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Abstract. We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively,
a synchronizing objective requires that eventually, at every step there is a state which concentrates
almost all the probability mass. In particular, it implies that the probabilistic system behaves in the
long run like a deterministic system: eventually, the current state of the MDP can be identified with
almost certainty.

We study the problem of deciding the existence of a strategy to enforce a synchronizing objective
in MDPs. We show that the problem is decidable for general strategies, as well as for blind strategies
where the player cannot observe the current state of the MDP. We also show that pure strategies are
sufficient, but memory may be necessary.

1 Introduction

A Markov decision process (MDP) is a model for systems that exhibit both probabilistic and nondeter-
ministic behavior. MDPs have been used to model and solve control problems for stochastic systems
where the nondeterminism represents the freedom of the controller to choose a control action, while the
probabilistic component of the behavior describes the system response to control actions. MDPs have
also been adopted as models for concurrent probabilistic systems, probabilistic systems operating in open
environments [7], and under-specified probabilistic systems [4].

Traditional objectives for MDP specify a set S of paths, where a path is an infinite sequence of states
through the underlying graph of the MDP. The value of interest is the probability that an execution of the
MDP under a given strategy belongs to S. For example, a reachability objective specifies all paths that
visit a given target state `. A typical qualitative question is to decide whether there exists a strategy such
that a given state ` is reached with probability 1.

In this paper, we consider a different type of objectives which specify a set of infinite sequences X̄ =
X0,X1, . . . of probability distributions over the states [6]. Intuitively, the distribution Xi in the sequence
gives for each state ` the probability Xi(`) to be in state ` at step i ≥ 0. We introduce synchronizing
objectives which specify sequences of distributions in which the probability tends to accumulate in a
single state. We use the infinity norm as a measure of the highest peak in a probability distribution Xi

(i.e., ‖Xi‖= max`∈L Xi(`)) and we require that the limit1 of this measure in the sequence is 1. Intuitively,
this requires that in the long run, the MDP behaves like a deterministic system: from some point on, at
every step i there is a state `i which accumulates almost all the probability. Note that satisfying such an

∗This work has been done in the MoVES project (P6/39) which is part of the IAP-Phase VI Interuniversity Attraction Poles
Programme funded by the Belgian State, Belgian Science Policy.

1 Since the limit may not exist in general, we actually consider either liminf or limsup.
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objective implies that there exists a state ` which is reached with probability 1. The converse does not
hold because reachability objectives do not require the visits to the target state to occur after the same
number of steps in (almost) all executions of the MDP. We consider the problem of deciding if a given
MDP is synchronizing for some strategy, We consider the general case where memoryful randomized
strategies are allowed, as well as the special case of blind strategies which are not allowed to observe the
current state of the MDP.

Defining objectives as a sequence of probability distributions over states rather than a distribution
over sequences of states is a change of standpoint in the traditional approach to MDP verification. Up to
our knowledge, there are very few works in this setting. We are aware of the work in [6] which studies
MDPs as generators of probability distributions with applications in sensor networks and dynamical
systems, and shows that the resulting objectives are not expressible in known logics such as PCTL∗ [1, 4].
In their definition, probability distributions over states are assigned a vector v ∈ {0,1}k of truth values
for a finite set of predicates ϕ1, . . . ,ϕk (which are linear constraints on the probabilities such as ϕ(X)≡
X(`)+X(`′) ≤ 1

2 , for example). This can be viewed as a coloring of the probability distributions using
a finite number of colors, and then objectives are languages of infinite words over the finite alphabet of
colors. It is shown that reachability of a given color is undecidable for MDPs if arbitrary linear predicates
are allowed [6]. A decidability result is obtained if only predicates of the form ∑`∈T X(`)> 0 are allowed.
Synchronizing objectives cannot be expressed in the framework of [6] using finite colorings as they
require a real-valued measure (namely, the infinite norm) to be assigned to the probability distributions.

In [2], the monadic logic of probabilities is introduced as a predicate logic which can express proper-
ties of sequences of probability distributions. But because it allows comparison of probabilities only with
constants, it cannot express synchronizing objectives which would require a quantification over proba-
bility thresholds, such as ϕ(X̄)≡ ∀ε > 0 · ∃N · ∀i≥ N · ∃` ∈ L : Xi(`)≥ 1−ε , where Xi is the probability
distribution in position i in the sequence X̄ .

Synchronizing objectives generalize the notion of synchronizing words. In a deterministic finite
automaton, a word w is synchronizing if reading w from any state of the automaton always leads to the
same state. It is sufficient to consider finite words, and it is conjectured that if a synchronizing word
exists, then there exists one of length at most (n−1)2 where n is the number of states of the automaton,
known as the Černý’s conjecture. Several works have studied this conjecture and related problems (see
the survey in [8]). Viewing deterministic automata as a special case of MDP where all transitions have
only one successor, a synchronizing word can be seen as a blind strategy to ensure a synchronizing
objective. Note that we do not present a generalization of Černý’s conjecture since in our case, strategies
for MDPs are infinite objects. However, synchronizing objectives provide an extension of the design
framework for the many applications of the theory of synchronizing words, such as control of discrete
event systems, planning, biocomputing, and robotics [8]. For example, in probabilistic models of DNA
transcription, one may ask which molecules to introduce in a cell in order to bring it to a single possible
state [3, 8].

We prove that it is decidable to determine if a given MDP is synchronizing for some strategy, either
blind or general. We use variants of the subset construction in the underlying graph of MDPs to obtain a
decidable characterization of synchronizing strategies. Our results imply that pure strategies are sufficient
to satisfy a synchronizing objective, but we provide an example showing that memory may be necessary,
both with blind and general strategies.
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2 Definitions.

A probability distribution over a finite set S is a function d : S→ [0,1] such that ∑s∈S d(s) = 1. The
support of d is the set Supp(d) = {s ∈ S | d(s)> 0}. D(S) denotes the set of all probability distributions
on S, and P(S) the power set of S.

Markov decision processes. A Markov decision process (MDP) is a tuple M = 〈L,µ0,Σ,δ 〉 where L
is a finite set of states, µ0 ∈ D(L) is an initial probability distribution over states, Σ is a finite set of
actions, δ : L×Σ→ D(L) is a probabilistic transition function that assigns to each pair of states and
actions, a probability distribution over successor states. A Markov chain is a special case of MDPs with
only one action (|Σ|= 1). Markov chains are therefore generally viewed as a tuple M = 〈L,µ0,δ 〉 where
δ : L→ D(L). For an action σ ∈ Σ and a state ` ∈ L, let Postσ (`) = Supp(δ (`,σ)), and for a set s⊆ L,
let Postσ (s) = ∪`∈s Postσ (`).

Example Figure 1(a) shows an MDP with four states and alphabet Σ = {σ1,σ2}. The initial probability
distribution is µ0(1) = 1 and µ0(i) = 0 for i ∈ {2,3,4}, and the probabilistic transition function δ in
state 1 is such that δ (1,σ1)(2) = δ (1,σ1)(3) = 1/2 and δ (1,σ2)(1) = 1.

We describe the behavior of an MDP as a one-player stochastic game played for infinitely many
rounds. In the first round, the game starts in state ` with probability µ0(`). In each round, if the game
is in the state ` and the player chooses the action σ ∈ Σ, then the game moves to the successor state `′

chosen with probability δ (`,σ)(`′), and the next round starts. We consider two versions of this game.
In both versions, the player knows the structure of the MDP. In the first version the player has perfect
information, he can see the current state of the game; in the second version the player is blind, he is not
allowed to observe the current state of the game, and only knows the number of rounds that have been
played so far.

A play of the game is an infinite sequence of interleaved states and actions π = `0σ0`1 · · · such that
`i+1 ∈ Postσi(`i) for all i ≥ 0. The set of all plays over M is denoted by Plays(M). A finite prefix
h = `0σ0`1 · · ·σn−1`n of a play π is called a history, the last state of h is Last(h) = `n, the ith action and
state of the of h is Action(h, i) = σi and State(h, i) = `i, and its length is |h|= n. The set of all histories
of plays is denoted by Hists(M).

Strategies and outcome. In the game, the choice of the action is made by the player according to a
strategy. Depending on what the player can observe and record, he can use various classes of strategies.
A randomized strategy (or simply a strategy) over an MDP M is a function α : Hists(M) → D(Σ).
A pure (deterministic) strategy is a special case of randomized strategy where for all h ∈ Hists(M),
there exists an action σ ∈ Σ such that α(h)(σ) = 1. A memoryless strategy is a randomized strategy
α such that α(h1) = α(h2) for all h1,h2 ∈ Hists(M) with Last(h1) = Last(h2). In this last case, the
player cannot record the history of the play and makes a choice according to the current state only.
For convenience, we view pure strategies as functions α : Hists(M)→ Σ, and memoryless strategies as
functions α : L→D(Σ). Hence, a pure memoryless strategy is a function α : L→ Σ.

A strategy α is blind if α(h1) = α(h2) for all h1,h2 ∈Hists(M) such that |h1|= |h2|. Blind strategies
can be viewed as functions α : N→D(Σ) (or, α : N→ Σ for pure blind strategies) which assign in each
round a probability distribution over actions. Sometimes we talk about perfect-information strategies to
emphasize when we consider strategies that are not necessarily blind.
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The outcome of the game played on an MDP M = 〈L,µ0,Σ,δ 〉 using a strategy α is the infinite
sequence Xα

0 Xα
1 . . . of probability distributions over the set of states L, where Xα

0 = µ0 and for all n > 0,

Xα
n (`) = ∑h∈Hists(M):Last(h)=`,|h|=n Prα(h)

where the probability Prα(h) of a history h = `0σ0`1 · · ·σn−1`n under strategy α is

Prα(h) = µ0(`0) ·∏n
j=1 α(`0σ0 . . . ` j−1)(σ j−1) ·δ (` j−1,σ j−1)(` j).

Synchronizing objectives. The norm of a probability distribution X over L is ‖X‖= max`∈L X(`). We
say that the MDP M with strategy α is strongly synchronizing if

liminf
n→∞

‖Xα
n ‖= 1, (1)

and that it is weakly synchronizing if
limsup

n→∞

‖Xα
n ‖= 1. (2)

Intuitively, an MDP is synchronizing if the probability mass tends to concentrate in a single state,
either at every step from some point on (for strongly synchronizing), or at infinitely many steps (for
weakly synchronizing). Note that equivalently, M with strategy α is strongly synchronizing if the limit
limn→∞‖Xα

n ‖ exists and equals 1. In this paper, we are interested in the problem of deciding if a given
MDP is synchronizing for some strategy. We consider the problem for both perfect-information and
blind strategies.

Recurrent and transient states. A state `′ ∈ L is accessible from a state `∈ L (denoted `→ `′), if there
is a history h = `0σ0`1 · · ·σn−1`n with `0 = ` and `n = `′. If both `→ `′ and `′→ ` hold, then we say that
` and `′ are strongly connected (denoted `↔ `′). This induces an equivalence relation called accessibility
relation. An MDP is strongly connected, if all pairs of states `,`′ ∈ L are strongly connected. A state
accessible from a state of Supp(µ0) is simply called accessible state.

For a Markov chain M, the state ` is recurrent if all accessible states from ` can access ` (i.e., ` and
`′ are strongly connected for all `′ such that `→ `′), and the state ` is transient if there exists some state
`′ such that `′ is accessible from `, but ` is not accessible from `′. The next proposition follows from
standard results [5].

Proposition 1 Given a Markov chain M, let X0,X1, . . . be the sequence of probability distributions of M.
Then limsupn→∞ Xn(`) = 0 for all transient states `∈ L, and limsupn→∞ Xn(`)> 0 for all recurrent states
` ∈ L.

Subset constructions. We define two important constructions based on the subset construction idea.
Subset construction is a standard technique to compute, from a nondeterministic finite automaton N, an
equivalent deterministic automaton D (for language equivalence), where one state of D corresponds to
the set of possible states (called a cell) in which N can be. We define two kinds of subset constructions
on MDPs, the perfect-information subset construction, and the blind subset construction. As usual, each
state of the subset constructions is a subset of states of the MDP (i.e., a cell). In our case, the main
difference lies in the alphabet. In the perfect-information subset construction, the selection of the next
action depends on the current state (each state of a cell can independently choose an action), while in the
blind subset constructions the next action is independent of the state (all states of a cell have to choose
the same action). Thus, an action in the perfect-information subset construction is a function σ̂ : L→ Σ

which assigns to each state ` ∈ L its choice among the actions in Σ.
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Figure 1: (a) shows an MDP, and (b) shows the accessible states of its perfect information subset con-
struction.

Definition 1 (Perfect-information subset construction of an MDP) The perfect-information subset con-
struction for a given MDP M = 〈L,µ0,Σ,δ 〉 is an automaton MP = 〈L ,LI, Σ̂,δ

P〉 where L = P(L) \
{ /0}, LI = Supp(µ0), Σ̂ = {σ̂ | σ̂ : L→ Σ} is the alphabet, and δP : L × Σ̂→L where for all s1,s2 ∈L
and σ̂ ∈ Σ̂, we have δP(s1, σ̂) = s2 where s2 = ∪`∈s1Postσ̂(`)(`).

Example Figure 1(b) shows the perfect information subset construction MP of the MDP drawn in Fig-
ure 1(a) (presented in the first example). Let us present Σ̂ in the table below. Each row labelled by a
function σ̂i (i ∈ {1, . . . ,11}), each column labelled by a state `; and each entry shows the value of σ̂i(`).

1 2 3 4
σ̂1 σ2 {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂2 σ1 {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂3 {σ1,σ2} σ2 σ1 {σ1,σ2}
σ̂4 {σ1,σ2} σ1 σ2 {σ1,σ2}
σ̂5 {σ1,σ2} σ2 σ2 {σ1,σ2}
σ̂6 {σ1,σ2} σ1 σ1 {σ1,σ2}
σ̂7 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂8 {σ1,σ2} σ1 {σ1,σ2} {σ1,σ2}
σ̂9 {σ1,σ2} {σ1,σ2} σ2 {σ1,σ2}
σ̂10 {σ1,σ2} {σ1,σ2} σ1 {σ1,σ2}
σ̂11 {σ1,σ2} σ2 {σ1,σ2} {σ1,σ2}

Note that, the function σ̂ with σ̂(`) = {σ1,σ2} (for a state `) gives two different functions where σ̂i(`) =
σ1 and σ̂ j(`) = σ2; but these two functions behaves similarly.

A cycle of MP is a finite sequence CP = s0 σ̂0s1 . . .sd−1σ̂d−1sd of interleaved cells and symbols such
that δP(s j,s j+1 = σ̂ j) for all 0 ≤ j < d, and s0 = sd . Note that, in this definition, d is the length of the
cycle CP. We write s ∈CP if s is one of the cells s j (0 ≤ j < d) of the finite sequence of the cycle CP.
A simple cycle is a cycle where all cells s0, . . . ,sd−1 are different. We are interested in defining some
property on cycles of the perfect-information subset construction for a given MDP.

Definition 2 (Recurrent cyclic sets) Let CP= s0 σ̂0 . . . sd−1 σ̂d−1sd be a cycle of the perfect-information
subset construction MP for a given MDP M. A recurrent cyclic set for the cycle CP is a sequence
G = g0g1 . . .gd such that g0 = gd , and /0 6= gi ⊆ si and ∪`∈giPostσ̂i(`)(`) = gi+1 for all 0≤ i < d.
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Figure 2: (a) shows an MDP, and (b) shows some part of its perfect information subset construction.

A cycle CP might have several recurrent cyclic sets. A recurrent cyclic set G for a given cycle CP, is
said to be minimal if there is no other recurrent cyclic set G′ (G 6= G′) such that for 0 ≤ i < d, and for
gi ∈ G, g′i ∈ G′, we have g′i ⊆ gi. We denote the set of all minimal recurrent cyclic sets of the cycle CP

by ∆(CP) = {G | G is a minimal recurrent cyclic set for the cycle CP}.
Example Consider the MDP M in Figure 2 (the initial distribution is µ0(1) = 1 and µ0(i) = 0 for i ∈
{2, . . . ,9}). Figure 2(b) shows one cycle of the perfect information subset construction MP. Let us
present Σ̂ in the table below. Each row labeled by a function σ̂i (i ∈ {1, . . . ,4}), each column labeled by
a state `; and each entry shows the value of σ̂i(`).

1 2 3 4 5 6 7 8 9
σ̂1 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂2 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} σ1 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂3 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} σ2 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2}
σ̂4 {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2} {σ1,σ2}

For the cycle CP = {2,5,8} σ̂2 {3,5,6} σ̂3 {4,7,9} σ̂4 {2,5,8}, the set of minimal recurrent cyclic
sets is ∆(CP) = {{{2},{3},{4}},{{5},{6},{7}}}. The elements of ∆(CP) are not comparable.

The blind subset construction for an MDP is a special case of its perfect information subset construc-
tion where the action functions σ̂ ∈ Σ̂ are restricted to constant functions. In each cell, all states have to
choose the same action.

Definition 3 (Blind subset construction of an MDP) The blind subset construction for a given MDP
M = 〈L,µ0,Σ,δ 〉 is an automaton MB = 〈L ,LI,Σ,δ

B〉 where L =P(L)\{ /0}, LI = Supp(µ0), and for
all s1,s2 ∈L and σ ∈ Σ, we have δB(s1,σ) = s2 where s2 = Postσ (s1).

We denote cycles in the blind subset construction by CB.

3 Synchronizing Objectives for Perfect-Information Strategies

We have defined a perfect-information one-player stochastic game in which the player can see the current
state of the game and record the sequence of visited states. We show that synchronizing strategies can be
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Figure 3: An MDP where memory is necessary to win the strongly synchronizing objective.

characterized in the perfect-information subset construction, giving a decidability result. We also show
in the next example that memory may be necessary.

Example Consider the MDP M in Figure 3 (the initial distribution is µ0(1) = 1 and µ0(i) = 0 for i ∈
{2, . . . ,5}), and let α be the strategy defined as follows: α((L× Σ)∗`)(σ) = 1/2 for all σ ∈ Σ and
` ∈ {1,3,4,5}, and for the histories ending in the state 2,

α((L×Σ)∗` Σ 2)(σ) =


1 if `= 1 and σ = σ2,
1 if ` 6= 1 and σ = σ1,
0 otherwise.

In this example, it is easy to check that the strategy α is strongly synchronizing. In state 2, it plays
σ1 and σ2 in alternation in order to ensure synchronization with the cycle 3,4,5 of length 3. However,
none of the memoryless strategies is strongly synchronizing, showing that memory is necessary. This
example also shows that memory is necessary for weakly synchronizing objective, as well as for blind
strategies.

Proposition 2 For both strongly and weakly synchronizing objectives, memoryless strategies are not
sufficient in MDPs.

Theorem 1 For a perfect information game over an MDP M, there exists a strategy α such that M with
strategy α is strongly synchronizing, if and only if the perfect-information subset construction MP for M,
has an accessible cycle CP such that |∆(CP)|= 1, and for G ∈ ∆(CP) and for all g ∈ G, |g|= 1.

Proof Sufficient condition. We suppose that the perfect-information subset construction MP= 〈L ,LI, Σ̂,δ
P〉

for M, has an accessible cycle CP = s0 σ̂0 . . .sd such that |∆(CP)|= 1, and for G ∈ ∆(CP) and for all g ∈
G, we have |g|= 1. Since this cycle is accessible, there exists a finite path P = p0σ̂ ′0 p1 . . . pm−1σ̂ ′m−1 pm

in MP from p0 = LI to pm = s0 = sd (See Figure 4). Consider the pure strategy α as follows

α((L×Σ)k`) =

{
σ̂ ′k(`) if 0≤ k < m,
σ̂(k−m) mod d(`) if m≤ k.

Let us construct a finite Markov chain M′ in a way that its long term behavior simulates the long
term behavior of the MDP M under the strategy α for synchronizing objectives. This Markov chain is
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Figure 4: An accessible cycle CP of MP which is reachable by a finite path p0, . . . , pm.

M′ = (L′,µ ′0,δ
′) where L′ = {(i, `) | 0 ≤ i < (m+d) and ` ∈ L}, the initial distribution µ ′0 is defined as

follows

µ
′
0((i, `)) =

{
µ0(`) if i = 0
0 otherwise.

and the probability transition function δ ′ is defined as follows

δ
′((i, `))((i′, `′)) =


δ (`, σ̂ ′i (`))(`

′) if (0≤ i < m), (i′ = i+1), (` ∈ pi) and (`′ ∈ pi′),
δ (`, σ̂i−m(`))(`

′) if (m≤ i < m+d), (i′ = m+(i−m+1) mod d),
(` ∈ si−m) and (`′ ∈ si′−m),

0 otherwise.

The idea is that each cell pi (0≤ i < m) of the path P and, similarly, each cell si (m≤ i < m+d) of
the cycle CP corresponds to |L| states in the Markov chain M (one for each state of the MDP M). The
value of δ ′((i, `))((i′, `′)) shows the probability to reach in one step, the state (i′, `′) from the state (i, `);
semantically it gives the probability to go from ` to `′ at step i. We show that (a) if the Markov chain
M′ is strongly synchronizing, then so is the MDP M under the strategy α and that (b) M′ is strongly
synchronizing.

Proving (a) is straightforward from the definition of the Markov chain M′. Each state of the MDP M
corresponds to m+d state of M′. Then if, from some point, the mass of probability accumulates in one
state of M′ and afterward moves totally to another one, it happens also in M. In detail, let the sequence
Xα

i (i ∈N) denote the outcome of the MDP M under the strategy α , and X ′i (i ∈N) denote the probability
distribution at step i generated by the Markov chain M′. Note that Xα is a random variable over |L|
entries, but X ′ is over |L| · (m+ d) entries which has at most |L| non-zero entries. Let us compute and
compare the non-zero entries of these two random variable sequences. For ` ∈ L:

Xα
0 (`) = µ0(`) = X ′0((0, `)) and we have X ′0(( j, `)) = 0 for all j 6= 0.

Xα
1 (`) = ∑`′∈L µ0(`

′) ·δ (`′,α(`′))(`) = ∑`′∈L µ0(`
′) ·δ (`′, σ̂ ′0(`′))(`) = ∑`′∈L µ0(`

′) ·δ ′((0, `′))((1, `)) =
X ′1((1, `)) and we have X ′1(( j, `)) = 0 for all j 6= 1.

In the next step, let us compute these random variables for i < m:

Xα
i (`) =

∑`0,`1,...`i−1∈L µ0(`0) ·δ (`0,α(`0))(`1) ·δ (`1,α(`0 α(`0) `1))(`2) · · · ·δ (`i−1,α(`0 α(`0) `1 . . . `i−1))(`) =

∑`0,`1,...`i−1∈L µ0(`0) ·δ (`0, σ̂
′
0(`0))(`1) ·δ (`1, σ̂

′
1(`1))(`2) · · · ·δ (`i−1, σ̂

′
i−1(`i−1))(`) =

∑`0,`1,...`i−1∈L µ0(`0) ·δ ′((0, `0))((1, `1)) ·δ ′((1, `1))((2, `2)) · · · ·δ ′((i−1, `i−1))((i, `)) = X ′i ((i, `)).
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We, also, have X ′i (( j, `)) = 0 for all j 6= i, these results give ‖Xα
i ‖ = ‖X ′i ‖ for i < m. At the end,

consider i≥ m:

Xα
i (`) = ∑`0,`1,...`i−1∈L µ0(`0) ·δ (`0,α(`0))(`1) ·δ (`1,α(`0 α(`0) `1))(`2) · · · ·

δ (`i−1,α(`0 α(`0) `1 . . . `i−1))(`) = ∑`0,`1,...`i−1∈L µ0(`0) ·δ (`0, σ̂
′
0(`0))(`1) ·δ (`1, σ̂

′
1(`1))(`2) · · · ·

δ (`m−1, σ̂
′
m−1(`m−1))(`m) ·δ (`m, σ̂0(`m))(`m+1) · · · ·δ (`i−1, σ̂(i−m) mod d(`i−1))(`) =

∑`0,`1,...`i−1∈L µ0(`0) ·δ ′((0, `0))((1, `1)) ·δ ′((1, `1))((2, `2)) · · · ·δ ′((m−1, `m−1))((m, `m)) · · · ·δ ′((m+
(i−m) mod d, `i−1))((m+(i−m) mod d, `)) = X ′i ((m+(i−m) mod d, `)).

We, also, have X ′i (( j, `)) = 0 for all j 6= i, this results give ‖Xα
i ‖ = ‖X ′i ‖ for i ≥ m. We have shown

that Xα
i (`) = X ′i (( j, `)) where for 0≤ i<m, we have j = i, and for i≥m, we have j =m+(i−m) mod d.

This simply gives ‖Xα
i ‖ = ‖X ′i ‖ for i ∈ N; meaning that if the Markov chain M′ is synchronizing, so is

the MDP M under the strategy α .
To show (b), we study transient and recurrent states of the Markov chain M′. Suppose that G∈ ∆(CP)

is the only recurrent cyclic set of the cycle, and it includes d elements as g0, . . .gd−1. Let R be the set of
states (m+ i, `) such that ` ∈ gi, for 0≤ i < d. We claim that the states of R are the only recurrent states
in the Markov chain M′.

• First, we can see that the states of R are recurrent. By construction, the states of R are strongly
connected. In addition, we have to prove that if (m+ i, `) ∈ R and (m+ i, `)→ (m+ j, `′), then
(m+ j, `′) ∈ R. This holds by induction on the equality ∪`∈giPostσi(`)(`) = gi+1. Note that (m+
i, `) ∈ R implies that ` ∈ gi; and if (m+ i, `)→ (m+ j, `′) then `′ has to lie in g j.

• Now, we show that the states of R are the only recurrent states. By contradiction, suppose that
there is another set R′ of recurrent states in the Markov chain M′. By Proposition 1 and since the
states (i, `) (0≤ i < m) are visited only once, then they could not be recurrent; therefore we discuss
only on the states (m+ i, `) with 0≤ i < d of the Markov chain M′. Let g′i denote all states included
in {` | (m+ i, `) ∈ R′}∩ si for 0≤ i < d. The construction of the Markov chain implies that a state
(m+ i, `) can only have outgoing edges toward some states (m+(i+1) mod d, `′); hence g′i 6= /0 for
all 0≤ i < d. On the other hand, the definition of recurrent states requires that each accessible state
from (m+ i, `) ∈ R′ could access (m+ i, `), therefore ∪`∈g′iPostσi(`)(`) = g′i+1. It is a contradiction
with |∆(CP)|= 1.

Based on Proposition 1, for the transient states (k, `), the probability Xn((k, `)) vanishes for n→ ∞.
Since for all g ∈ G, we have |g| = 1, the support of Xn (n > m) contains only one recurrent state. Thus,
the probability mass accumulates in that state: for all ε > 0, for all n > n0 there is a state (i, `) with
Xn((i, `)) > 1− ε , that is ‖Xα

n ‖ > 1− ε . Hence, limn→∞‖Xα
n ‖ = 1 and M′ is strongly synchronizing.

Therefore, so is the MDP M under the strategy α .

Necessary condition. Assume that the MDP M with strategy α is strongly synchronizing. Then ∀ε >
0 ·∃n0 ∈N ·∀n≥ n0 ·∃qn such that Xα

n (qn)> 1−ε . Moreover the state qn is unique, and we show below
that it is independent of ε (assuming ε < 1

2 ).
Let ν be the smallest probability among all probability distributions of the MDP M (i.e., ν =

min`∈L,σ∈Σ,`′∈Supp(δ (`,σ))(δ (`,σ)(`′))). Let ε < ν

1+ν
. We claim that for all n ≥ n0, there exists some

action σ ∈ Σ such that Postσ (qn) = {qn+1} is a singleton. Toward contradiction, assume that for all
σ ∈ Σ, the statement Postσ (qn) 6= {qn+1} is satisfied. The probability which does not inject to qn+1
(from qn) is at least ν · (1− ε). And since M is strongly synchronizing, we have:

1− ε ≤ ‖Xα
n+1‖ ≤ 1−ν · (1− ε)
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This gives ε ≥ ν

1+ν
which is a contradiction. Therefore, for all n ≥ n0, there exists σ ∈ Σ such that

Postσ (qn) = {qn+1}. This implies that the infinite sequence of states I = qn0qn0+1 . . . is uniquely defined.
The sequence I is used to define a pure synchronizing strategy β from the randomized synchronizing

strategy α . This construction implies that the pure strategies are sufficient for strongly synchronizing
objectives. We define the pure strategy β as follows:

• for h∈Hists(M) with |h|= i and Last(h)= qi, we define β (h)=σ where Postσ (Last(h))= {qi+1},
• for h∈Hists(M) with |h|= i and Last(h) 6= qi, we define β (h) =Action(h′, i) where h′ ∈Hists(M)

is the shortest possible history such that (1) State(h′, i)= Last(h), (2) Prα(h′)> 0, and (3) Last(h′)=
q j with |h′|= j. One might notice that a reachable state Last(h) with a strictly positive probability
Prα(h)> 0, has to access a state of I (such as Last(h′) = q j where |h′|= j); otherwise the MDP M
with strategy α , would not be strongly synchronizing. Consequently, the history h′ defined above
always exists.

As a result, we can define SizePath(h) = |h′|− |h| to be the size of shortest path from Last(h) to the
infinite sequence I. Note that for h with |h|= i and Last(h) = qi, we define SizePath(h) = 1. It is easy to
see that the MDP M with pure strategy β is also strongly synchronizing.

In the following, we show that there exists a cycle CP of MP which has only one recurrent cyclic set
G, and all g ∈ G are singleton. By construction, we have β (h) = β (h′) for all histories h,h′ ∈ Hists(M)
with Last(h) = Last(h′) and |h| = |h′|. Therefore the pure strategy β induces an infinite path Pβ , in the
perfect-information subset construction MP. Since the state space of MP is finite, some cell S has to
be visited infinitely many times along Pβ . The path between two visits to S along Pβ is a cycle (not
necessarily a simple cycle) of MP. We study one of the these cycles (starting at S and coming back
there), and prove that this cycle satisfies the conditions of the theorem.

Let Inf(I) denotet the set of all states visited infinitely often along I. Hence, there exists NInf ≥ n0
such that ∀i≥ NInf : qi ∈ I⇒ qi ∈ Inf(I). Let K1 be the first step after NInf in which the path Pβ visits S.
Let MaxPath=maxh∈Hists(M),Prβ (h)>0,|h|=K1

(SizePath(h)), be the length of the longest path (among the
shortest ones) from one reachable state at step K1, to the infinite sequence I.

Let CP be the cycle starting in S at step K1, and coming back to this state in some step K2 >
K1+MaxPath. We claim that this cycle CP has only one recurrent cyclic set G, and all subsets g ∈ G
are singleton:

1. G = {{qi} | qi ∈ I for K1 ≤ i ≤ K2} is a recurrent cyclic set. We already have proved that there
exists σ ∈ Σ such that Postσ (qn) = {qn+1} (n≥ n0). Note that for state qn, the action σ is chosen
by the cycle.

2. G is the only recurrent cyclic set. Each state included in S reaches, in at most MaxPath steps, one
state of I. Hence, the cell S, as the first element of CP, cannot have another subset g′ constructing
another recurrent cyclic set.

We have proved that for a strongly synchronizing MDP M, the perfect information subset construction
for M, has a cycle CP such that |∆(CP)|= 1, and for G ∈ ∆(CP) and for all g ∈ G, |g|= 1.

�

Through the proof of Theorem 1, we have seen that for all strategies α such that an MDP M with the
strategy α is strongly synchronizing, there is a pure strategy that satisfies the strongly synchronization
condition. We will see that this is also the case for weakly synchronizing objective (see the proof of
Theorem 2).
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Corollary 1 For both strongly and weakly synchronizing objectives, pure strategies are sufficient in
MDPs.

Theorem 2 For a perfect information game over an MDP M, there exists a strategy α such that M with
strategy α is weakly synchronizing, if and only if the perfect-information subset construction MP for M,
has an accessible cycle CP such that |∆(CP)|= 1, and for G∈ ∆(CP), there exists g∈G such that |g|= 1.

Proof Sufficient condition. We suppose that the perfect-information subset construction MP= 〈L ,LI, Σ̂,δ
P〉

for M, has an accessible cycle CP such that |∆(CP)|= 1, and for G ∈ ∆(CP), there exists g ∈G such that
|g| = 1. Consider a pure strategy similarly to which presented in proof of Theorem 1. Let us, here as
well, construct the Markov chain M′, and therefore discuss on transient and recurrent states of M′.

Suppose that G ∈ ∆(CP) is the only recurrent cyclic set of the cycle, and it includes d elements as
g0, . . .gd−1. Let R be the set of states (m+ i, `) such that ` ∈ gi, for 0 ≤ i < d. As we have shown in
proof of Theorem 1, the states of R are the only recurrent states in the Markov chain M′. Let pn be
the probability to be in one state of R at step n. Based on Proposition 1, for the transient states (i, `)
the probability Xn((i, `)) vanishes for n→ ∞, which leads to limn→∞ pn = 1. On the other hand, by
hypothesis, for G ∈ ∆(CP) there exists g j ∈ G (0 ≤ j < d) such that |g j| = 1. Then every d steps, at
least once, the probability pm+k·d+ j gathers in only one state (m+ j, `) where ` ∈ g j. As a result, for
all k ∈N, max(‖Xα

m+d.k‖,‖Xα
m+d.k+1‖, ...‖Xα

m+d.k+d−1‖)≥ pm+k·d+ j. We have shown that limn→∞ pn = 1,
hence limSupn→∞ ‖Xα

n ‖= 1.

Necessary condition. Assume that the MDP M with strategy α is weakly synchronizing meaning that
limSupn→∞ ‖Xα

n ‖= 1. Therefore there exists a subsequence ‖Xα
ik ‖ of ‖Xα

i ‖ which approaches to 1 (i.e.,
limk→∞ ‖Xα

ik ‖= 1), where i0 < i1 < i2 < .. . is an increasing sequence of indices. Then, for ε < 1/2 there
exists n0 ∈ N such that for all n ≥ n0 there exists a (unique) state ` such that Xα

in (`) > 1/2. Let (`, in)
refer to this unique state at position in. Let Inf be the set of all states ` such that Xα

in ((`, in) > 1/2 for
infinitely many n ∈ N.

Hence, there exists NInf ≥ n0 such that ∀n≥ NInf : Xα
in ((`, in)> 1/2⇒ ` ∈ Inf.

Since the state space of the MDP is finite, for a specific q∈ Inf, we can define a subsequence ( jk)k∈N)
of (ik)k∈N such that

1. j0 ≥ NInf , and

2. Xα
jk ((q, jk)> 1/2, and

3. Supp(Xα
jk ) = Supp(Xα

jk+1
); in the sequel, we denote to this set by S.

Let (q, jk) refer to the state q at specific step jk, and J be the sequence of this states. Note that since
jk is a subsequence of ik, we have limk→∞ ‖Xα

jk‖= 1 as well.
We use the infinite sequence J to construct a winning pure strategy from the winning random-

ized strategy α . Consider the pure strategy β as follows. For h ∈ Hists(M) with |h| = i, we define
β (h) = Action(h′, i) where h′ ∈ Hists(M) is the shortest possible history such that (1) Prα(h′) > 0,
(2) Last(h′) = (q, jk) where |h′| = jk for some k ∈ N, and (3) State(h′, i) = Last(h). One might notice
that a reachable state Last(h) with a strictly positive probability Prα(h) > 0, has to access the infinite
sequence J; otherwise the MDP M with strategy α would not be weakly synchronizing. Consequently,
the history h′ defined above always exists.

Similarly to the case of strongly synchronizing, we can define SizePath(h) = |h′|− |h| to be the size
of shortest path from Last(h) to the infinite sequence J.

In the following, we show that for a weakly synchronizing MDP M, there exists a cycle CP of MP

which has only one recurrent cyclic set G, and there exists g ∈ G which is singleton. By construction,
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we have β (h) = β (h′) for all histories h,h′ ∈Hists(M) with Last(h) = Last(h′) and |h|= |h′|. Therefore
the pure strategy β induces an infinite path Pβ in the perfect-information subset construction MP. The
construction of β , also implies that the cell S is visited infinitely many times along Pβ . The path taken
between two visits to S along Pβ is a cycle (not necessarily a simple cycle) of MP. We study one of
these cycles (starting at S and coming back there), and prove that this cycle satisfies the conditions of the
theorem.

Let K1 to be the first step after NInf in which the path Pβ visits S. Let MaxPath= maxh∈Hists(M),Pr(h)>0,|h|=K1(SizePath(h))
be the length of the longest path (among the shortest ones) from a reachable state at step K1 to the infinite
sequence J.

Let CP be the cycle starting in S at step K1, and coming back to this state in some step K2 >
K1+MaxPath. For convenience, let d = K2 −K1 denote the length of the cycle CP. We define the
winning pure strategy β ′ from the strategy β as follows.

• for h ∈ Hists(M) with |h|< K1 +K2, we define β ′(h) = β (h).

• for h ∈ Hists(M) with |h| > K1 +K2, we define β ′(h) = β (h′) where |h| = d ·m+ |h′| for some
m ∈ N, and h′ is a history with K1 ≤ |h′| ≤ K1 +K2 and Last(h) = Last(h′).

In fact, the path corresponding to the strategy β ′ first reaches the cycle CP, and then forever follows
this cycle. The strategy β ′ as well as the strategy β is weakly synchronizing. We claim that this cycle
CP = s0 σ̂0 · · · sd (s0 = sd) has only one recurrent cyclic set G, and there exists g ∈G which is singleton:

1. First we prove that this cycle has one recurrent cyclic set. The size of the cycle is more than
MaxPath which shows that some elements of the infinite sequence J are visited along the cycle.
Suppose that (q, jk′) is the last visited state of J along the cycle, and K′ = jk′ −K1 is the index of
cell sK′ including this state. Let us construct a singleton subset gK′ = {(q,K′)}. By induction, let
g(K′+i+1) mod d = ∪`∈g(K′+i) mod d

Postσ̂(K′+i) mod d
(`) for all 0 ≤ i < d. Note that, for i = d−1, the set

gK′ is computed. By definition, the set G = {g0, g1, · · · , gd−1} is a recurrent cyclic set, if after
the computation, we still have gK′ = {(q,K′)}.
We claim that gK′ = {(q,K′)}. By contradiction, suppose that gK′ 6= {(q,K′)} is satisfied. We
have limsupn→∞‖Xβ ′

n ‖ = 1. Then ∀ε > 0 · ∃n0 ∈ N · ∀n ≥ n0 · ∃` such that Xβ ′
n (`) > 1− ε . On

the other hand, by definition of J, we know that the mass of probability in states of J are more
than 1/2, and in addition we know that all states of the cycle inject probability to J; these show
that the visited states of J along the cycle are candidates to concentrate the probability mass.
Let ν be the smallest probability among all probability distributions of the MDP M (i.e., ν =

min`∈L,σ∈Σ,`′∈Supp(δ (`,σ))(δ (`,σ)(`′))). Let ε < νd

1+νd , and Xβ ′
n ((q,K′))> 1−ε where n > n0. The

probability which does not inject to (q,K′) (from (q,K′) after d steps), is at least νd · (1− ε). We
have:

1− ε ≤ Xβ ′

n+d((q,K
′))≤ 1−νd · (1− ε)

This gives ε ≥ νd

1+νd which is a contradiction. Therefore, we have constructed a recurrent cyclic
set G for the cycle, and have shown that one element of G is singleton.

2. We can see that G is the only recurrent cyclic set. Each state included in S reaches, at most in
MaxPath steps, one state of J. Hence, the cell S, as the first element of CP, can not have another
subset g′ constructing another recurrent cyclic set.

We have proved that for a weakly synchronizing MDP M, the perfect information subset construction for
M, has a cycle CP such that |∆(CP)|= 1, and for G ∈ ∆(CP), there exists g ∈ G such that |g|= 1.
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Figure 5: A weakly synchronizing MDP.

�

Example The MDP depicted in Figure 5 (the initial distribution is µ0(1) = 1 and µ0(i) = 0 for i ∈
{2, . . . ,5}) with strategy α which defined as follows α((L×Σ)∗L)(σ) = 1/2 for σ ∈ Σ, is weakly syn-
chronizing. Note that L = {1, . . . ,9}, Σ = {σ1,σ2}.

4 Synchronizing objectives for Blind strategies

We have defined a blind one-player stochastic game where the player is not allowed to observe the current
state of the game. We use a characterization of synchronizing blind strategies to show that the existence
of synchronizing blind strategies can be decided. We first present an example where the player is blind
and has a strategy to make the game synchronizing.

Example The MDP depicted in Figure 6 (the initial distribution is µ0(1) = 1 and µ0(i) = 0 for i ∈
{2, . . . ,5}) with blind strategy α which defined as following α((L× Σ)∗L)(σ) = 1/2 for σ ∈ {Σ} is
strongly synchronizing. Note that L = {1, . . . ,8}, Σ = {σ1,σ2}.

Theorem 3 For a blind game over an MDP M, there exists a strategy α such that M with strategy α is
strongly synchronizing, if and only if the blind subset construction MB for M, has an accessible cycle
CB such that |∆(CB)|= 1, and for G ∈ ∆(CB) and for all g ∈ G, |g|= 1.

Proof Sufficient condition. We suppose that the blind subset construction MB = 〈L ,LI,Σ,δ
B〉 for M,

has an accessible cycle CB such that |∆(CB)|= 1, and for G∈ ∆(CB) and for all g∈G, |g|= 1. Since this
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Figure 6: An MDP that with some blind strategy is strongly synchronizing.
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cycle is accessible, then there exists a finite path P = p0 σ ′0 . . .σ ′m−2 pm−1σ ′m−1 pm in MB from p0 = LI

to pm = s0. Consider the pure blind strategy α as follows

α(k) =
{

σ ′k if 0≤ k < m,
σ(k−m) mod d if m≤ k.

Let us, construct a Markov chain M′ similar to which presented in proof of Theorem 1, with the
below probability function: the probability transition function δ ′ is defined as follows

δ
′((i, `))((i′, `′)) =


δ (`,σ ′i )(`

′) if (0≤ i < m), (i′ = i+1), (` ∈ pi) and (`′ ∈ pi′),
δ (`,σi−m)(`

′) if (m≤ i < m+d), (i′ = m+(i−m+1) mod d),
(` ∈ si−m) and (`′ ∈ si′−m),

0 otherwise.

Suppose that G ∈ ∆(CB) is the only recurrent cyclic set of the cycle, and it includes d elements as
g0, . . .gd−1. Let R be the set of states (m+ i, `) such that ` ∈ gi, for 0≤ i < d. As we have shown in proof
of Theorem 1, the states of R are the only recurrent states in the Markov chain M′.

Based on Proposition 1, for the transient states (k, `), the probability Xn((k, `)) vanishes for n→ ∞.
Since for all g ∈ G, we have |g| = 1, the support of Xn (n > m) contains only one recurrent state. Thus,
the probability mass accumulates in that state: for all ε > 0, for all n > n0 there is a state (i, `) with
Xn((i, `)) > 1− ε , that is ‖Xα

n ‖ > 1− ε . Hence, limn→∞‖Xα
n ‖ = 1 and M′ is strongly synchronizing.

Therefore, so is the MDP M under the blind strategy α .
Necessary condition. We benefit from arguments presented in Proof of Theorem 1; but here since the
winning strategy is blind, we use blind subset constructions.

�

Theorem 4 For a blind game over an MDP M, there exists a strategy α such that M with strategy α is
weakly synchronizing, if and only if the blind subset construction MB for M, has an accessible cycle CB

such that |∆(CB)|= 1, and for G ∈ ∆(CB), there exists g ∈ G such that |g|= 1.

Proof Sufficient condition. We suppose that the blind subset construction MB = 〈L ,LI,Σ,δ
B〉 for M,

has an accessible cycle CB such that |∆(CB)|= 1, and for G∈ ∆(CB), there exists g∈G such that |g|= 1.
Consider a pure strategy similarly to which presented in proof of Theorem 1. Let us, here as well,

construct the Markov chain M′, and therefore discuss on transient and recurrent states of M′.
Suppose that G ∈ ∆(CB) is the only recurrent cyclic set of the cycle, and it includes d elements as

g0, . . .gd−1. Let R be the set of states (m+ i, `) such that ` ∈ gi, for 0 ≤ i < d. As we have shown in
proof of Theorem 1, the states of R are the only recurrent states in the Markov chain M′. Suppose that
p is the probability to be in one state of R at step n. Based on Proposition 1, for the transient states
(i, `), the probability Xn((i, `)) vanishes for n→ ∞, which leads limn→∞ p = 1. On the other hand, by
hypothesis, for G ∈ ∆(CB), there exists g j ∈ G (0 ≤ j < d) such that |g j| = 1. Then every d steps, at
least once, the whole of probability p gathers in only one state (m+ j, `) where ` ∈ g j. As a result, for
all k ∈ N, max(‖Xα

m+d.k‖,‖Xα
m+d.k+1‖, ...‖Xα

m+d.k+d−1‖) > p. We have shown that limn→∞ p = 1, hence
limSupn→∞ ‖Xα

n ‖= 1.
Necessary condition. We benefit from arguments presented in Proof of Theorem 2; but here since the
winning strategy is blind, we use blind subset constructions.

�

From the four previous theorems, we obtain the following result.
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Theorem 5 The problem of deciding the existence of a {perfect-information, blind} strategy in MDPs
for a {strongly, weakly} synchronizing objective is decidable.

We have defined a new class of objectives for Markov decision processes, and we have given a de-
cidable characterization of winning strategies for these objectives. Further investigations will be devoted
to studying the precise complexity of the problem, establishing memory bounds, and extending this
framework to partially-observable MDPs and stochastic two-player games.
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