play by outcomeG(sinit, λ1, λ2). We denote by Tλi(sinit) the strategy tree obtained as the unfolding
of the game G from sinit when strategy λi is used

3. The nodes of this tree are all prefixes of the plays from
sinit that are consistent with the strategy λi of player i.

A strategy λi for player i uses finite-memory if it can be encoded by a deterministic Moore machine
(M,m0, αu, αn) whereM is a finite set of states (the memory of the strategy), m0 ∈M is the initial memory
state, αu : M × S → M is the memory-update function, and αn : M × Si → S is the next-action function.
If the game is in a state s ∈ S and m ∈ M is the current memory value, then the memory is updated to
αu(m, s) and moreover if s ∈ Si is a player-i state, then the strategy chooses s′ = αn(m, s) as the next state.
Formally, 〈M,m0, αu, αn〉 defines the strategy λ such that λ(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ S∗ and
s ∈ Si, where α̂u extends αu to sequences of states as usual. The strategy is memoryless if |M | = 1. Given
a finite-memory strategy λi of player i, let Gλi

be the graph obtained as the product of G with the Moore
machine defining λi, where (〈m, s〉, 〈m′, s′〉) is a transition in the graph if m′ = αu(m, s), and either s ∈ Si

and s′ = αn(m, s), or s ∈ S3−i and (s, s′) ∈ E. Given a finite-memory strategy λi and an initial state sinit,
we denote by Gλi(sinit) the graph Gλi

with initial vertex 〈m0, sinit〉, restricted to the vertices reachable from
the initial vertex.

Graphs with parallel edges. For simplicity we give the definitions for graphs that do not contain parallel
edges. If we allow parallel edges, then a sequence of vertices does not uniquely define a path. In this case
a path is a sequence of transitions and a strategy decides not only on the next vertex but also on the next
transition. All the results in this work hold also for graphs with parallel edges.

Objectives. An objective for player 1 in G is a set of plays ϕ ⊆ Plays(G). Given a game G, an initial state
s0, and an objective ϕ, we say that a strategy λ1 is winning for player 1 from s0 if for all plays π ∈ Plays(G)
from s0 that are consistent with λ1, we have that π ∈ ϕ; and we say that a strategy λ2 is winning for player 2
from s0 if for all plays in π ∈ Plays(G) from s0 that are consistent with λ2, we have that π 6∈ ϕ. We denote
by 〈〈1〉〉ϕ the set of states s0 such that there exists a winning strategy for player 1 from s0, and by 〈〈2〉〉¬ϕ the
set of states s0 such that there exists a winning strategy for player 2 from s0. Note that 〈〈1〉〉ϕ ∩ 〈〈2〉〉¬ϕ = ∅
by definition. We consider the following objectives:

• Energy objectives. Given an initial energy vector v0 ∈ Nk, the multi-energy objective PosEnergyG(v0) =
{π ∈ Plays(G) | ∀n ≥ 0 : v0 + EL(π(n)) ≥ {0}k} requires that the energy level in all dimensions remain
always nonnegative.

• Mean-payoff objectives. Given two sets I, J ⊆ {1, . . . , k}, the multi-mean-payoff objective
MeanPayoffInfSupG(I, J) = {π ∈ Plays(G) | ∀i ∈ I : MP(π)i ≥ 0 ∧ ∀j ∈ J : MP(π)j ≥ 0} re-
quires for all dimensions in I the mean-payoff-inf value be nonnegative, and for all dimensions in J the
mean-payoff-sup value be nonnegative.

When the game G is clear from the context we omit the subscript in objective names. Note that
arbitrary thresholds a

b
∈ Q can be considered in the multi-mean-payoff objectives because the mean-payoff

3The reader should note that Tλ(s0) depends on the value of λ in each state and not just on the value of λ in the initial
state.
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value computed according to the weight function w is greater than a
b
if and only if the mean-payoff value

according to the weight function b · w − a is greater than 0 where (b · w − a)(e) = b · w(e) − a for all e ∈ E.
For the special case of I = ∅ and J = {1, . . . , k}, we denote by MeanPayoffSup = MeanPayoffInfSup(∅, J) the
conjunction of all mean-payoff-sup objectives, and for I = {1, . . . , k} and J = ∅ we denote byMeanPayoffInf =
MeanPayoffInfSup(I, ∅) the conjunction of all mean-payoff-inf objectives. We denote by MeanPayoffSupi =
MeanPayoffInfSup(∅, {i}) the single mean-payoff-sup objective in dimension 1 ≤ i ≤ k (and analogously for
MeanPayoffInf).

Decision problems. We consider the following decision problems:

• The unknown initial credit problem asks, given a multi-weighted two-player game structure G, and an
initial state s0, whether there exists an initial credit vector v0 ∈ Nk and a winning strategy λ1 for
player 1 from s0 for the objective PosEnergyG(v0).

• The mean-payoff threshold problem asks, given a multi-weighted two-player game structure G, an initial
state s0, and two sets I, J ⊆ {1, . . . , k} of indices, whether there exists a winning strategy λ1 for player 1
from s0 for the objective MeanPayoffInfSupG(I, J).

Remark 1. In this work we consider the unknown initial credit problem as it has close connection with the
mean-payoff game problem. We show that the unknown initial credit problem for energy games is equivalent
to the mean-payoff game problem when restricted to finite-memory strategies. A related question for energy
games is the fixed initial credit problem where the initial credit vector is given. The fixed initial credit problem
for k dimensions can be solved in (k − 1)-EXPTIME and is EXPSPACE-hard [5], whereas we show that the
unknown initial credit problem is coNP-complete, and our complexity results do not extend to the fixed initial
credit problem.

Determinacy, determinacy under finite-memory, and determinacy by finite-memory. We now
define the notion of determinacy, determinacy under finite-memory, and determinacy by finite-memory.

• (Determinacy). A game G with state space S and objective ϕ is determined if from all states s0 ∈ S,
either player 1 or player 2 has a winning strategy, i.e. S = 〈〈1〉〉ϕ ∪ 〈〈2〉〉¬ϕ. Observe that since
〈〈1〉〉ϕ ∩ 〈〈2〉〉¬ϕ = ∅, determinacy means that 〈〈1〉〉ϕ and 〈〈2〉〉¬ϕ partition the state space.

• (Determinacy under finite-memory). We also consider determinacy under finite-memory strategies.
Let 〈〈1〉〉finiteϕ be the set of states s0 from which player 1 has a finite-memory strategy λ1 such that
for all finite-memory strategies λ2 of player 2, we have outcomeG(s0, λ1, λ2) ∈ ϕ. And let 〈〈2〉〉finite¬ϕ
be the set of states s0 from which player 2 has a finite-memory strategy λ2 such that for all finite-
memory strategies λ1 of player 1, we have outcomeG(s0, λ1, λ2) 6∈ ϕ. A game G with state space S
and objective ϕ is determined under finite-memory if S = 〈〈1〉〉finiteϕ ∪ 〈〈2〉〉finite¬ϕ. Again observe
that 〈〈1〉〉finiteϕ ∩ 〈〈2〉〉finite¬ϕ = ∅, and determinacy under finite-memory means that 〈〈1〉〉finiteϕ and
〈〈2〉〉finite¬ϕ partition the state space. We say that determinacy and determinacy under finite-memory
coincide for an objective ϕ, if for all game structures, we have 〈〈1〉〉ϕ = 〈〈1〉〉finiteϕ and 〈〈2〉〉¬ϕ =
〈〈2〉〉finite¬ϕ.

• (Determinacy by finite-memory). We also consider determinacy by finite-memory strategies. Let
〈〈1〉〉finvsinfϕ be the set of states s0 from which player 1 has a finite-memory strategy λ1 such that for
all strategies λ2 of player 2, we have outcomeG(s0, λ1, λ2) ∈ ϕ (i.e., player 1 is restricted to finite-
memory strategies whereas strategies for player 2 are general infinite-memory strategies). The set
of states s0 from which player 2 has a finite-memory strategy λ2 such that for all strategies λ1 of
player 1, we have outcomeG(s0, λ1, λ2) 6∈ ϕ is denoted 〈〈2〉〉finvsinf¬ϕ. If for all game structures we
have 〈〈1〉〉ϕ = 〈〈1〉〉finvsinfϕ and 〈〈2〉〉¬ϕ = 〈〈2〉〉finvsinf¬ϕ, and all game structures with objective ϕ are
determined, then we say that determinacy by finite-memory strategies holds for ϕ.

We first observe that determinacy by finite-memory strategies implies that finite-memory strategies suffice
for both players, and determinacy by finite-memory implies determinacy under finite-memory (since given
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a finite-memory strategy of a player, if there is a counter strategy for the opponent, then there is a finite-
memory one by determinacy by finite-memory). Thus determinacy by finite-memory strategies implies that
(i) 〈〈1〉〉ϕ = 〈〈1〉〉finiteϕ = 〈〈1〉〉finvsinfϕ; and (ii) 〈〈2〉〉¬ϕ = 〈〈2〉〉finite¬ϕ = 〈〈2〉〉finvsinf¬ϕ. As we will show that
determinacy and determinacy under finite-memory do not coincide for multi-mean-payoff games (Theorem 5),
we consider for multi-mean-payoff objectives ϕ both (1) winning under finite-memory strategies, i.e. to decide
whether s0 ∈ 〈〈1〉〉finiteϕ for a given initial state s0; and (2) winning under general strategies, i.e. to decide
whether s0 ∈ 〈〈1〉〉ϕ for a given initial state s0. For multi-energy games we will show determinacy by
finite-memory strategies.

Determinacy for multi-mean-payoff and multi-energy objectives follows from a general determinacy result
for Borel objectives [27]: (a) multi-mean-payoff objectives can be expressed as a finite intersection of one-
dimensional mean-payoff objectives which are complete for the third level of the Borel hierarchy [9]; and
(b) multi-energy objectives can be expressed as a finite intersection of one-dimensional energy objectives
which are closed sets.

Theorem 1 (Determinacy [27]). Multi-mean-payoff and multi-energy games are determined.

Attractors. The player-1 attractor of a given set T ⊆ S of target states is the set of states from which
player 1 can force to eventually reach a state in T . The attractor is defined inductively as follows: let A0 = T ,
and for all j ≥ 0 let

Aj+1 = Aj ∪ {s ∈ S1 | ∃(s, t) ∈ E : t ∈ Aj} ∪ {s ∈ S2 | ∀(s, t) ∈ E : t ∈ Aj}

denote the set of states from where player 1 can ensure to reach Aj within one step irrespective of the choice
of player 2. Then the player-1 attractor is Attr1(T ) =

⋃
j≥0 Aj . The player-2 attractor Attr2(T ) is defined

symmetrically. Note that for i = 1, 2, the subgraph G ↾ (S \ Attri(T )) is again a game structure (i.e., every
state has an outgoing edge). For all multi-mean-payoff objectives ϕ (and in general for all tail objectives [9]),
we have 〈〈1〉〉ϕ = Attr1(〈〈1〉〉ϕ) and 〈〈2〉〉¬ϕ = Attr2(〈〈2〉〉¬ϕ).

3. Multi-Energy Games

In this section, we study the determinacy and complexity of multi-energy games. First, we show that
finite-memory strategies are sufficient for player 1, and memoryless strategies are sufficient for player 2.
It follows that multi-energy games are determined by finite-memory. We establish coNP complexity for
the unknown initial credit problem, as well as a matching coNP-hardness result, and we show that under
memoryless strategies for player 1 the problem is NP-complete. Finally, we show that the unknown initial
credit problem is log-space equivalent to the mean-payoff threshold problem when the players have to use
finite-memory strategies (and in general infinite-memory strategies are more powerful than finite-memory
strategies in multi-mean-payoff games). The case of infinite-memory strategies in multi-mean-payoff games
is addressed in Section 4.

Determinacy by finite-memory. The next lemmas show that finite-memory strategies are sufficient for
player 1 in multi-energy games, and that memoryless strategies are sufficient for player 2.

Lemma 1. For all multi-weighted two-player game structures G and initial states s0, the answer to the
unknown initial credit problem is Yes if and only if there exists an initial credit v0 ∈ Nk and a finite-
memory strategy λFM1 for player 1 such that for all strategies λ2 of player 2, we have outcomeG(s0, λ

FM
1 , λ2) ∈

PosEnergyG(v0).

Proof. One direction is trivial. For the other direction, assume that λ1 is a (not necessary finite-memory)
winning strategy for player 1 in G from s0 with initial credit v0 ∈ Nk. We show how to construct from λ1 a
finite-memory strategy λFM1 that is winning from s0 against all strategies of player 2 for initial credit v0.

Consider the strategy tree Tλ1(s0) and associate to each node ρ = s0s1 . . . sn in this tree the energy vector

v0 + EL(ρ). Since λ1 is winning, we have v0 + EL(ρ) ∈ Nk for all ρ ∈ Tλ1(s0). Now, consider the relation ⊑
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on the set S × Nk defined as follows: (s1, v1) ⊑ (s2, v2) if s1 = s2 and v1 ≤ v2 (i.e., v1(i) ≤ v2(i) for all i,
1 ≤ i ≤ k). The relation⊑ is a well quasi-order. As a consequence, on every infinite branch π = s0s1 . . . sn . . .

of Tλ1(s0) there exist two indices i < j such that Last(π(i)) = Last(π(j)) and EL(π(i)) ≤ EL(π(j)). We say

that node π(j) subsumes node π(i). Now, let T FM be the tree Tλ1(s0) where we stop each branch when we
reach a node n2 that subsumes one of its ancestor node n1. By König’s lemma [24] and Dickson’s lemma [18],
the tree T FM is finite. From the node n2, player 1 can mimic the strategy played in n1 because the energy
level in n2 is greater than in n1. From T FM, we can construct the Moore machine of a finite-memory strategy
λFM1 that is winning in the multi-energy game G from s0 with initial energy level v0. �

Lemma 2 ([5]). For all multi-weighted two-player game structures G and initial states s0, the answer to the
unknown initial credit problem is No if and only if there exists a memoryless strategy λ2 for player 2, such
that for all initial credit vectors v0 ∈ Nk and all strategies λ1 for player 1 we have outcomeG(s0, λ1, λ2) 6∈
PosEnergyG(v0).

Proof. The proof was given in [5, Lemma 19]. Intuitively, the proof is by induction over the number of
player-2 transitions, denoted by E2 = {(s, s′) ∈ E | s ∈ S2}. If |E2| = |S2|, then every player-2 strategy
is a memoryless strategy, and the result follows trivially. If |E2| > |S2|, then there is a vertex s ∈ S2 with
outdegree greater than one, and w.l.o.g, s has only two successors, namely, s′ and s′′. We denote by G′ (resp.,
G′′) the game graph with same vertex set as G and with edge set E \ {(s, s′)} (resp., E \ {(s, s′′)}). If the
answer to the unknown initial credit problem for either G′ or G′′ is No, then the proof follows immediately
by the induction hypothesis. Otherwise, we claim that the answer to the problem over the graph G is Yes.
Indeed, if the answer is Yes for both G′ and G′′, then there is a player-1 strategy λ′1 (resp., λ′′1 ) in G

′ (resp.,
G′′) that ensures a non-negative energy vector for an initial credit vector v′ (resp., v′′) in G′ (resp., G′′). Let
ρ′′0 be an arbitrary (for example, the shortest) play prefix that is consistent with λ′′1 and ends in s (if no such
ρ′′0 exists, then λ′′1 is winning also in G, and the proof follows). Consider a strategy λ∗1 that plays according
to λ′1 and history h′ until the transition (s, s′′) is followed, and then plays according to λ′′1 and history h′′

until the transition (s, s′) is followed, and then play according to λ′1, and so on. Where in every round, the
round is added to history h′ (resp., to h′′) if the round is played according to λ′1 (λ′′1 ), and in the first round
h′ is empty and h′′ = ρ′′0 . We claim that the strategy λ∗1 ensures a nonnegative energy level for the initial
credit vector v′ + v′′ + w(ρ′′0 ). Indeed, every play ρ according to λ∗1 can be decomposed into two plays ρ′

and ρ′′, such that ρ′ is consistent with λ′1 for a game that begins in s0 and ρ′′0ρ
′′ is consistent with λ′′1 . Let

π be a prefix of ρ, then w(π) = w(π′) + w(ρ′′0π
′′)− w(ρ′′0 ), where π

′ (resp., π′′) is a prefix of ρ′ (ρ′′). Hence,
w(π) ≥ −v′− v′′−w(ρ′′0 ), and we get that for the initial credit vector v0 = v′ + v′′ +w(ρ′′0 ), the energy never
drops below 0 when playing according to λ∗1. �

The previous two lemmas establish both determinacy by finite-memory strategies, as well as that determinacy
and determinacy under finite-memory coincide. As a consequence of the previous two lemmas, we get the
following theorem.

Theorem 2. Multi-energy games are determined by finite-memory, hence determined under finite-memory.
Determinacy coincides with determinacy under finite-memory for multi-energy games.

Remark 2. Note that it may be the case that player 1 is winning with some initial credit vector v0 when
player 2 is restricted to memoryless strategies, and is not winning with the same initial credit vector v0 when
player 2 can use arbitrary strategies. This situation is illustrated in Figure 1 where player 1 (owning round
states) can maintain the energy nonnegative in all dimensions with initial credit (2, 0) when player 2 (owning
square states) is memoryless. Indeed, either player 2 chooses the left edge from s0 to s1 and player 1 wins,
or player 2 chooses the right edge from s0 to s2, and player 1 wins as well by alternating the edges back to s0.
Now, if player 2 has memory, then player 2 wins by choosing first the right edge to s2, which forces player 1
to come back to s0 with multi-weight (−1, 1). The energy level is now (1, 1) in s0 and player 2 chooses the
left edge to s1 which is losing for player 1. Note that player 1 wins with initial credit (2, 1) and (3, 0) (or
any larger credit) against all arbitrary strategies of player 2.
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s0s1 s2

(0, 0)

(0, 0)

(−1, 1)

(1,−1)

(−2, 0)

Figure 1: player 1 (round states) wins with initial credit (2, 0) when player 2 (square states) can use memoryless strategies, but
not when player 2 can use arbitrary strategies.

Complexity. We show that the unknown initial credit problem is coNP-complete. First, we show that the
one-player version of this game can be solved by checking the existence of a circuit (i.e., a not necessarily
simple cycle) with nonnegative effect in all dimensions, and we use the memoryless result for player 2
(Lemma 2) to define a coNP algorithm. Second, we present a coNP-hardness proof.

Theorem 3. The unknown initial credit problem is coNP-complete.

First, we need the following result about zero-circuits in multi-weighted directed graphs (a graph is a
one-player game with S2 = ∅). A zero-circuit is a finite sequence s0s1 . . . sn with n ≥ 1 such that s0 = sn,

(si, si+1) ∈ E for all 0 ≤ i < n, and
∑n−1

i=0 w(si, si+1) = (0, 0, . . . , 0).

Lemma 3 ([26]). Deciding if a multi-weighted directed graph contains a zero-circuit can be done in poly-
nomial time.

The result of Theorem 3 follows from the next two lemmas.

Lemma 4. The unknown initial credit problem is in coNP.

Proof. Let G be a multi-weighted two-player game structure, and s0 be an initial state. By Lemma 2,
w.l.o.g we may assume that player 2 is restricted to play memoryless strategies. A coNP algorithm guesses
a memoryless strategy λ2 and checks in polynomial time that it is winning for player 2 using the following
argument.

Consider the graph Gλ2(s0) as a one-player game (in which all states belong to player 1). We show
that there exists an initial energy level v0 and an infinite play π = s0s1 . . . sn . . . in Gλ2(s0) such that
π ∈ PosEnergy(v0) iff there exists a reachable circuit in Gλ2(s0) with nonnegative effect in all dimensions.

For the “if” direction, the construction of an infinite play π is as follows: we take a finite prefix that
reaches the circuit with nonnegative effect in all dimensions, and then take this circuit an infinite number of
times. Clearly, there exists an initial energy level which guarantees that the energy level stays nonnegative
for ever in this infinite play.

For the other direction, we extend π with the energy level as follows: let π′ =
(s0, w0)(s1, w1) . . . (sn, wn) . . . where w0 = v0 and for all i ≥ 1, wi = v0+EL(π(i)). Since π ∈ PosEnergy(v0),
we know that wi ∈ Nk for all i ≥ 0. Hence the following order defined on the pairs (s, w) ∈ S × Nk is a
well quasi-order: (s, w) ⊑ (s′, w′) if s = s′ and w(j) ≤ w′(j) for all 1 ≤ j ≤ k. It follows that there exist
two indices i1 < i2 in π′ such that (si1 , wi1 ) ⊑ (si2 , wi2), and the underlying circuit through si1 = si2 has
nonnegative effect in all dimensions.

Based on this, we can decide if there exists an initial energy vector v0 and an infinite path in Gλ2(s0) that
satisfies PosEnergyG(v0) using the result of Lemma 3 on a modified version of Gλ2(s0) obtained as follows. In
every state of Gλ2(s0), we add k self-loops with respective multi-weight (−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . ,
(0, . . . , 0,−1), i.e. each self-loop removes one unit of energy in one dimension. It is easy to see that Gλ2(s0)

has a circuit with nonnegative effect in all dimensions if and only if the modified Gλ2(s0) has a zero-circuit,
which can be determined in polynomial time. The result follows. �
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Figure 2: Game graph construction for a 3SAT formula (Lemma 5).

Lemma 5. The unknown initial credit problem is coNP-hard.

Proof. We present a reduction from the complement of the 3SAT problem which is NP-complete [28].

Reduction. We show that the unknown initial credit problem for multi-weighted two-player game structures
is at least as hard as deciding whether a 3SAT formula is unsatisfiable. Consider a 3SAT formula ψ in
CNF with clauses C1, C2, . . . , Cℓ over variables {x1, x2, . . . , xn}, where each clause consists of disjunctions of
exactly three literals (a literal is a variable or its complement). Given the formula ψ, we construct a game
graph as shown in Figure 2. The game graph is as follows: from the initial state, player 1 chooses a clause,
then from a clause player 2 chooses a literal that appears in the clause (i.e., makes the clause true). From
every literal the next state is the initial state. We now describe the multi-weight labeling function w. In
the multi-weight function there is a component for every literal (i.e., k = 2n). For edges from the initial
state to the clause states, and from the clause states to the literals, the weight for every component is 0. We
now define the weight function for the edges from literals back to the initial state: for a literal y, and the
edge from y to the initial state, the weight for the component of y is 1, the weight for the component of the
complement of y is −1, and for all the other components the weight is 0. We now define a few notations
related to assignments of truth values to literals. We consider assignments that assign truth values to all the
literals. An assignment is valid if for every literal the truth value assigned to the literal and its complement
are complementary (i.e., for all 1 ≤ i ≤ n, if xi is assigned true (resp., false), then the complement xi of xi
is assigned false (resp., true)). An assignment that is not valid is conflicting (i.e., for some 1 ≤ i ≤ n, both
xi and xi are assigned the same truth value). If the formula ψ is satisfiable, then there is a valid assignment
that satisfies all the clauses. If the formula ψ is not satisfiable, then every assignment that satisfies all the
clauses must be conflicting. We now present two directions of the hardness proof.

ψ satisfiable implies player 2 winning. We show that if ψ is satisfiable, then player 2 has a memoryless
winning strategy. Since ψ is satisfiable, there is a valid assignment A that satisfies every clause. The
memoryless strategy is constructed from the assignment A as follows: for a clause Ci, the strategy chooses a
literal as successor that appears in Ci and is set to true by the assignment. Consider an infinite play where
the literals visited in the play are all assigned truth values true by A. The infinite play must visit some literal
infinitely often. Consider a literal x that appears infinitely often in the play, then the complement literal x
is never visited, and every time literal x is visited, the component corresponding to x decreases by 1, and
since x appears infinitely often it follows that the play is winning for player 2 for every finite initial credit
(and against any arbitrary player-1 strategy). It follows that the strategy for player 2 is winning, and the
answer to the unknown initial credit problem is No.

ψ not satisfiable implies player 1 is winning. We now show that if ψ is not satisfiable, then player 1 is
winning. By determinacy, it suffices to show that player 2 is not winning, and by existence of memoryless
winning strategy for player 2 (Lemma 2), it suffices to show that there is no memoryless winning strategy
for player 2. Fix an arbitrary memoryless strategy for player 2, (i.e., in every clause player 2 chooses a literal
that appears in the clause). If we consider the assignment A, that satisfies all clauses, and obtained from
the memoryless strategy, then since ψ is not satisfiable it follows that the assignment A is conflicting. Hence
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there must exist clause Ci and Cj and variable xr such that the strategy chooses the literal xr in Ci and
the complement variable xr in Cj . The strategy for player 1 that at the starting state alternates between
clause Ci and Cj , along with that the initial credit of 1 for the component of xr and xr, and 0 for all other
components, ensures that the strategy for player 2 is not winning. Hence the answer to the unknown initial
credit problem is Yes, and we have the desired result. �

Remark 3. Observe that our hardness proof works with weights restricted to the set {−1, 0, 1}. The results
of [22] show that in two dimensions (k = 2) the unknown initial credit problem with weights in {−1, 0, 1}
can be solved in polynomial time. The complexity for fixed dimensions k ≥ 3 is not known. With arbitrary
integer weights, the unknown initial credit problem for k = 1 is in UP ∩ coUP [3]. For optimal memory
bounds of the finite-memory winning strategies and symbolic algorithms to compute such strategies see [15].

Complexity for memoryless strategies. We consider multi-energy games when player 1 is restricted to
use memoryless strategies. The unknown initial credit problem for memoryless strategies is to decide, given
a multi-weighted two-player game structure G, and an initial state s0, whether there exist an initial credit
vector v0 ∈ Nk and a memoryless winning strategy λ1 for player 1 from s0 for the objective PosEnergyG(v0).

Theorem 4. The unknown initial credit problem for memoryless strategies is NP-complete.

Proof. The inclusion in NP is obtained as follows: the polynomial witness is the memoryless strategy for
player 1, and once the strategy is fixed we obtain a game graph with choices for player 2 only. The verification
is to check that for every dimension there is no negative cycle, and it can be achieved in polynomial time by
solving one-dimensional energy games on graphs with choices for player 2 only [8, 3].

The NP hardness follows from a result of [21] where, given a directed graph and four vertices w, x, y, z, the
problem of deciding the existence of two (vertex) disjoint simple paths (one from w to x and the other from
y to z) is shown to be NP-complete. It easily follows that given a directed graph, and two edges x→ y and
z → w, the problem of deciding the existence of a simple cycle that contains the two edges is NP-complete.
Given a directed a graph and two edges, we construct a one-player game by (1) assigning (n,−1) to (x, y),
and (−1, n) to (z, w) (where n is the number of vertices in the graph), and (2) assigning all other edges of the
graph the weight (−1,−1). In the resulting one-player game, a winning memoryless strategy from w must
induce a simple cycle through x→ y and z → w to ensure nonnegative sum of weights in the two dimensions.
Conversely, a simple cycle through x→ y and z → w ensure the existence of a winning memoryless strategy
from w. This shows that the unknown initial credit problem for memoryless strategies is at least as hard as
the decision problem of [21], and thus NP-hard. The NP-completeness result follows. �

The reduction in the proof of Theorem 4 can be obtained with weights in {−1, 0, 1} by replacing the edges
with weight n by a sequence of n edges with weight 1. The reduction remains polynomial. Theorem 4 shows
NP-hardness for dimension k = 2 and weights in {−1, 0, 1}. For k = 1, the problem is solvable in polynomial
time with weights in {−1, 0, 1}, and for arbitrary integer weights, the problem is in UP ∩ coUP [3, 6].

Equivalence with multi-mean-payoff games under finite-memory strategies. We show that multi-
mean-payoff games where the players are restricted to play finite-memory strategies are log-space equivalent
to multi-energy games. The result of Lemma 6 shows that the unknown initial credit problem (for multi-
energy games) and the mean-payoff threshold problem (with finite-memory strategies) are equivalent.

Note that if the players use finite-memory strategies, then the outcome π is ultimately periodic (a play
π = s0s1 . . . sn . . . is ultimately periodic if it can be decomposed as π = ρ1 · ρω2 where ρ1 and ρ2 are two finite
sequences of states) and therefore, the value of MP(π) and MP(π) coincide. We denote by MeanPayoffG the
set of ultimately periodic plays satisfying the multi-mean-payoff objective MeanPayoffInfG (or equivalently,
satisfying MeanPayoffSupG).

Lemma 6. For all multi-weighted two-player game structures, the answer to the unknown initial credit
problem is Yes if and only if the answer to the mean-payoff threshold problem under finite-memory strategies
is Yes.
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Figure 3: A multi-mean-payoff game where infinite memory is necessary to win (Lemma 7).

Proof. Let G be multi-weighted two-player game structure of dimension k, and let s0 be the initial
state. First, assume that there exists a winning strategy λ1 for player 1 in G with initial state s0 for the
energy objective PosEnergyG(v0) (for some v0). Theorem 2 establishes that finite memory is sufficient to
win multi-energy games, so we can assume that λ1 has finite memory. Consider the restriction of the graph
Gλ1(s0) to the reachable vertices, and we show that the energy vector of every simple cycle is nonnegative.
By contradiction, if there exists a simple cycle with energy vector negative in one dimension, then the infinite
path that reaches this cycle and loops through it forever would violate the objective PosEnergyG(v0) regardless
of the vector v0. Now, this shows that every reachable cycle in Gλ1(s0) has nonnegative mean-payoff value
in all dimensions, hence λ1 is winning for the multi-mean-payoff objective MeanPayoffG.

Second, assume that there exists a finite-memory strategy λ1 for player 1 that is winning in G for the
multi-mean-payoff objective MeanPayoffG. By the same argument as above, all simple cycles in Gλ1(s0)

are nonnegative and the strategy λ1 is also winning for the objective PosEnergyG(v0) for some v0. Taking
v0 = {nW}k (i.e., the value of every dimension of v0 is nW ) where n is the number of states in Gλ1(s0)

(which bounds the length of the acyclic paths) and W ∈ Z is the largest weight in the game suffices. �

Note that the result of Lemma 6 does not hold for arbitrary strategies as shown in the following lemma.

Lemma 7. In multi-mean-payoff games, in general infinite-memory strategies are required for winning (i.e.,
in general, finite-memory strategies are not sufficient for winning).

Proof. The example of Figure 3 shows a one-player game. We claim that (a) for MP, player 1 can achieve
a threshold vector (1, 1), and (b) for MP, player 1 can achieve a threshold vector (2, 2); (c) if we restrict
player 1 to use a finite-memory strategy, then it is not possible to win the multi-mean-payoff objective with
threshold (1, 1) (and thus also not with (2, 2)). To prove (a), consider the strategy that visits n times sa
and then n times sb, and repeats this forever with increasing value of n. This guarantees a mean-payoff
vector (1, 1) for MP because in the long-run roughly half of the time is spent in sa and roughly half of the
time in sb. To prove (b), consider the strategy for n = 1, 2, . . . , traverses the self loop of sa until the average
weight in the first dimension is at least 2 − 1

n
and then traverse the self loop of sb until the average weight

in the second dimension is at least 2− 1
n
. This is achieves threshold (2, 2) for MP. Note that the above two

strategies require infinite memory. To prove (c), recall that finite-memory strategies produce an ultimately
periodic play and therefore MP and MP coincide. It is easy to see that such a play cannot achieve (1, 1)
because the periodic part would have to visit both sa and sb and then the mean-payoff vector (v1, v2) of the
play would be such that v1 + v2 < 2 and thus v1 = v2 = 1 is impossible. �

Lemma 6 and Lemma 7 along with Theorem 2 give the following result.

Theorem 5. Multi-mean-payoff games are determined under finite-memory, but not determined by finite-
memory (i.e., winning strategies in general require infinite memory, and determinacy and determinacy under
finite-memory do not coincide). For multi-mean-payoff objectives ϕ we have 〈〈1〉〉finiteϕ = 〈〈1〉〉finvsinfϕ.

4. Multi-Mean-Payoff Games

In this section we consider multi-mean-payoff games with infinite-memory strategies (we have already
shown in the previous section that multi-mean-payoff games with finite-memory strategies coincide with

11



multi-energy games). We present the following complexity results for the mean-payoff threshold problem:
(1) NP ∩ coNP for conjunction of MeanPayoffSup objectives; (2) coNP-completeness for conjunction of
MeanPayoffInf objectives; and (3) coNP-completeness for conjunction of mean-payoff-inf and mean-payoff-
sup objectives.

4.1. Conjunction of MeanPayoffSup objectives

We consider multi-weighted two-player game structures with the multi-mean-payoff objective
MeanPayoffSupG = {π ∈ Plays(G) | MP(π) ≥ (0, 0, . . . , 0)}) for player 1. In general winning strategies
for player 1 require infinite memory. We show that memoryless winning strategies exist for player 2 and we
present a reduction of the decision problem for a conjunction of k mean-payoff-sup objectives to solving poly-
nomially many instances of the decision problem for single mean-payoff-sup objective. As a consequence the
decision problem for MeanPayoffSupG lies in NP ∩ coNP, and we obtain a pseudo-polynomial time algorithm
for this problem.

In the next lemma we show that if player 1 can satisfy the MeanPayoffSup objective in every individual
dimension from all states, then player 1 can satisfy the conjunctive MeanPayoffSup objective from all states.
The converse holds trivially. The main idea of the proof is as follows: for each 1 ≤ i ≤ k, let λi1 be a
winning strategy for player 1 for the objective MeanPayoffSupi. Intuitively, the winning strategy for the
conjunction of mean-payoff-sup objective plays λi1, until the mean-payoff value on dimension i gets larger

than a number very close to 0, and then switches to the strategy to λ
(i (mod k))+1
1 , etc. This way player 1

ensures nonnegative mean-payoff-sup value in every dimension. We present the proof formally below. While
memoryless winning strategies exist for each individual dimension, we present a proof that does not use the
assumption of witness memoryless winning strategies for individual dimensions. A similar proof technique
is used later (in Lemma 17) where memoryless winning strategies for each individual dimension are not
guaranteed to exist.

Lemma 8. If for all states s ∈ S and for all 1 ≤ i ≤ k, player 1 has a winning strategy from s for
the objective MeanPayoffSupi = {π ∈ Plays | (MP(π))i ≥ 0} (player 1 has winning strategies for each
individual dimension), then for all states s ∈ S, player 1 has a winning strategy from s for the objective
MeanPayoffSup = {π ∈ Plays | MP(π) ≥ (0, 0, . . . , 0)}.

Proof. For each s ∈ S and 1 ≤ i ≤ k, let λi1(s) be a winning strategy for player 1 from s for the objective
MeanPayoffSupi, and consider the strategy tree Tλi

1
(s). For α > 0, we say that a node v of Tλi

1
(s) is an α-good

node if the average of the weights of dimension i of the path from the root to v is at least −α. For Z ∈ N,
let T̂ i,Z

α (s) be the tree obtained from Tλi
1
(s) by removing all descendants of the α-good nodes that are at

depth at least Z. Hence, all branches of T̂ i,Z
α (s) have length at least Z, and the leaves are α-good nodes.

We show that T̂ i,Z
α (s) is a finite tree. By König’s Lemma [24], it suffices to show that every path in the

tree T̂ i,Z
α (s) is finite. Assume towards contradiction that there is an infinite path π in T̂ i,Z

α (s). Then π is a
play consistent with λi1(s), and since π does not contain any α-good node beyond depth Z, the mean-payoff-
sup value of π in dimension i is at most −α, i.e., (MP(π))i ≤ −α. This contradicts the assumption that
λi1(s) is a winning strategy for player 1 in dimension i from s.

We now describe a strategy for player 1 based on the winning strategies of the individual dimensions
and show that the strategy is winning for the conjunction of mean-payoff-sup objectives. Let W ∈ N be the
largest absolute value of the weight function w.

1: α← 1
2: loop
3: for i = 1 to k do
4: Let s be the current state, and L be the length of the play so far.
5: Z ← L·W

α

6: Play according to λi1(s) with history after the L steps until a leaf of T̂ i,Z
α (s) is reached.

7: end for
8: α← α

2
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9: end loop

After the last command in the internal for-loop was executed, the mean-payoff value in dimension i, is
at least −L·W−m·α

L+m
where m ≥ L·W

α
and this is at least −L·W−m·α

m
≥ −2 · α.

Since T̂ i,Z
α (s) is a finite tree, the main loop gets executed infinitely often (i.e., the strategy does not get

stuck in the for-loop) and α tends to 0. Thus the supremum of the mean-payoff value is at least 0 in every
dimension. Hence the strategy described above is a winning strategy for player 1 for MeanPayoffSup. �

In Lemma 8 the winning strategy constructed for player 1 requires infinite-memory, and by Lemma 7
infinite memory is required in general. For player 2, we show that memoryless winning strategies exist, and
we derive the algorithmic solution for the mean-payoff threshold problem.

Lemma 9. In multi-mean-payoff games with conjunction of MeanPayoffSup objectives for player 1, memo-
ryless strategies are sufficient for player 2.

Proof. The proof is by induction on the number of states |S| in the game structure. The base case with
|S| = 1 is trivial. We now consider the inductive case with |S| = n ≥ 2. Let k ∈ N be the dimension of
the weight function w. For i = 1, . . . , k, let Wi = 〈〈2〉〉¬MeanPayoffSupi be the winning region for player 2
for the one-dimensional mean-payoff game played in dimension i. (i.e., in Wi player 2 wins for the objective

complementary to MeanPayoffSupi = {π ∈ Plays | (MP(π))i ≥ 0}). Let W =
⋃k

i=1Wi. We consider the
following two cases:

1. If W = ∅, then player 1 can satisfy the mean-payoff-sup objective in every dimension, and then by
Lemma 8 player 1 wins from everywhere for the objective MeanPayoffSup = {π ∈ Plays | MP(π) ≥
(0, 0, . . . , 0)}. Hence there is no winning strategy for player 2.

2. If W 6= ∅, then there exists 1 ≤ i ≤ k such that Wi 6= ∅. In Wi there is a memoryless winning strategy
λ2 for player 2 to falsify MeanPayoffSupi = {π ∈ Plays | (MP(π))i ≥ 0} since memoryless winning
strategies exist for both players in mean-payoff games with single objective [19]. The strategy also
falsifies MeanPayoffSup = {π ∈ Plays | MP(π) ≥ (0, 0, . . . , 0)}.

Since Wi is a winning region for player 2, it follows that Wi = Attr2(Wi), and the graph G′ induced
by S \Wi is a game structure. Let W ′ be the winning region for player 2 in G′ for the complement
of conjunction of MeanPayoffSup, and we note that W ′ ∩Wi = ∅. By induction hypothesis (G′ has
strictly fewer states as a non-empty set Wi is removed), it follows that there is a memoryless winning
strategy λ′2 in G′ in the regionW ′. The winning region S \ (Wi ∪W

′) for player 1 in G′ is also winning
for player 1 in G (since Wi = Attr2(Wi), G

′ is obtained by removing only player 1 edges). Hence to
complete the proof it suffices to show that the memoryless strategy obtained by combining λ2 in Wi

and λ′2 in W ′ is winning for player 2 from Wi ∪W ′. Define the strategy λ∗2 as follows:

λ∗2(s) =

{
λ2(s) if s ∈ Wi

λ′2(s) if s ∈ W ′.

Consider the memoryless strategy λ∗2 for player 2 and the outcome of any counter strategy for player 1
that starts in W ′ ∪Wi. There are two cases: (a) if the play reaches Wi, then it reaches in finitely
many steps, and then λ2 ensures that player 2 wins; and (b) if the play never reachesWi, then the play
always stays in G′, and now the strategy λ′2 ensures winning for player 2. This completes the proof of
the second item.

The desired result follows. �

Algorithm. We present Algorithm 1 to solve games with conjunction of mean-payoff-sup objec-
tives. The algorithm maintains the current game structure Gcur induced by the current set of states
Scur . In every iteration of the repeat-loop, for i = 1, . . . , k, we compute the winning region Wi for
player 2 in the current game structure with the single mean-payoff objective on dimension i by a call to
SolveSingleMeanPayoffSup(Gcur , (w)i) which returns the winning region for player 1 in Gcur for the objective
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Algorithm 1: SolveMeanPayoffSupGame

Input: A game G with state space S and multi-weight function w.

Output: The winning region of player 1 for objective MeanPayoffSup =
⋂

1≤i≤k MeanPayoffSupi.

begin
1 Gcur ← G

2 Scur ← S

3 repeat
4 LosingStatesFound← false

5 for i = 1 to k do
6 Wi ← Scur\ SolveSingleMeanPayoffSup(Gcur , (w)i) /* solves MeanPayoffSupi */

7 if Wi 6= ∅ then
8 Scur ← Scur \Wi

9 Gcur ← Gcur ↾ Scur

10 LosingStatesFound← true

until LosingStatesFound = false

11 return Scur

end

MeanPayoffSupi. If Wi is nonempty, then we remove Wi from the current game structure and the iteration
continues.

In every iteration the set of states removed from the game structure is certainly winning for player 2. In
the end we obtain a game structure such that player 1 wins the mean-payoff objective in every individual
dimension from all states, and by Lemma 8 it follows that the remaining region is winning for player 1. Thus
game structures with conjunction of mean-payoff-sup objectives can be solved by O(k · |S|) calls to solutions
of mean-payoff games with single objective. The following theorem summarizes the results for multi-weighted
games with conjunction of mean-payoff-sup objectives.

Theorem 6. For multi-weighted two-player game structures with objective MeanPayoffSup = {π ∈ Plays |
MP(π) ≥ (0, 0, . . . , 0)} for player 1, the following assertions hold:

1. Winning strategies for player 1 require infinite memory in general, and memoryless winning strategies
exist for player 2.

2. The problem of deciding whether a given state is winning for player 1 lies in NP ∩ coNP.

3. The set of winning states for player 1 can be computed with k · |S| calls to a procedure for solving game
structures with single mean-payoff objective, hence in pseudo-polynomial time O(k · |S|2 · |E| ·W ).

The results of Theorem 6 are proved as follows. Item 1 follows from Lemma 7 and Lemma 9. Item 3
follows from Algorithm 1 and the results of [6] where an algorithm is given for games with single mean-payoff
objectives that works in time O(|S| · |E| ·W ). We now present the details of Item 2 in two parts. (1) (In NP).
The NP algorithm guesses the winning region W for player 1, and a memoryless winning strategy λi1 for
every individual dimension i (such memoryless winning strategies for every individual dimension exist by the
results of [19]). The verification procedure checks in polynomial time that for every dimension i, for every
state s ∈W , the state is winning for player 1 in the graph Gλi

1
(s) using the polynomial time algorithm of [23].

The correctness (that is, the existence of winning strategy in every individual dimension implies winning for
the conjunction) follows from Lemma 8. (2) (In coNP). The coNP algorithm guesses a memoryless winning
strategy λ2 for player 2. The verification procedure needs to solve mean-payoff-sup objectives for the graph
Gλ2

and by Algorithm 1 this can be solved with k · |S| calls to the polynomial time algorithm of [23] to solve
graphs with single mean-payoff objectives. Thus we have the polynomial-time verification procedure, and
the coNP complexity bound follows.
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4.2. Conjunction of MeanPayoffInf objectives

We consider multi-weighted two-player game structures, and the multi-mean-payoff-inf objective
MeanPayoffInf = {π ∈ Plays(G) | MP(π) ≥ (0, 0, . . . , 0)}) for player 1. In general winning strategies for
player 1 require infinite memory (Lemma 7). We show that memoryless winning strategies exist for player 2,
and the threshold problem is coNP-complete.

Memoryless strategies for player 2. The objective for player 2 is the complementary objective of
player 1. It follows from the results of [25] that memoryless winning strategies exist for player 2. We discuss
the results of [25] which shows the existence of memoryless winning strategies for player 2 when the objective
for player 1 is the conjunction of mean-payoff-inf objectives. We will also argue that the results of [25] do
not show the existence of memoryless winning strategies for player 2 when the objective for player 1 is the
conjunction of mean-payoff-sup objectives (the result that we establish in Lemma 9). The result of [25]
requires the notion of convexity for prefix-independent objectives.

Prefix-independent and convex objectives. An objective ϕ is prefix-independent if for all plays π and
π′ such that π′ = ρ · π, where ρ is a finite prefix, we have π ∈ ϕ iff π′ ∈ ϕ, i.e., the objective is independent
of finite prefixes. A play π is a combination of two plays π1 = u1u3u5 . . . and π2 = u0u2u4 . . ., where ui’s
are finite prefixes, if π = u0u1u2u3u4 . . .. An objective ϕ is convex if it is closed under combination. We
refer the reader to [25] for further details. The results of [25] shows that if the objective for player 1 is
prefix-independent and convex, then memoryless winning strategies exist for player 2. It is easy to verify
that mean-payoff-inf objectives are both prefix-independent and convex. It follows that conjunction of
mean-payoff-inf objectives are also prefix-independent and convex. Hence in games with conjunction of
mean-payoff-inf objectives, memoryless winning strategies exist for player 2. We now show with an example
that in contrast mean-payoff-sup objectives are not convex.

Example 1. Consider a one-player game structure G with two states {s+, s−}, and with an edge set E =
{(s+, s−), (s−, s+), (s+, s+), (s−, s−)}, such that all incoming edges to state s+ have weight +2, and all
incoming edges to s− have weight −2.

Consider the following play π0:

1. Step 1. Repeat the self-loop in s− until the average weight of the play prefix is below −1, then take edge
to s+ and goto Step 2.

2. Step 2. Repeat the self-loop in s+ until the average weight of the play prefix is above 1, then take edge
to s− and goto Step 1.

Consider the play π1 obtained by exchanging s+ and s− in π0. It is easy to verify that MP(π0) = MP(π1) =
+1. However, for the following combination of the plays π2, such that for all i ≥ 0 the (2i − 1)-th state of
π2 is the i-th state of π0 and the 2i-th state of π2 is the i-th state of π1. We get that MP(π2) = 0. It follows
that mean-payoff-sup objectives are not convex.

Complexity. We show that the problem of deciding whether a given state is winning for player 1 in multi-
weighted game structures with conjunction of mean-payoff-inf objectives is coNP-complete. We first argue
about the coNP lower bound.

coNP lower bound. The proof is essentially the same as the proof of Lemma 5 and relies on the existence
of memoryless winning strategies for player 2. We consider the hardness proof of Lemma 5 and the reduction
used in the lemma. If the formula is satisfiable, then consider the memoryless winning strategy for player 2
constructed from the satisfying assignment. Consider an arbitrary strategy (possibly with infinite-memory)
for player 1. Since the strategy for player 2 is constructed from a non-conflicting assignment, it follows that
conflicting literals do not appear. Within every three steps some literal is visited. If n is the number of
variables, then in any play prefix compatible with the strategy of player 2, the frequency of the literal x with
highest frequency in this prefix is at least 1

3·(n+1) (and note that the literal x has never appeared). It follows

that the average of the weights in the dimension for x is at most − 1
3·(n+1) and therefore the mean-payoff-inf

objective is violated in some dimension. Conversely, if the formula is not satisfiable, then against every
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memoryless strategy for player 2, the counter strategy constructed in Lemma 5 (that alternates between the
conflicting assignments) ensures that the mean-payoff-inf objective is satisfied. Hence the coNP-hardness
follows.

coNP upper bound. The rest of the section is devoted to proving the coNP upper bound. Once a
memoryless strategy for player 2 is fixed (as a polynomial witness), we obtain a one-player game structure.
To establish the coNP upper bound we need to show that the problem can be solved in polynomial time for
one-player game structures. A polynomial-time algorithm for the problem is obtained by solving a variant
of the zero-circuit problem for multi-weighted directed graphs. The variant of the zero-circuit problem is the
nonnegative multi-cycle problem for directed graphs, where the multi-cycle is not required to be connected
by edges as in the case of zero-circuit problem.

Nonnegative multi-cycles. Let G = (V,E,w : E → Zk) be a multi-weighted directed graph that is
strongly connected. A multi-cycle is a multi-set of simple cycles. For a multi-cycle C we denote by
SetCycle(C) = {C1, . . . , Cn} the set of cycles that appear in C, and hence SetCycle(C) is a set of sim-
ple cycles. We denote by mi the number of occurrences of the simple cycle Ci in the multi-set C, and refer
to mi as the factor of Ci in C. For a simple cycle C = (e0, e1 . . . en), we denote w(C) =

∑
e∈C w(e). For a

multi-cycle C, we denote w(C) =
∑

C∈C
w(C) (note that in the summation a cycle C may appear multiple

times in C, and alternatively the summation can be expressed as considering simple cycles Ci that appear
in C and summing up mi ·w(Ci) for Ci ∈ SetCycle(C)). A nonnegative multi-cycle is a non-empty multi-set
of simple cycles C such that w(C) ≥ 0 (i.e., in every dimension the weight is nonnegative).

Lemma 10. Let G = (V,E,w : E → Zk) be a multi-weighted directed graph that is strongly connected.

1. The problem of deciding if G has a nonnegative multi-cycle can be solved in polynomial time.

2. If G does not have a nonnegative multi-cycle, then there exist a constant mG ∈ N and a real-valued
constant cG > 0 such that for all finite paths πf in the graph G we have min{wi(π

f ) | i ∈ {1, . . . , k}} ≤
mG − cG · |πf |.

Proof. We prove both the items below.

1. The proof of the first item is almost exactly as the proof of Theorem 2.2 in [26]. Given the directed
strongly connected graph G = (V,E,w : E → Zk), we consider a variable xe (for edge coefficient of e)
for every e ∈ E. We define the following set of linear constraints.

(a) For v ∈ V , let IN (v) be the set of all in-edges of v, and OUT (v) be the set of out-edges of v. For
every v ∈ V we define the linear constraint that

∑
e∈IN (v) xe =

∑
e∈OUT (v) xe.

(b) For every e ∈ E we define the constraint xe ≥ 0.

(c) For every dimension i ∈ {1, . . . , k}, we define the constraint
∑

e∈E xe · wi(e) ≥ 0.

(d) Finally, we define the constraint
∑

e∈E xe ≥ 1.

The first set of linear constraints is intuitively the flow constraints; the second constraint specifies
that for every edge e, the edge coefficient xe is nonnegative; the third constraint specifies that in
every dimension the sum of edge coefficient time the weights is nonnegative; and the last constraint
ensures that at least one edge coefficient is strictly positive (to ensure that the multi-cycle is non-
empty). This set of constraints can be solved in polynomial time using standard linear programming
algorithms. Intuitively, if this set of constraints has a solution, then it correspond to a multi-set of
cycles (due to the flow constraints) and the fourth constraint ensures that the weight of the multi-set
is nonnegative. Formally, it follows from [26] that this set of linear constraints has a solution iff a
nonnegative multi-cycle exists.

2. Let πf be a finite path in G. The finite path πf can be decomposed into three paths πf
0 , π

f
c , π

f
1 where

π
f
0 is an initial prefix of length at most |V |, πf

c consists of cycles (not necessarily simple), and πf
1 is a
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segment of length at most |V | in the end. We can uniquely decompose πc into a set C of multi-cycles

and hence also into a set of simple cycles Ĉ = SetCycle(C) = {C1, . . . , Cn}, for n ≤ 2|E|, such that
cycle Ci occurs ri times in πc, for some ri ∈ N. The sum of the weights in the part of πf

c is

w(πf
c ) =

n∑

i=1

ri · w(Ci) = (

n∑

i=1

ri) ·
n∑

i=1

ri

(
∑n

i=1 ri)
· w(Ci) ≤ |π

f
c | ·

n∑

i=1

ri

(
∑n

i=1 ri)
· w(Ci).

The second equality is obtained by multiplying and dividing with (
∑n

i=1 ri), and the inequality is
obtained since (

∑n

i=1 ri) ≤ |π
f
c | (as |π

f
c | =

∑n

i=1 ri · |Ci|). Let βi = ri
(
∑

n
i=1

ri)
and observe that

β1, . . . , βn ≥ 0 with
∑n

j=1 βj = 1. We first show the existence of a constant η
Ĉ
> 0, such that for every

α1, . . . , αn ≥ 0 with
∑n

j=1 αj = 1, there exists a dimension i ∈ {1, . . . , k} such that
∑n

j=1 αj ·wi(Cj) ≤
−η

Ĉ
.

For every i ∈ {1, . . . , k}, we define a function fi(α1, . . . , αn) =
∑n

j=1 αj · wi(Cj) and f(α1, . . . , αn) =
min{fi(α1, . . . , αn) | 1 ≤ i ≤ k}. For every i ∈ {1, . . . , k}, the function fi is continuous. Since
f is the minimum of a finite number of continuous functions, f is also continuous. Observe that
[0, 1]n ∩ {(α1, . . . , αn) |

∑n

j=1 αj = 1} is a closed and bounded set. Hence by Weierstrass theorem the
function f has a maximum cf in this domain. Let α∗

1, . . . , α
∗
n ≥ 0 such that f(α∗

1, . . . , α
∗
n) = cf and∑n

j=1 α
∗
j = 1. Assume towards contradiction that cf ≥ 0, we then show that the linear programming

problem on the constraints mentioned above (in item 1) has a solution, which leads to a contradiction.
For an edge e, we define the edge coefficient as follows: xe =

∑
e∈Cj∈Ĉ

α∗
j (i.e., the sum of the α∗

j ’s

of the cycle the edge belongs to). It follows that all the constraints are satisfied, and this contradicts
the assumption that there is no nonnegative multi-cycle. Hence we have cf < 0. Hence it follows that
there exists a dimension i such that

wi(π
f ) ≤ (|πf

0 |+ |π
f
1 |) ·W + cf · |πf

c | = (|πf
0 |+ |π

f
1 |) ·W + (|πf

0 |+ |π
f
1 |) · (−cf ) + cf · |πf |

≤ 2 · |V | · (W − cf ) + cf · |πf |.

Let m
Ĉ

= ⌈2 · |V | · (W − cf )⌉ and ηĈ = −cf , and we obtain the desired result for the path πf . Let
C = {SetCycle(C) | C is a multi-cycle} be the set of simple cycles of all the multi-cycles of G. Note
that C is a set whose elements are subsets of simple cycles, i.e., C is the power set of power set of

simple cycles and hence |C| ≤ 22
|E|

. By choosing mG = max
Ĉ∈CmĈ

and cG = min
Ĉ∈C ηĈ we obtain

the desired result.

�

In sequel we abbreviate a maximal strongly connected component of a graph as a scc.

Lemma 11. Let G be a multi-weighted one-player game structure, and let s0 be the initial state. If there
is a scc C reachable from s0 such that the multi-weighted directed graph induced by C has a nonnegative
multi-cycle, then player 1 has a strategy to satisfy the mean-payoff-inf objective MeanPayoffInf.

Proof. Let C be a scc reachable from s0 such that the graph induced by C has a nonnegative multi-cycle.
Then there exist simple cycles C1, . . . , Cn, factorsm1, . . . ,mn and finite paths π0,1, π1,2, π2,3, . . . , πn−1,n, πn,1
such that (i) the path π0,1 is an acyclic path from s0 to C1 and the path πi,j is an acyclic path from Ci to Cj ,
and (ii) for every i = 1, . . . , k, we have

∑n

j=1mj ·wi(Cj) ≥ 0. An infinite-memory strategy for player 1 from s0
is as follows: initialize Z = 1, and follow the steps below:

1: π0,1
2: loop
3: Z ·m1 times in cycle C1

4: π1,2
5: Z ·m2 times in cycle C2

6: π2,3
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7: · · ·
8: Z ·mn times in cycle Cn

9: πn,1
10: Z ← Z + 1
11: end loop

Let L = |π1,2| + |π2,3| + · · · |πn−1,n| + |πn,1| be the sum of the lengths of the paths between cycles, and let
P = |C1|+ |C2|+ · · ·+ |Cn| be the sum of the lengths of the cycles. Note that both L and P are bounded by
2|E| · |S| as n ≤ 2|E| and each path and cycle is of length at most |S|. Consider the steps executed in round
Z + 1: the sum of weights due to executing the cycles in all previous rounds up to Z is nonnegative in all
dimensions. Hence the sum of weights in any dimension, in the steps executed in round Z + 1 is at least

−(|S|+ (Z + 1) · P + Z · L+ L) ·W.

The negative contribution can come from executing the initial prefix of length at most |S| to reach the scc,
then the cycles in the present round (bounded by (Z + 1) · P steps) and the paths πi,j of length at most L
in the previous Z rounds and in the current round (in total bounded by Z · L + L steps). The number of

steps executed so far is at least (L + P ) ·
∑Z

i=1 i = (L + P ) · Z·(Z+1)
2 ≥ (L+P )·Z2

2 . Hence the average for all
dimensions for all steps in round Z + 1 is at least

−2 · (|S|+ (Z + 1) · P + Z · L+ L) ·W

(L + P ) · Z2
=
−2 · (|S|+ (Z + 1) · (P + L)) ·W

(L + P ) · Z2

≥
−2 · |S| ·W

Z2
+
−2 · (Z + 1) ·W

Z2
.

As Z → ∞, it follows that the mean-payoff-inf value is at least 0 in every dimension, and hence the result
follows. �

Lemma 12. Let G be a multi-weighted one-player game structure, and let s0 be the initial state. If for every
scc C reachable from s0 the multi-weighted directed graph induced by C does not have a nonnegative multi-
cycle, then player 1 does not have strategy from s0 to satisfy the mean-payoff-inf objective MeanPayoffInf.

Proof. Consider an arbitrary strategy for player 1, and let the set of states visited infinitely often be
contained in an scc C. Since C does not have a nonnegative multi-cycle it follows from Lemma 10(2) that
every infinite path that visits states in C has a mean-payoff-inf value at most −c, for some c > 0, in some
dimension. It follows that the strategy for player 1 does not satisfy the objective MeanPayoffInf. �

The following lemma shows that in one-player game structure the MeanPayoffInf objective can be solved
in polynomial time. To describe the precise complexity, let us denote by LP(i, j) the complexity to solve
linear inequalities with i variables and j constraints.

Lemma 13. Given a multi-weighted one-player game structure G and a state s0, the problem of deciding
whether player 1 has a strategy for the objective MeanPayoffInf from s0 can be solved in polynomial time (in
time O(|S|+ |E|) + LP(|E|, |S|+ |E|+ k + 1)).

Proof. It follows from Lemma 11 and Lemma 12 that an algorithm to solve the problem is as follows:
consider the scc decomposition of the graph, and for every multi-weighted graph induced by an scc C
reachable from s0 check if the multi-weighted directed graph induced by C has a nonnegative multi-cycle
(in polynomial time by Lemma 10(1)). Since scc decomposition is linear time (in time O(|S|+ |E|)) and the
number of scc’s is linear, we obtain the desired result. The complexity of the linear inequations follows from
Lemma 10. �

Thus we obtain the desired coNP upper bound. We have the following theorem summarizing the result
of this section.

Theorem 7. For multi-weighted two-player game structures with objective MeanPayoffInf = {π ∈ Plays |
MP(π) ≥ (0, 0, . . . , 0)} for player 1, the following assertions hold:
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1. Winning strategies for player 1 require infinite memory in general, and memoryless winning strategies
exist for player 2.

2. The problem of deciding whether a given state is winning for player 1 is coNP-complete.

4.3. Conjunction of MeanPayoffInf and MeanPayoffSup objectives

We consider multi-weighted two-player game structures, two sets I, J ⊆ {1, . . . , k}, and the multi-mean-
payoff objective MeanPayoffInfSup(I, J) = {π ∈ Plays(G) | ∀i ∈ I : MP(π)i ≥ 0 and ∀j ∈ J : MP(π)j ≥ 0}
for player 1.

Note that the problem is more general than the problem considered in the previous section (with J = ∅
we obtain MeanPayoffInf objectives, and with I = ∅ we obtain MeanPayoffSup objectives). Hence it follows
that in general winning strategies for player 1 require infinite memory, and the problem is coNP-hard. We
show that memoryless winning strategies exist for player 2, and that the decision problem is coNP-complete.

We start with the crucial result that considers the case when the mean-payoff-sup objective is required
for one dimension, and for all the other dimensions the mean-payoff-inf objective is required. The lemma
shows that if only one dimension is MeanPayoffSup objective, then it can be equivalently considered as
MeanPayoffInf objective.

Lemma 14. Let I = {1, . . . , k − 1} and s be a state. Player 1 has a winning strategy for the ob-
jective MeanPayoffInfSup(I, {k}) from s if and only if player 1 has a winning strategy for the objective
MeanPayoffInf = MeanPayoffInfSup(I ∪ {k}, ∅) from s.

Proof. To prove the lemma we show the following equivalent statement: Player 2 has a winning strategy to
falsifyMeanPayoffInfSup(I, {k}) from s if and only if player 2 has a winning strategy to falsifyMeanPayoffInf =
MeanPayoffInfSup(I ∪ {k}, ∅) from s.

One direction is trivial as for any sequence (ui)i≥0 of real numbers we have lim supi→∞ ui ≥ lim infi→∞ ui,
and hence it follows that a winning strategy for player 2 to falsify MeanPayoffInfSup(I, {k}) is also a winning
strategy to falsify MeanPayoffInf.

Suppose that player 2 has a winning strategy for MeanPayoffInf, then by Theorem 7 player 2 has a
memoryless winning strategy λ2. Let Gλ2(s) be the one-player game structure obtained by fixing the strategy
λ2 for player 2 with starting state s. Since λ2 is winning for player 2, it follows from Lemma 11 that in
Gλ2(s), for all scc’s C reachable from s, in the subgraph induced by C there is no nonnegative multi-cycle.
It follows from Lemma 10 that there exist a constant mGλ2

∈ N and a real-valued constant cGλ2
> 0 such

that for all finite paths πf in the graph we have min{wi(π
f ) | i ∈ {1, . . . , k}} ≤ mGλ2

− cGλ2
· |πf |. Let us

denote c = cGλ2
. We show that λ2 is winning for player 2 (to falsify MeanPayoffInfSup(I, {k})). Consider a

play π consistent with λ2, and assume that MP(π)k ≥ 0. Then the average payoff in dimension k is greater
than − c

2 in infinitely many positions (since the limit-superior is at least 0), and by Lemma 10(2) there is a
dimension 1 ≤ i < k with average payoff at most −c in infinitely many positions, thus MP(π)i < 0. Hence
either the supremum of the average weight in dimension k is negative, or the infimum of the average weight
in one of the other dimensions is negative. In either case, the strategy λ2 is winning for player 2. This
completes the proof. �

Our goal is now to prove a result similar to Lemma 8 for MeanPayoffInfSup(I, J) objectives. To prove
the result, we first prove two lemmas. The following lemma about MeanPayoffInf objectives is derived from
the proof of Lemma 11 and it shows that if player 1 has a winning strategy for a mean-payoff-inf objective
(with threshold 0 in every dimension), then for every α > 0 there is a finite-memory strategy to ensure
mean-payoff-inf value of at least −α in every dimension. Lemma 16 will be a consequence of Lemma 15.

Lemma 15. Let G be a multi-weighted two-player game structure, and let s0 be the initial state. If there is
a winning strategy for player 1 for the objective MeanPayoffInf = {π ∈ Plays(G) | ∀1 ≤ i ≤ k. (MP(π))i ≥
0}, then for all α > 0 there is a finite-memory winning strategy for player 1 to ensure the objective
MeanPayoffInf(−α) = {π ∈ Plays(G) | ∀1 ≤ i ≤ k. (MP(π))i ≥ −α}.
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Proof. Since against finite-memory strategies for player 1 memoryless winning strategies exist for player 2
(Lemma 2 and proof of Lemma 6) and multi-mean-payoff games are determined under finite memory (Theo-
rem 5) to prove that finite-memory winning strategies exist for player 1 for the objective MeanPayoffInf(−α)
we show that against every memoryless strategy for player 2 there exists a finite-memory winning strategy
for player 1. Consider a memoryless strategy for player 2 and the one-player game structure obtained after
fixing the strategy. By Lemma 12, since player 1 satisfies the MeanPayoffInf objective, there must be a scc C
reachable from s0 (within |S| steps) such that the graph induced by C has a nonnegative multi-cycle. Then
there exist simple cycles C1, . . . , Cn, factors m1, . . . ,mn and finite paths π0,1, π1,2, π2,3, . . . , πn−1,n, πn,1 such
that:

1. the path π0,1 is a path from s0 to C1, and the path πi,j is a path from Ci to Cj with length at most
|S|.

2. For every i = 1, . . . , k, we have
∑n

j=1mj · wi(Cj) ≥ 0

A finite-memory strategy for player 1 is as follows: for large enough Z, follow the steps below:

1: π0,1
2: loop
3: Z ·m1 times in cycle C1

4: π1,2
5: Z ·m2 times in cycle C2

6: π2,3
7: · · ·
8: Z ·mn times in cycle Cn

9: πn,1
10: end loop

In contrast with the strategy of Lemma 11, the above strategy plays the same in every round but for
large enough Z, thus it can be implemented with finite memory. Let L = |π1,2|+ |π2,3|+ · · · |πn−1,n|+ |πn,1|
be the sum of the lengths of the paths between cycles, and let P = |C1|+ |C2|+ · · ·+ |Cn| be the sum of the
lengths of the cycles. Note that both L and P are bounded by 2|E| · |S| as n ≤ 2|E| and each path and cycle
is of length at most |S|. Consider the steps executed in round i: the sum of weights due to executing the
cycles in all previous rounds up to round i − 1 is nonnegative in all dimensions. Hence the sum of weights
in any dimension, in the steps executed in round i is at least

−(|S|+ Z · P + i · L+ L) ·W.

The argument is as in Lemma 11. The number of steps executed so far is at least (L+P ) · (i− 1) ·Z. Hence
the average for all dimensions for all steps in round i is at least

−
(|S|+ (i+ 1) · L+ Z · P ) ·W

(L+ P ) · (i − 1) · Z
≥ −

(
|S| ·W

Z
+

2 ·W

Z
+

W

(i− 1)

)
,

for i ≥ 3. With Z large enough (Z ≥ (|S|+2)·W
α

), it follows that as i → ∞, the mean-payoff-inf value is at
least −α in every dimension, and hence the result follows. �

Lemma 16. Let G be a multi-weighted two-player game structure, and let s0 be the initial state. If there is
a winning strategy for player 1 for the objective MeanPayoffInf = {π ∈ Plays(G) | ∀1 ≤ i ≤ k. (MP(π))i ≥ 0},
then for all α > 0 there is a finite-memory strategy λ and a number Nα,λ,s0 such that against all strategies of
player 2 and for all n ∈ N the sum of weights after n steps is at least −(Nα,λ,s0 + n) · α in every dimension,
i.e., the average of the weights is at least −2 · α once n ≥ Nα,λ,s0 .

Proof. Fix a finite-memory strategy λ for player 1 to satisfy the objective MeanPayoffInf(−α) = {π ∈
Plays(G) | ∀1 ≤ i ≤ k. (MP(π))i ≥ −α} (such a strategy exists by Lemma 15). Let M be the size of the
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memory. In the game structure obtained by fixing the strategy, in all cycles the average of the weights in
every dimension is at least −α. For any path it can be decomposed into initial prefix and a cycle free segment
in the end (each of length at most M · |S|), and the other part is decomposed into cycles (not necessarily
simple cycles) (as done in Lemma 10). The initial prefix and trailing prefix are of length at mostM · |S| and

the sum of the weights is at least −2 ·M · |S| ·W . Hence choosing Nα,λ,s0 ≥
2·M·|S|·W

α
proves the desired

result. �

Lemma 17. Let G be a multi-weighted game structure with multi-mean-payoff objective
MeanPayoffInfSup(I, J) = {π ∈ Plays(G) | ∀i ∈ I : MP(π)i ≥ 0 and ∀j ∈ J : MP(π)j ≥ 0} for
player 1. For ℓ ∈ J , let Φℓ = MeanPayoffInfSup(I, {ℓ}) denote the objective that requires to satisfy all
MeanPayoffInf objectives and the MeanPayoffSup objective in dimension ℓ. If for all states s ∈ S and for all
ℓ ∈ J , player 1 has a winning strategy from s for the objective Φℓ, then for all states s ∈ S, player 1 has a
winning strategy from s for the objective MeanPayoffInfSup(I, J).

The key idea of the proof is similar to Lemma 8 and we use Lemma 15 (details are presented below for
completeness). For all s ∈ S and all ℓ ∈ J , let λℓ1(s) be a winning strategy from s for player 1 for the
objective Φℓ. Intuitively, the winning strategy for the conjunction of mean-payoff objectives plays λℓ1(·) until
the mean-payoff value in dimension ℓ gets very close to 0, and then switches to a strategy for another value
of ℓ ∈ J . Thus player 1 ensures nonnegative mean-payoff value in every dimension, with mean-payoff-inf in
dimensions of I and mean-payoff-sup in dimensions of J .

Proof. Let α > 0. Let Φℓ(−
α
2 ) = {π ∈ Plays(G) | ∀i ∈ I : (MP(π))i ≥ −

α
2 and (MP(π))ℓ ≥ −

α
2 }. Let

λℓ1,α(s) be a finite-memory winning strategy for player 1 for the objective Φℓ(−
α
2 ) with the initial state s

(the existence of finite-memory winning strategy for Φℓ(−
α
2 ) follows from Lemma 14 and Lemma 15). For

Z ∈ N, consider the tree T̂
λ
ℓ,Z
1,α(s) defined as follows. Let Tλℓ

1,α(s) be the strategy tree for λℓ1,α(s) with initial

state s. We say that a node v of Tλℓ
1,α(s) is an α-good node if the average of the weights in all dimensions in

I ∪ {ℓ} of the path from the root to v is at least −α. The tree T̂
λ
ℓ,Z
1,α(s) is obtained from Tλℓ

1,α(s) by removing

all descendants of α-good nodes that are at depth at least Z. Hence, the leaves of T̂
λ
ℓ,Z
1,α(s) are α-good.

We show that T̂
λ
ℓ,Z
1,α(s) is a finite tree. By König’s Lemma [24], it suffices to show that every path in the

tree is finite. Assume towards contradiction that there is an infinite path π in the tree. Hence π is a play
consistent with λℓ1,α(s), and since π does not contain any α-good node, it follows that for some dimension

i ∈ I ∪ {ℓ} we have (MP(π))i ≤ −α (and (MP(π))i ≤ −α as well). It follows that π 6∈ Φℓ(−
α
2 ). This

contradicts the assumption that λℓ1,α(s) is a winning strategy for player 1 for Φℓ(−
α
2 ).

We now describe a strategy for player 1 based on the finite-memory winning strategies for Φℓ(−
α
2 ) and

show that the strategy is winning for the objective MeanPayoffInfSup(I, J).

1: α← 1
2: loop
3: for ℓ ∈ J do
4: Let s be the current state, and L be the play length so far.
5: Z ← max{L·W

α
, N∗

α
2

} (where N∗
α
2

= max{Nα
2
,λ̂(s),s | s ∈ S, ℓ

′ ∈ J, λ̂(s) = λℓ
′

1,α
2

(s)}, that is, λ̂(s) =

λℓ
′

1,α
2

(s) is the finite-memory strategy for Φℓ′(−
α
2 ) from s, the number Nα

2
,λ̂(s),s is as defined in

Lemma 16 for the strategy, and N∗
α
2

is the maximum over ℓ′ ∈ J)

6: Play according to λℓ1,α(s) until a leaf s′ of T̂
λ
ℓ,Z
1,α(s) is reached.

7: end for
8: α← α

2
9: end loop

LetW ∈ N be the largest absolute value of the weight function w. After the last command in the internal
for-loop was executed, the mean-payoff value in dimension ℓ, is at least −L·W−Z·α

L+Z
where Z ≥ L·W

α
and this
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is at least
−L ·W − α · L·W

α

L+ L·W
α

≥ −2 · α.

Consider the segment of the play for the round for a value of α: let us denote by Mb the number of steps
played till the beginning of the round and we will denote by Mt the total number of steps of the current
round. Our goal is to obtain a lower bound on the average of the weights for all n ≤ Mb +Mt. In the
beginning of the round (i.e., after Mb steps) the average value for dimensions in I is at least −2 · α (recall
that α has been halved in line 8). Step 5 ensures that at least N∗

α steps have been already played, i.e.,
Mb ≥ N

∗
α. It follows from Lemma 16 that for all dimensions in I and for all steps Mb ≤ n ≤Mb +Mt of the

current round, the sum of the weights is at least −(Mb · 2 ·α+N∗
α ·α+ (n−Mb) ·α), and hence the average

value at step n is at least
−(Mb · 2 · α+N∗

α · α+ (n−Mb) · α)

n
≥ −4 · α

since n ≥ Mb and n ≥ N∗
α. That is, for all steps in the round for α, for all dimensions in I, the average

value is at least −4 ·α. In every external for-loop α gets smaller, and L gets bigger. Moreover, since the tree
T̂
λ
ℓ,Z
1,α(s) is finite, it follows that the main loop gets executed infinitely often (i.e., the strategy does not get

stuck in the for-loop). Thus when the length of the play tends to infinity, the supremum of the mean-payoff
value tends to a value at least 0 in every dimension j ∈ J , and the infimum of the mean-payoff value tends
to a value at least 0 in every dimension i ∈ I. Hence the strategy described above is a winning strategy for
player 1. �

Lemma 18. In multi-mean-payoff games with objective MeanPayoffInfSup(I, J) for player 1, memoryless
strategies are sufficient for player 2.

Proof. The proof is similar to the proof of Lemma 9, and based on induction on the number of states
|S| in the game structure. The base case with |S| = 1 is obvious. We now consider the inductive case with
|S| = n ≥ 2. For ℓ ∈ J , letWℓ be the winning region for player 2 for the objective Φℓ as defined in Lemma 17.
Let W =

⋃
ℓ∈J Wℓ. We consider the following two cases:

1. If W = ∅, then player 1 can satisfy the objective Φℓ for all ℓ ∈ J , and then by Lemma 17 player 1
wins from everywhere for the objective MeanPayoffInfSup(I, J). Hence there is no winning strategy for
player 2.

2. IfW 6= ∅, then there exists ℓ ∈ J such thatWℓ 6= ∅. InWℓ there is a memoryless winning strategy λ2 for
player 2 to falsify Φℓ, and the strategy also falsifies MeanPayoffInfSup(I, J) as MeanPayoffInfSup(I, J) =⋂

ℓ∈J Φℓ. The existence of memoryless winning strategy for player 2 follows from the following facts:
by Lemma 14 it follows that if player 2 can falsify the objective Φℓ, then player 2 can also falsify the
objective where in the dimension ℓ we consider the mean-payoff-inf objective instead of mean-payoff-sup
objective, and the existence of memoryless strategies against mean-payoff-inf objectives follows from
Theorem 7. The rest of the proof is identical to the proof of Lemma 9 and can be omitted (we present
it for sake of completeness). Since Wℓ is a winning region for player 2 it follows that Wℓ = Attr2(Wℓ),
and hence the graph G′ induced by S \Wℓ is a game structure. Let W ′ = W \Wℓ be the winning
region for player 2 in G′. By inductive hypothesis (since G′ has strictly fewer states as a non-empty set
Wℓ is removed), it follows that there is a memoryless winning strategy λ′2 in G′ for the regionW ′. The
winning region S \ (Wℓ∪W ′) for player 1 in G′ is also winning for player 1 in G (sinceWℓ = Attr2(Wℓ),
G′ is obtained by removing only player 1 edges). Hence to complete the proof it suffices to show that
the memoryless strategy obtained by combining λ2 in Wℓ and λ′2 in W ′ is winning for player 2 from
Wℓ ∪W ′. Define the strategy λ∗2 as follows:

λ∗2(s) =

{
λ2(s) if s ∈ Wℓ

λ′2(s) if s ∈ W ′.
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Consider the memoryless strategy λ∗2 for player 2 and the outcome of any counter strategy for player 1
that starts in W ′ ∪Wℓ. There are two cases: (a) if the play reaches Wℓ, then it reaches in finitely
many steps, and then λ2 ensures that player 2 wins; and (b) if the play never reaches Wℓ, then the
play always stays in G′, and now the strategy λ′2 ensures winning for player 2.

The desired result follows. �

coNP upper bound. Since memoryless winning strategies exist for player 2, to establish the coNP upper
bound we need to show that one-player game structures with MeanPayoffInfSup(I, J) objectives can be
solved in polynomial time. First we interpret MeanPayoffInfSup(I, J) as the conjunction of Φℓ for ℓ ∈ J .
From Lemma 14 it follows every Φℓ can be considered as MeanPayoffInf objective and hence can be solved in
polynomial time for one-player game structures by the results of Section 4.2. Hence the coNP upper bound
follows. We have the following theorem summarizing the results of this section.

Theorem 8. For multi-weighted two-player game structures with objective MeanPayoffInfSup(I, J) = {π ∈
Plays(G) | ∀i ∈ I : MP(π)i ≥ 0 and ∀j ∈ J : MP(π)j ≥ 0} for player 1, the following assertions hold:

1. Winning strategies for player 1 require infinite memory in general, and memoryless winning strategies
exist for player 2.

2. The problem of deciding whether a given state is winning for player 1 is coNP-complete.

Remark 4. Our results establish the complexity of multi-dimensional mean-payoff games, and for algorith-
mic analysis when the number of dimensions is fixed see [16].

5. Conclusion

In this work we considered games with multiple mean-payoff and energy objectives, and established
determinacy under finite-memory, inter-reducibility of these two classes of games for finite-memory strategies,
and improved the complexity bounds from EXPSPACE to coNP-complete. We also showed that multi-energy
and multi-mean-payoff games under memoryless strategies are NP-complete. Finally, we studied multi-mean-
payoff games with infinite-memory strategies and show that multi-mean-payoff games with mean-payoff-sup
objectives can be decided in NP ∩ coNP (and can be solved in polynomial time if mean-payoff games
with single objective can be solved in polynomial time); and multi-mean-payoff games with mean-payoff-inf
objectives, and conjunction of mean-payoff-inf and mean-payoff-sup objectives are coNP-complete. Thus
we present optimal computational complexity results for multi-energy and multi-mean-payoff games under
finite-memory, memoryless, and infinite-memory strategies.
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