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Abstract. Stochastic two-player games model systems with an environment that is both
adversarial and stochastic. The adversarial part of the environment is modeled by a player
(Player 2) who tries to prevent the system (Player 1) from achieving its objective. We
consider finitary versions of the traditional mean-payoff objective, replacing the long-run
average of the payoffs by payoff average computed over a finite sliding window. Two
variants have been considered: in one variant, the maximum window length is fixed and
given, while in the other, it is not fixed but is required to be bounded. For both variants, we
present complexity bounds and algorithmic solutions for computing strategies for Player 1
to ensure that the objective is satisfied with positive probability, with probability 1, or
with probability at least p, regardless of the strategy of Player 2. The solution crucially
relies on a reduction to the special case of non-stochastic two-player games. We give a
general characterization of prefix-independent objectives for which this reduction holds.
The memory requirement for both players in stochastic games is also the same as in
non-stochastic games by our reduction. Moreover, for non-stochastic games, we improve
upon the upper bound for the memory requirement of Player 1 and upon the lower bound
for the memory requirement of Player 2.

1. Introduction

We consider two-player turn-based stochastic games played on graphs. Games are a central
model in computer science, in particular for the verification and synthesis of reactive
systems [GTW02, CH12, FV96]. A stochastic game is played by two players on a graph
with stochastic transitions, where the players represent the system and the adversarial
environment, while the objective represents the functional requirement that the synthesized
system aims to satisfy with a probability p as large as possible. The vertices of the graph
are partitioned into system, environment, and probabilistic vertices. A stochastic game
is played in infinitely many rounds, starting by initially placing a token on some vertex.
In every round, if the token is on a system or an environment vertex, then the owner of
the vertex chooses a successor vertex; if the token is on a probabilistic vertex, then the
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successor vertex is chosen according to a given probability distribution. The token moves to
the successor vertex, from where the next round starts. The outcome is an infinite sequence
of vertices, which is winning for the system if it satisfies the given objective. The associated
quantitative satisfaction problem is to decide, given a threshold p, whether the system can
win with probability at least p. The almost-sure problem is the special case where p = 1,
and the positive problem is to decide whether the system can win with positive probability.
The almost-sure and the positive problems are referred to as the qualitative satisfaction
problems. When the answer to these decision problems is Yes, it is useful to construct a
winning strategy for the system that can be used as a model for an implementation that
ensures the objective be satisfied with the given probability.

Traditional objectives in stochastic games are ω-regular such as reachability, safety, and
parity objectives [CH12], or quantitative such as mean-payoff objectives [EM79, ZP96]. For
example, a parity objective may specify that every request of the environment is eventually
granted by the system, and a mean-payoff objective may specify the long-run average power
consumption of the system. A well-known drawback of parity and mean-payoff objectives is
that only the long-run behaviour of the system may be specified [AH94, CHH09a, HTWZ15],
allowing weird transient behaviour: for example, a system may grant all its requests but
with an unbounded response time; or a system with long-run average power consumption
below some threshold may exhibit arbitrarily long (but finite) sequences with average power
consumption above the threshold. This limitation has led to considering finitary versions of
those objectives [CHH09a, KPV09, CDRR15], where the sequences of undesired transient
behaviours must be of fixed or bounded length. Window mean-payoff objectives [CDRR15]
are quantitative finitary objectives that strengthen the traditional mean-payoff objective:
the satisfaction of a window mean-payoff objective implies the satisfaction of the standard
mean-payoff objective. Given a length ℓ ≥ 1, the fixed window mean-payoff objective
(FWMP(ℓ)) is satisfied if except for a finite prefix, from every point in the play, there exists a
window of length at most ℓ starting from that point such that the mean payoff of the window
is at least a given threshold. In the bounded window mean-payoff objective (BWMP), it is
sufficient that there exists some length ℓ for which the FWMP(ℓ) objective is satisfied.

Contributions. We present algorithmic solutions for stochastic games with window mean-
payoff objectives, and show that the positive and almost-sure problems are solvable in
polynomial time for FWMP(ℓ) (Theorem 6.5), and in NP ∩ coNP for BWMP (Theorem 6.9).
The complexity result for the almost-sure problem entails that the quantitative satisfaction
problem is in NP∩coNP (for both the fixed and bounded version), using standard techniques
for solving stochastic games with prefix-independent objectives [CHH09b]. Note that the
NP ∩ coNP bound for the quantitative satisfaction problem matches the special case of
reachability objectives in simple stochastic games [Con92], and thus would require a major
breakthrough to be improved.

As a consequence, using the FWMP(ℓ) objective instead of the standard mean-payoff
objective provides a stronger guarantee on the system, and even with a polynomial complexity
for the positive and the almost-sure problems (which is not known for mean-payoff objectives),
and at no additional computational cost for the quantitative satisfaction problem. The
solution relies on a reduction to non-stochastic two-player games (stochastic games without
probabilistic vertices). The key result is to show that in order to win positively from some
vertex of the game graph, it is necessary to win from some vertex of the non-stochastic
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game obtained by transforming all probabilistic vertices into adversarial vertices. This
condition, which we call the sure-almost-sure (SAS) property (Definition 5.1), was used to
solve finitary Streett objectives [CHH09b]. We follow a similar approach and generalize it
to prefix-independent objectives satisfying the SAS property (Theorem 5.3). The bounds on
the memory requirement of optimal strategies of Player 1 can also be derived from the key
result, and are the same as optimal bounds for non-stochastic games. For FWMP(ℓ) and
BWMP objectives in particular, we show that the memory requirement of Player 2 is also
no more than the optimal memory required by winning strategies in non-stochastic games.

As solving a stochastic game with a prefix-independent objective φ reduces to solving
non-stochastic games with objective φ and showing that φ satisfies the SAS property, we show
that the FWMP(ℓ) and BWMP objectives satisfy the SAS property (Lemma 6.1, Lemma 6.8)
and rely on the solution of non-stochastic games with these objectives [CDRR15] to complete
the reduction.

We improve the memory bounds for optimal strategies of both players in non-stochastic
games. It is stated in [CDRR15] that |V | · ℓ memory suffices for both players, where |V |
and ℓ are the number of vertices and the window length respectively. In [BHR16b, Theorem
2], the bound is loosened to O(wmax · ℓ2) and O(wmax · ℓ2 · |V |) for Player 1 and Player 2
respectively, where wmax is the maximum absolute payoff in the graph, as the original tighter
bounds [CDRR15] were stated without proof. Since the payoffs are given in binary, this is
exponential in the size of the input. In contrast, we tighten the bounds stated in [CDRR15].
We show that for Player 1, memory ℓ suffices (Theorem 4.4), and improve the bound on
memory of Player 2 strategies as follows. We compute the set W of vertices from which
Player 2 can ensure that the mean payoff remains negative for ℓ steps, as well as the vertices
from which Player 2 can ensure that the game reaches W . These vertices are identified
recursively on successive subgames of the original input game. If k is the number of recursive
calls, then we show that k · ℓ memory suffices for Player 2 to play optimally (Theorem 4.8).
Note that k ≤ |V |. We also provide a lower bound on the memory size for Player 2. Given
ℓ ≥ 2, for every k ≥ 1, we construct a graph with a set V of vertices such that Player 2
requires at least k + 1 = 1

2(|V | − ℓ + 3) memory to play optimally (Theorem 4.13). This
is an improvement over the result in [CDRR15] which showed that memoryless strategies
do not suffice for Player 2. Our result is quite counterintuitive since given an open window
(a window in which every prefix has a total weight less than 0) that needs to be kept open
for another j ≤ ℓ steps from a vertex v, one would conjecture that it is sufficient for a
Player 2 winning strategy to choose an edge from v that leads to the minimum payoff over
paths of length j. Thus for every j, Player 2 should choose a fixed edge and hence memory
of size ℓ should suffice. However, we show that this is not the case.

To the best of our knowledge, this work leads to the first study of stochastic games with
finitary quantitative objectives.

Related work. Window mean-payoff objectives were first introduced in [CDRR15] for
non-stochastic games, where solving FWMP(ℓ) was shown to be in PTIME and BWMP in
NP∩coNP. These have also been studied for Markov decision processes (MDPs) in [BDOR20,
BGR19]. In [BDOR20], a threshold probability problem has been studied, while in [BGR19],
the authors studied the problem of maximising the expected value of the window mean-payoff.
Positive, almost-sure, and quantitative satisfaction of BWMP in MDPs are in NP ∩ coNP
[BDOR20], the same as in non-stochastic games.
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Parity objectives can be viewed as a special case of mean-payoff [Jur98]. A bounded-
window parity objective has been studied in [Hor07, CHH09a] where a play satisfies the
objective if from some point on, there exists a bound ℓ such that from every state with
an odd priority a smaller even priority occurs within at most ℓ steps. Non-stochastic
games with bounded window parity objectives can be solved in PTIME [Hor07, CHH09a].
Stochastic games with bounded window parity objectives have been studied in [CHH09b]
where the positive and almost-sure problems are in PTIME while the quantitative satisfaction
problem is in NP ∩ coNP. A fixed version of the window parity objective has been studied
for two-player games and shown to be PSPACE-complete [WZ17]. Another window parity
objective has been studied in [BHR16a] for which both the fixed and the bounded variants
have been shown to be in PTIME for non-stochastic games. The threshold problem for this
objective has also been studied in the context of MDPs, and both fixed and bounded variants
are in PTIME [BDOR20]. Finally, synthesis for bounded eventuality properties in LTL is
2-EXPTIME-complete [KPV09].

Outline. In Section 2, we provide the necessary technical preliminaries. In Section 3, we
define window mean-payoff objectives and state relevant decision problems for stochastic
games. In Section 4, we give improved bounds on the memory requirements of the players’
strategies for non-stochastic games with window mean-payoff objectives. In Section 5, we
define a property of prefix-independent objectives that allows one to solve stochastic games
by reducing them to non-stochastic games. Finally, as an application, in Section 6, we
provide solutions to problems in stochastic games with window mean-payoff objectives.

2. Preliminaries

Probability distributions. A probability distribution over a finite nonempty set A is a
function Pr : A→ [0, 1] such that

∑
a∈A Pr(a) = 1. The support of a probability distribution

Pr over A, denoted by Supp(Pr), is the set of all elements a in A such that Pr(a) > 0. We
denote by D(A) the set of all probability distributions over A. For the algorithmic and
complexity results, we assume that probabilities are given as rational numbers.

Stochastic games. We consider two-player turn-based zero-sum stochastic games (or
simply, stochastic games in the sequel). The two players are referred to as Player 1 and
Player 2. A stochastic game is a weighted directed graph G = ((V,E), (V1, V2, V♢),P, w),
where:

• (V,E) is a directed graph with a set V of vertices and a set E ⊆ V × V of directed edges
such that for all vertices v ∈ V , the set E(v) = {v′ ∈ V | (v, v′) ∈ E} of out-neighbours
of v is nonempty, i.e., E(v) ̸= ∅ (no deadlocks). A stochastic game is said to be finite
if V is a finite set, and infinite otherwise. Unless mentioned otherwise, stochastic games
considered in this paper are finite;
• (V1, V2, V♢) is a partition of V . The vertices in V1 belong to Player 1, the vertices in V2

belong to Player 2, and the vertices in V♢ are called probabilistic vertices;
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Figure 1. A stochastic game. Player 1 vertices are denoted by circles,
Player 2 vertices are denoted by boxes, and probabilistic vertices are denoted
by diamonds. The payoff for each edge is shown in red and probability
distribution out of probabilistic vertices is shown in blue.

• P : V♢ → D(V ) is a probability function that describes the behaviour of probabilistic
vertices in the game. It maps the probabilistic vertices v ∈ V♢ to a probability distribution
P(v) over the set E(v) of out-neighbours of v such that P(v)(v′) > 0 for all v′ ∈ E(v) (i.e.,
all neighbours have nonzero probability);
• w : E → Q is a payoff function assigning a rational payoff to every edge in the game.

Stochastic games are played in rounds. The game starts by initially placing a token
on some vertex. At the beginning of a round, if the token is on a vertex v, and v ∈ Vi

for i ∈ {1, 2}, then Player i chooses an out-neighbour v′ ∈ E(v); otherwise v ∈ V♢, and an
out-neighbour v′ ∈ E(v) is chosen with probability P(v)(v′). Player 1 receives from Player 2
the amount w(v, v′) given by the payoff function, and the token moves to v′ for the next
round. This continues ad infinitum resulting in an infinite sequence π = v0v1v2 · · · ∈ V ω

such that (vi, vi+1) ∈ E for all i ≥ 0.
A stochastic game with V♢ = ∅ is called a non-stochastic two-player game, a stochastic

game with V2 = ∅ is called a Markov decision process (MDP), a stochastic game with
V2 = V♢ = ∅ is called a one-player game, and a stochastic game with V1 = V2 = ∅ is called a
Markov chain. We use pronouns “she/her” for Player 1 and “he/him” for Player 2. Figure 1
shows an example of a stochastic game. In figures, Player 1 vertices are shown as circles,
Player 2 vertices as boxes, and probabilistic vertices as diamonds.

Plays and prefixes. A play in G is an infinite sequence π = v0v1 · · · ∈ V ω of vertices such
that (vi, vi+1) ∈ E for all i ≥ 0. We denote by occ(π) the set of vertices in V that occur
at least once in π, and by inf(π) the set of vertices in V that occur infinitely often in π.
For i < j, we denote by π(i, j) the infix vivi+1 · · · vj of π. Its length is |π(i, j)| = j − i, the
number of edges. We denote by π(0, j) the finite prefix v0v1 · · · vj of π, and by π(i,∞) the
infinite suffix vivi+1 . . . of π. We denote by PlaysG and PrefsG the set of all plays and the
set of all prefixes in G respectively; the symbol G is omitted when it can easily be derived
from the context. We denote by Last(ρ) the last vertex of a prefix ρ ∈ PrefsG . We denote by

PrefsiG (i ∈ {1, 2}) the set of all prefixes ρ such that Last(ρ) ∈ Vi. The cone at ρ is the set
Cone(ρ) = {π ∈ PlaysG | ρ is a prefix of π}, the set of all plays having ρ as a prefix.

Objectives. An objective φ is a Borel-measurable subset of PlaysG [BK08]. A play π ∈ PlaysG
satisfies an objective φ if π ∈ φ. In a (zero-sum) stochastic game G with objective φ, the
objective of Player 1 is φ, and the objective of Player 2 is the complement set φ = PlaysG \φ.
Given T ⊆ V , we define some qualitative objectives:
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• the reachability objective ReachG(T ) = {π ∈ PlaysG | T ∩ occ(π) ̸= ∅}, the set of all plays
that visit a vertex in T ,
• the dual safety objective SafeG(T ) = {π ∈ PlaysG | occ(π) ⊆ T}, the set of all plays that
never visit a vertex outside T ,
• the Büchi objective BüchiG(T ) = {π ∈ PlaysG | T ∩ inf(π) ̸= ∅}, the set of all plays that
visit a vertex in T infinitely often, and
• the dual coBüchi objective coBüchiG(T ) = {π ∈ PlaysG | inf(π) ⊆ T}, the set of all plays
that eventually only visit vertices in T .

An objective φ is closed under suffixes if for all plays π satisfying φ, all suffixes of π
also satisfy φ, that is, π(j,∞) ∈ φ for all j ≥ 0. An objective φ is closed under prefixes if
for all plays π satisfying φ, for all prefixes ρ such that the concatenation ρ · π is a play in G,
i.e., ρ · π ∈ PlaysG , we have that ρ · π ∈ φ. An objective φ is prefix-independent if it is closed
under both prefixes and suffixes. An objective φ is closed under suffixes if and only if the
complement objective φ is closed under prefixes. Thus, an objective φ is prefix-independent
if and only if its complement φ is prefix-independent. The reachability objective is closed
under prefixes, the safety objective is closed under suffixes, and the Büchi and coBüchi
objectives are closed under both prefixes and suffixes.

Strategies. A strategy for Player i ∈ {1, 2} in a game G is a function σi : Prefs
i
G → D(V )

that maps prefixes ending in a vertex v ∈ Vi to a probability distribution over the out-
neighbours of v. That is, a strategy prescribes a randomized move for the player, taking into
account the history seen so far. A strategy σi is deterministic (or pure) if for all prefixes
ρ ∈ PrefsiG , the support Supp(σi(ρ)) is a singleton, that is, σi(ρ) is a single vertex with

probability 1. A deterministic strategy σi can be viewed as a function σi : Prefs
i
G → V .

Unless mentioned otherwise, the strategies considered in this paper are deterministic.
The set of all strategies of Player i ∈ {1, 2} in the game G is denoted by Λi(G), or Λi

when G is clear from the context. Strategies can be realized as the output of a (possibly
infinite-state) Mealy machine. A Mealy machine is a transition system with transitions
labeled by a pair of symbols: one from the input alphabet and one from an output alphabet.
For each state q of the Mealy machine and every letter a of the input alphabet, there
is exactly one transition defined from state q on reading the letter a. Formally, a Mealy
machine M is a tuple (Q, q0,Σi,Σo,∆, δ) where Q is the set of states of M (the memory of
the induced strategy), q0 ∈ Q is the initial state, Σi is the input alphabet, Σo is the output
alphabet, ∆: Q × Σi → Q is a transition function that reads the current state of M and
an input letter and returns the next state of M , and δ : Q× Σi → Σo is an output function
that reads the current state of M and an input letter and returns an output letter.

The transition function ∆ can be extended to a function ∆̂ : Q× Σ+
i → Q that reads

words and can be defined inductively by ∆̂(q, a) = ∆(q, a) and ∆̂(q, x · a) = ∆(∆̂(q, x), a),
for q ∈ Q, x ∈ Σ+

i , and a ∈ Σi. The output function δ can be also be similarly extended

to a function δ̂ : Q× Σ+
i → Σo on words and can be defined inductively by δ̂(q, a) = δ(q, a)

and δ̂(q, x · a) = δ(∆̂(q, x), a), for q ∈ Q, x ∈ Σ+
i , and a ∈ Σi.

A player’s strategy can be defined by a Mealy machine whose input and output alphabets
are V and V ∪ {ϵ} respectively. For i ∈ {1, 2}, a strategy σi of Player i can be defined by
a Mealy machine (Q, q0, V, V ∪ {ϵ},∆, δ) as follows: Given a prefix ρ ∈ PrefsiG ending in a

Player i vertex, the strategy σi defined by a Mealy machine is σi(ρ) = δ̂(q0, ρ). Intuitively,
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in each turn, if the token is on a vertex v that belongs to Player i for i ∈ {1, 2}, then v is
given as input to the Mealy machine, and the Mealy machine outputs the successor vertex
of v that Player i must choose. Otherwise, the token is on a vertex v that either belongs to
Player i’s opponent or is a probabilistic vertex, in which case, the Mealy machine outputs
the symbol ϵ to denote that Player i cannot decide the successor vertex of v. The memory
size of a strategy σi is the smallest number of states a Mealy machine defining σi can have.
A strategy σi is memoryless if σi(ρ) only depends on the last element of the prefix ρ, that is
for all prefixes ρ, ρ′ ∈ PrefsiG if Last(ρ) = Last(ρ′), then σi(ρ) = σi(ρ

′). Memoryless strategies
can be defined by Mealy machines with only one state.

A strategy profile σ = (σ1, σ2) is a pair of strategies σ1 ∈ Λ1(G) and σ2 ∈ Λ2(G). A
play π = v0v1 · · · is consistent with a strategy σi ∈ Λi (i ∈ {1, 2}) if for all j ≥ 0, we have
that if vj ∈ Vi, then vj+1 = σi(π(0, j)). A play π is an outcome of a profile σ = (σ1, σ2)
if it is consistent with both σ1 and σ2. We denote by Prσ1,σ2

G,v (φ) the probability that an

outcome of the profile (σ1, σ2) in G with initial vertex v satisfies φ. First, we define this
probability measure over cones inductively as follows. If |ρ| = 0, then ρ is just a vertex v0,
and Prσ1,σ2

G,v (Cone(ρ)) is 1 if v = v0, and 0 otherwise. For the inductive case |ρ| > 0, there

exist ρ′ ∈ PrefsG and v′ ∈ V such that ρ = ρ′ · v′, and we have

Prσ1,σ2

G,v (Cone(ρ′ ·v′)) =


Prσ1,σ2

G,v (Cone(ρ′)) · P(Last(ρ′))(v′) if Last(ρ′) ∈ V♢,

Prσ1,σ2

G,v (Cone(ρ′)) if Last(ρ′) ∈ Vi and σi(ρ
′) = v′,

0 otherwise.

It is sufficient to define Prσ1,σ2

G,v (φ) on cones in G since a measure defined on cones extends

to a unique measure on PlaysG by Carathéodory’s extension theorem [Bil86].

Non-stochastic two-player games. A stochastic game without probabilistic vertices
(that is, with V♢ = ∅) is called a non-stochastic two-player game (or simply, non-stochastic
game in the sequel). In a non-stochastic game G with objective φ, a strategy σi is winning
for Player i (i ∈ {1, 2}) if every play in G consistent with σi satisfies the objective φ. A
vertex v ∈ V is winning for Player i in G if Player i has a winning strategy in G when the
initial vertex is v. The set of vertices in V that are winning for Player i in G is the winning
region of Player i in G, denoted ⟨⟨i⟩⟩G(φ). If a vertex v belongs to the winning region of
Player i (i ∈ {1, 2}), then Player i is said to play optimally from v if they follow a winning
strategy. By fixing a strategy σi of Player i in a non-stochastic game G we obtain a (possibly
infinite) one-player game Gσi with vertices V ×Q, where Q is the set of states of a Mealy
machine defining σi.

Subgames. Given a stochastic game G = ((V,E), (V1, V2, V♢),P, w), a subset V ′ ⊆ V of
vertices induces a subgame if (i) every vertex v′ ∈ V ′ has an outgoing edge in V ′, that is
E(v′)∩ V ′ ̸= ∅, and (ii) every probabilistic vertex v′ ∈ V♢ ∩ V ′ has all outgoing edges in V ′,
that is E(v′) ⊆ V ′. The induced subgame is ((V ′, E′), (V1 ∩ V ′, V2 ∩ V ′, V♢ ∩ V ′),P′, w′),
where E′ = E ∩ (V ′ × V ′), and P′ and w′ are restrictions of P and w respectively to (V ′, E′).
We denote this subgame by G ↾ V ′. Let φ be an objective in the stochastic game G. We
define the restriction of φ to a subgame G′ of G to be the set of all plays in G′ satisfying φ,
that is, the set PlaysG′ ∩ φ.
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Satisfaction probability. A strategy σ1 of Player 1 is winning with probability p from
an initial vertex v in G for objective φ if Prσ1,σ2

G,v (φ) ≥ p for all strategies σ2 of Player 2. A

strategy σ1 of Player 1 is positive winning (resp., almost-sure winning) from v for Player 1
in G with objective φ if Prσ1,σ2

G,v (φ) > 0 (resp., Prσ1,σ2

G,v (φ) = 1) for all strategies σ2 of Player 2.
We refer to positive and almost-sure winning as qualitative satisfaction of φ, while for
arbitrary p ∈ [0, 1], we call it quantitative satisfaction. We denote by ⟨⟨1⟩⟩PosG (φ) (resp., by

⟨⟨1⟩⟩ASG (φ)) the positive (resp., almost-sure) winning region of Player 1, i.e., the set of all
vertices in G from which Player 1 has a positive (resp., almost-sure) winning strategy for G
with objective φ. If a vertex v belongs to the positive (resp., almost-sure) winning region
of Player 1, then Player 1 is said to play optimally from v if she follows a positive (resp.,
almost-sure) winning strategy from v. We omit analogous definitions for Player 2.

Positive attractors and traps. The Player i positive attractor (i ∈ {1, 2}) to T ⊆ V ,
denoted PosAttri(T ), is the set ⟨⟨i⟩⟩PosG (Reach(T )) of vertices in V from which Player i can
ensure that the token reaches a vertex in T with positive probability. It can be computed as
the least fixed point of the operator λx.PosPrei(x) ∪ T where PosPre1(x) = {v ∈ V1 ∪ V♢ |
E(v) ∩ x ̸= ∅} ∪ {v ∈ V2 | E(v) ⊆ x} is the positive predecessor operator for Player 1, and
PosPre2 is defined analogously for Player 2. Intuitively PosPrei(x) is the set of vertices from
which Player i has a strategy to ensure with positive probability that the vertex in the next
round is in x. It is possible to compute the positive attractor in O(|E|) time [CH08]. It is
easy to derive from the computation of PosAttri(T ) a memoryless strategy for Player i that
ensures the positive satisfaction of Reach(T ) from vertices in PosAttri(T ). We call such a
strategy a positive-attractor strategy of Player i. Given a set T , we denote the standard
notion of an attractor to T from the literature by Attri(T ). In non-stochastic games, a
positive-attractor to the set T is the same as a standard attractor to T .

A trap for Player 1 is a set T ⊆ V such that for every vertex v ∈ T , if v ∈ V1 ∪ V♢,
then E(v) ⊆ T , and if v ∈ V2, then E(v) ∩ T ≠ ∅, that is PosPre1(V \ T ) = ∅. In other
words, from every vertex v ∈ T , Player 2 can ensure (with probability 1) that the game
never leaves T , moreover using a memoryless strategy. A trap for Player 2 can be defined
analogously.

Remark 2.1. Let G be a non-stochastic game with objective φ for Player 1. If φ is closed
under suffixes, then the winning region of Player 1 is a trap for Player 2. As a corollary,
if φ is prefix-independent, then the winning region of Player 1 is a trap for Player 2 and the
winning region of Player 2 is a trap for Player 1.

3. Window mean payoff

We consider two types of window mean-payoff objectives, introduced in [CDRR15]: (i) fixed
window mean-payoff objective (FWMP(ℓ)) in which a window length ℓ ≥ 1 is given, and (ii)
bounded window mean-payoff objective (BWMP) in which for every play, we need a bound
on window lengths. We define these objectives below.

For a play π in a stochastic game G, the total payoff of an infix π(i, i+n) = vivi+1 · · · vi+n

is the sum of the payoffs of the edges in the infix and is defined as TP(π(i, i + n)) =∑i+n−1
k=i w(vk, vk+1). The mean payoff of an infix π(i, i+n) is the average of the payoffs of the
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edges in the infix and is defined as MP(π(i, i+n)) = 1
nTP(π(i, i+n)) =

∑i+n−1
k=i

1
nw(vk, vk+1).

The mean payoff of a play π is defined as MP(π) = lim inf
n→∞

MP(π(0, n)).

Given a window length ℓ ≥ 1, a play π = v0v1 · · · in G satisfies the fixed window mean-
payoff objective FWMPG(ℓ) if from every position after some point, it is possible to start an
infix of length at most ℓ with a nonnegative mean payoff. Formally,

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 · ∀i ≥ k · ∃j ∈ {1, . . . , ℓ} : MP(π(i, i+ j)) ≥ 0}.
We omit the subscript G when it is clear from the context. In this definition, there is no loss
of generality in considering mean-payoff threshold 0 rather than some λ ∈ Q: consider the
game G′ obtained by subtracting λ from every edge payoff in G, and the mean payoff of any
infix of a play in G is at least λ if and only if its mean payoff in G′ is nonnegative. Moreover,
observe that the mean payoff of an infix is nonnegative if and only if the total-payoff of the
infix is nonnegative.

Note that when ℓ = 1, the FWMP(1) and FWMP(1) (i.e., the complement of FWMP(1))
objectives reduce to coBüchi and Büchi objectives respectively. To see this, let T be the set
of all vertices v ∈ V such that either v ∈ V1 and all out-edges of v have a negative payoff,
or v ∈ V2 and at least one out-edge of v has a negative payoff. Then, a play satisfies the
FWMP(1) objective if and only if it satisfies the Büchi(T ) objective. The following properties
of FWMP(ℓ) have been observed in [CDRR15]. The fixed window mean-payoff objective
provides a robust and conservative approximation of the traditional mean-payoff objective,
defined as the set of plays with nonnegative mean payoff: for all window lengths ℓ, if a
play π satisfies FWMPG(ℓ), then it has a nonnegative mean payoff. Since ℓ ≤ ℓ′ implies
FWMPG(ℓ) ⊆ FWMPG(ℓ

′), more precise approximations of mean payoff can be obtained by
increasing the window length. In all plays satisfying FWMP(ℓ), there exists a suffix that can
be decomposed into infixes of length at most ℓ, each with a nonnegative mean payoff. Such
a desirable robust property is not guaranteed by the classical mean-payoff objective, where
infixes of unbounded lengths may have negative mean payoff.

As defined in [CDRR15], given a play π = v0v1 · · · and 0 ≤ i < j, we say that the
window π(i, j) is open if the total-payoff of π(i, k) is negative for all i < k ≤ j. Otherwise,
the window is closed. Given j > 0, we say a window is open at j if there exists an open
window π(i, j) for some i < j. The window starting at position i closes at position j if j is
the first position after i such that the total payoff of π(i, j) is nonnegative. If the window
starting at i closes at j, then for all i ≤ k < j, the windows π(k, j) are closed. This property
is called the inductive property of windows. A play π satisfies FWMP(ℓ) if and only if, from
some point on, every window in π closes within at most ℓ steps.

We also consider the bounded window mean payoff objective BWMPG . We omit the
subscript G when it is clear from the context. A play π satisfies the BWMP objective if
there exists a window length ℓ ≥ 1 for which π satisfies FWMP(ℓ). Formally,

BWMPG = {π ∈ PlaysG | ∃ℓ ≥ 1 : π ∈ FWMP(ℓ)}.
Equivalently, a play π does not satisfy BWMP if and only if for every suffix of π, for all
ℓ ≥ 1, the suffix contains an open window of length ℓ. Note that both FWMP(ℓ) for all ℓ ≥ 1
and BWMP are prefix-independent objectives.

Decision problems. Given a game G, an initial vertex v ∈ V , a rational threshold p ∈ [0, 1],
and an objective φ (that is either FWMP(ℓ) for a given window length ℓ ≥ 1, or BWMP),
consider the problem of deciding:
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Algorithm 1 NonStocFWMP(G, ℓ) [CDRR15, Algorithm 1]

Input: G = ((V,E), (V1, V2,∅), w), the non-stochastic game, and ℓ ≥ 1, the window length
Output: The set of vertices in V from which Player 1 wins FWMP(ℓ)
1: Wd ← NonStocDirFWMP(G, ℓ)
2: if Wd = ∅ then
3: return ∅
4: else
5: A← Attr1(Wd)
6: return A ∪ NonStocFWMP(G ↾ (V \A), ℓ)

• Positive satisfaction of φ: if Player 1 positively wins φ from v, i.e., if v ∈ ⟨⟨1⟩⟩PosG (φ).

• Almost-sure satisfaction of φ: if Player 1 almost-surely wins φ from v, i.e., if v ∈ ⟨⟨1⟩⟩ASG (φ).
• Quantitative satisfaction of φ (also known as quantitative value problem [CHH09b]): if
Player 1 wins φ from v with probability at least p, i.e., if supσ1∈Λ1

infσ2∈Λ2 Pr
σ1,σ2

G,v (φ) ≥ p.

Note that these three problems coincide for non-stochastic games. As considered in previous
works [CDRR15, BGR19, BDOR20], the window length ℓ is usually small (typically ℓ ≤ |V |),
and therefore we assume that ℓ is given in unary (while the payoff on the edges is given in
binary).

Determinacy. From determinacy of Blackwell games [Mar98], stochastic games with
window mean-payoff objectives as defined above are determined, i.e., the largest probability
with which Player 1 is winning and the largest probability with which Player 2 is winning
add up to 1.

Algorithms for non-stochastic window mean-payoff games. To compute the positive
and almost-sure winning regions for Player 1 for FWMP(ℓ), we recall intermediate objectives
defined in [CDRR15]. The good window objective GWG(ℓ) consists of all plays π in G such
that the window opened at the first position in the play closes in at most ℓ steps:

GWG(ℓ) = {π ∈ PlaysG | ∃j ∈ {1, . . . , ℓ} : MP(π(0, j)) ≥ 0}.
The direct fixed window mean-payoff objective DirFWMPG(ℓ) consists of all plays π in G
such that from every position in π, the window closes in at most ℓ steps:

DirFWMPG(ℓ) = {π ∈ PlaysG | ∀i ≥ 0 : π(i,∞) ∈ GWG(ℓ)}.
The FWMPG(ℓ) objective can be expressed in terms of DirFWMPG(ℓ):

FWMPG(ℓ) = {π ∈ PlaysG | ∃k ≥ 0 : π(k,∞) ∈ DirFWMPG(ℓ)}.
We refer to Algorithm 1, 2, and 3 from [CDRR15] shown below with the same numbering.

They compute the winning regions for Player 1 for the FWMP(ℓ), DirFWMP(ℓ), and GW(ℓ)
objectives in non-stochastic games respectively. [CDRR15, Algorithm 2 and Algorithm 3]
contain subtle errors for which the fixes are known [BHR16b, Hau18]. In fact, a related
objective that is a combination of the good window and reachability objectives was studied
in [Hau18] and [BHR16b] from which the correct algorithms can be derived. For completeness,
we include below counterexamples for the versions in [CDRR15], along with the correct
algorithms and brief explanations of correctness.
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Algorithm 2 NonStocDirFWMP(G, ℓ)
Input: G = ((V,E), (V1, V2,∅), w) the non-stochastic game, and ℓ ≥ 1, the window length
Output: The set of vertices in V from which Player 1 wins DirFWMP(ℓ)
1: Wgw ← GoodWin(G, ℓ)
2: if Wgw = V or Wgw = ∅ then
3: return Wgw

4: else
5: A← Attr2(V \Wgw)
6: return NonStocDirFWMP(G ↾ (Wgw \A), ℓ)

Algorithm 3 GoodWin(G, ℓ)
Input: G = ((V,E), (V1, V2,∅), w) the non-stochastic game, and ℓ ≥ 1, the window length
Output: The set of vertices in V from which Player 1 wins GW(ℓ)
1: for all v ∈ V do
2: C0(v)← 0
3: for all i ∈ {1, . . . , ℓ} do
4: Ci(v)← −∞
5: for all i ∈ {1, . . . , ℓ} do
6: for all v ∈ V1 do
7: Ci(v)← max(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}} ▷ In [CDRR15],
w(v, v′) + Ci−1(v

′) was used instead of max{w(v, v′), w(v, v′) + Ci−1(v
′)}.

8: for all v ∈ V2 do
9: Ci(v)← min(v,v′)∈E{max{w(v, v′), w(v, v′) + Ci−1(v

′)}} ▷ In [CDRR15],
w(v, v′) + Ci−1(v

′) was used instead of max{w(v, v′), w(v, v′) + Ci−1(v
′)}.

10: Wgw ← {v ∈ V | Cℓ(v) ≥ 0} ▷ In [CDRR15], Wgw was defined as {v ∈ V | ∃i ∈
{1, 2, . . . ℓ}, Ci(v) ≥ 0} instead because Ci(v) had a different definition in [CDRR15].

11: return Wgw

v1

v2 v3

v4 v5

1

1

1

−1
−1

−1

(a) A counterexample for computing win-
ning region for DirFWMP(ℓ) [CDRR15, Al-
gorithm 2] with ℓ = 2.

v1 v2 v3 v4

v5 v6 v7 v8

−1 −1

2

3
0

−2 0 2
0

(b) A counterexample for computing winning
region for GW(ℓ) [CDRR15, Algorithm 3] with
ℓ = 3.

Figure 2. Counterexamples for algorithms in [CDRR15]

Description of algorithms from [CDRR15]. Algorithm 1 [CDRR15, Algorithm 1] com-
putes the winning region of Player 1 for the FWMP(ℓ) objective. First (Line 1) it computes
the winning region Wd for Player 1 for the DirFWMP(ℓ) objective (using Algorithm 2). If Wd

is empty, then it is easy to show that the winning region for Player 1 for objective FWMP(ℓ)
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is also empty, and the algorithm terminates (Line 3). Otherwise, all vertices in the Player 1
attractor of Wd (Line 5) are also winning (as FWMP(ℓ) is closed under prefixes), and the
remaining states (i.e., the complement of the attractor) induce a smaller subgame, which
can be solved (recursively) by the same algorithm.

Algorithm 2 computes the winning region of Player 1 for the DirFWMP(ℓ) objective. It
does so by first computing the region V \Wgw from which Player 1 cannot win the good
window objective GW(ℓ) (Line 3). If Player 1 does not win the GW(ℓ) objective, then she
does not win the DirFWMP(ℓ) objective either, and thus, all vertices in V \Wgw are losing for
Player 1. If V \Wgw is empty, that is, if Wgw = V , then Player 1 wins the GW(ℓ) objective
from every vertex, and it is easy to see that Player 1 also wins the DirFWMP(ℓ) objective
from every vertex. Otherwise, the Player 2 attractor to V \Wgw is also losing for Player 1.
The remaining states (i.e., the complement of A) induce a smaller subgame, which can be
solved (recursively) by the same algorithm.

Algorithm 3 computes the winning region of Player 1 for the good window objective
GW(ℓ), that is, the set of vertices from which Player 1 can close the window within at most
ℓ steps. The algorithm uses dynamic programming to compute, for all v ∈ V and all lengths
i ∈ {1, . . . , ℓ}, the largest payoff Ci(v) that Player 1 can ensure from v within at most i steps.
The winning region for GW(ℓ) for Player 1 consists of all vertices v such that Cℓ(v) ≥ 0.

Correctness of Algorithm 2. We show the correctness of Algorithm 2, that is, we show
that this algorithm correctly computes ⟨⟨1⟩⟩G(DirFWMP(ℓ)), the winning region for Player 1
for the DirFWMP(ℓ) objective. The proof makes use of the fact that DirFWMP(ℓ) ⊆ GW(ℓ),
that is, if Player 1 does not win GW(ℓ) from a vertex v ∈ V , then she also does not win
DirFWMP(ℓ) from v.

The algorithm successively finds vertices that are losing for Player 1 for the GW(ℓ)
objective, removes them, and recurses on the rest of the game graph. In Line 1, we have
Wgw = ⟨⟨1⟩⟩G(GW(ℓ)), the winning region for Player 1 for the GW(ℓ) objective.

• If Wgw = ∅, then Player 2 wins GW(ℓ) from all vertices in V , and therefore, Player 2 also

wins DirFWMP(ℓ) from all vertices in V . Hence, ⟨⟨1⟩⟩G(DirFWMP(ℓ)) = ∅.
• Otherwise, if Wgw = V , then Player 1 wins GW(ℓ) from all vertices in G. For all vertices
v ∈ V , starting from v, Player 1 can ensure that the window starting at v closes in at
most ℓ steps. When the window starting at v closes, suppose the token is on a vertex v′.
By the inductive property of windows, all windows that opened after v are also closed by
the time the token reaches v′. Now, since v′ ∈ ⟨⟨1⟩⟩G(GW(ℓ)), Player 1 can ensure that the
window starting at v′ also closes in at most ℓ steps. In this manner, Player 1 closes every
window in at most ℓ steps, resulting in an outcome that is winning for the DirFWMP(ℓ)
objective. We get that ⟨⟨1⟩⟩G(DirFWMP(ℓ)) = V .

• Finally, suppose ∅ ⊊ Wgw ⊊ V . Starting from V \Wgw, Player 2 wins the GW(ℓ) objective,

and hence, also the DirFWMP(ℓ) objective. Therefore, no vertex in V \Wgw belongs to
⟨⟨1⟩⟩G(DirFWMP(ℓ)). Moreover, consider the Player 2 attractor A to V \Wgw (Line 5).
Starting from a vertex in this attractor, Player 2 can follow a memoryless strategy to
eventually reach V \Wgw. Once the token reaches V \Wgw, Player 2 can ensure that a
window remains open for ℓ steps, resulting in Player 1 losing. Hence, no vertex in the
attractor belongs to ⟨⟨1⟩⟩G(DirFWMP(ℓ)) either. The complement of this Player 2 attractor
is a trap for Player 2 and induces a subgame. For all vertices v in this subgame, if Player 1
wins from v in the subgame, then she also wins from v in the original game as she can
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mimic a winning strategy from the subgame while also ensuring that the token never
leaves the subgame. Conversely, for all vertices v in the subgame, if Player 1 does not win
from v in the subgame, then she also does not win from v in the original game. This is
because if the token remains in the subgame forever, then Player 2 wins, and if the token
ever leaves the subgame, then as discussed above, the token enters the Player 2 attractor,
and Player 2 wins. Thus, for all vertices v in the subgame, Player 1 wins from v in the
subgame if and only if she wins from v in the original game. Hence, the winning region for
Player 1 in the subgame is equal to the winning region for Player 1 in the original game,
and hence, the algorithm recurses on this subgame.

Correctness of Algorithm 3. The following characterization of Ci(v) holds:

• There exists a strategy σ1 of Player 1 such that for all strategies σ2 of Player 2, there
exists 1 ≤ j ≤ i such that in the outcome of the strategy profile (σ1, σ2) with initial vertex
v, the total payoff in the first j steps of the outcome is at least Ci(v);
• For all strategies σ1 of Player 1, there exists a strategy σ2 of Player 2 such that for all
1 ≤ j ≤ i, the total payoff of the first j steps in the outcome of (σ1, σ2) with initial vertex
v is at most Ci(v).

A monotonicity property follows from the above characterization, namely that for all
v ∈ V , if 1 ≤ i ≤ j ≤ ℓ, then Ci(v) ≤ Cj(v), which can also easily be established from
Algorithm 3. Note that monotonicity does not hold for i = 0 as C0(v) = 0 for all v ∈ V ,
but we may have C1(v) < 0 (e.g., if all outgoing edges from v have negative weight). It also
follows from this characterization that Ci(v) ≥ 0 if Player 1 wins from v for objective GW(i).

We now show the correctness of Algorithm 3 to compute Ci(·), by induction on i ∈
{1, . . . , ℓ}. The base case i = 1 holds since C0(v) = 0 for all v ∈ V and the maximum
possible payoff from v in one step is C1(v) = max(v,v′)∈E{w(v, v′)} if v ∈ V1 is a vertex
of Player 1, and C1(v) = min(v,v′)∈E{w(v, v′)} if v ∈ V2 is a vertex of Player 2. For the
induction step i ≥ 2, assume that Ci−1(v) is correctly computed by the algorithm for all
v ∈ V , as the maximum payoff that Player 1 can ensure from v in at least 1 and at most
i − 1 steps. Then, from a vertex v and if the edge (v, v′) is chosen (either by Player 1 or
by Player 2), the maximum payoff that Player 1 can ensure in at least 1 and at most i
steps is either w(v, v′) (in 1 step) or w(v, v′) + Ci−1(v

′) (in at least 1 + 1 = 2 steps and
at most 1 + i− 1 = i steps), whichever is greater. Hence if v ∈ V1 is a vertex of Player 1,
then Ci(v) is the maximum such value across the out-neighbours v′ of v, and if v ∈ V2 is
a vertex of Player 2, then Ci(v) is the minimum, as in Line 7 and Line 9 of the algorithm.
Finally by the characterization of Ci(v), Player 1 wins from v for the GW(ℓ) objective if
Cℓ(v) ≥ 0 (Line 10), which by the monotonicity property, is equivalent to the condition
∃1 ≤ i ≤ ℓ : Ci(v) ≥ 0 used in [CDRR15].

Counterexample for [CDRR15, Algorithm 2]. The version of Algorithm 2 in [CDRR15]
does not compute (and does not remove) the Player 2 attractor Attr2(V \ Wgw) to the
winning region of Player 2 for the good-window objective (Line 5). However, it is easy to see
that Player 2 can spoil the good-window objective from A, not only from V \Wgw. This may
lead to incorrectly classifying some losing states as being winning (for Player 1). Consider
the non-stochastic game shown in Figure 2a with ℓ = 2. The vertices v4 and v5 are losing for
Player 1 for DirFWMP(ℓ), and since v1 ∈ V2, the vertex v1 is also losing for Player 1. The
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remaining vertices {v2, v3} are winning for Player 1. After computing the winning region of
Player 2 for the good-window objective, which is {v4, v5}, the winning region in the subgame
induced by V \ {v4, v5} = {v1, v2, v3} is {v1, v2, v3}, which is returned as the winning region
for DirFWMP(ℓ), instead of {v2, v3}.

Counterexample for [CDRR15, Algorithm 3]. The version of Algorithm 3 in [CDRR15]
differs at Line 7 and Line 9, and we show that it does not compute the winning region for
the good-window objective.

Consider the non-stochastic game G shown in Figure 2b with ℓ = 3. The vertex v1
is winning for GW(3) since the window closes in three steps irrespective of the successor
chosen by Player 2 from v2. If Player 2 chooses v3 from v2, the window closes in three
steps, whereas if Player 2 chooses v5 from v2, the window closes in two steps. However,
Algorithm 3 in [CDRR15] does not include v1 in the winning region for GW(3). This is
because for every vertex v in the game, it computes for all 1 ≤ i ≤ ℓ, the value Ci(v) as the
best payoff that Player 1 can ensure from v in exactly i steps, instead of at most i steps.
The algorithm includes a vertex v in the winning region for GW(ℓ) if at least one of the
Ci(v) is nonnegative. In our example, the best payoff that Player 1 can ensure from v1 in
exactly one step is −1, in exactly two steps is −2 (corresponding to the prefix v1v2v3), and
in exactly three steps is −1 (corresponding to the prefix v1v2v5v6). Thus, for all 1 ≤ i ≤ 3,
the value Ci(v1) is negative. This example shows that it is possible for Player 1 to ensure
a nonnegative payoff in at most ℓ steps despite the worst payoff in exactly i steps being
negative for all i ∈ {1, . . . , ℓ}.

4. Memory requirement for non-stochastic window mean-payoff games

The memory requirement for winning strategies of both Player 1 and Player 2 in non-
stochastic games with objective FWMP(ℓ) is claimed to be O(|V | ·ℓ) without proof [CDRR15,
Lemma 7]. Further, the bounds are “correctly stated” as O(wmax · ℓ2) and O(wmax · ℓ2 · |V |)
for Player 1 and Player 2 respectively, where wmax is the maximum absolute payoff in the
graph [BHR16b, Theorem 2]. We improve upon these bounds and show that memory of
size ℓ suffices for a winning strategy of Player 1. Furthermore, a formal argument for memory
requirement for Player 2 strategies is missing in [CDRR15] which we provide here.

We show constructions of Mealy machines MNS
1 and MNS

2 (with at most ℓ and |V | · ℓ
states respectively) that define winning strategies σNS

1 and σNS
2 of Player 1 and Player 2

respectively, showing upper bounds on the memory requirements for both players. We also
present a family of games with arbitrarily large state space where Player 2 is winning and
all his winning strategies require at least 1

2(|V | − ℓ) + 3 memory, while it was only known
that memoryless strategies are not sufficient for Player 2 [CDRR15].

The paper [CDRR15] also has results on the analysis of the BWMP objective. It has
been shown that solving BWMP for non-stochastic games is in NP ∩ coNP, and memoryless
strategies suffice for Player 1, whereas Player 2 may need infinite memory strategies to play
optimally.



STOCHASTIC WINDOW MEAN-PAYOFF GAMES 15

4.1. Memory requirement for Player 1 for FWMP objective.

Upper bound on memory requirement for Player 1. We show that memory of size
ℓ suffices for winning strategies of Player 1 for the DirFWMP(ℓ) objective (Lemma 4.1),
which is in turn used to show that the same memory also works for the FWMP(ℓ) objective
(Theorem 4.4).

Lemma 4.1. If Player 1 wins in a non-stochastic game with objective DirFWMP(ℓ), then
Player 1 has a winning strategy with memory of size ℓ.

Proof. Given a game G, let Wd be the winning region of Player 1 in G for objective
DirFWMP(ℓ). Note that the regionWd is a trap for Player 2 in G, as the objective DirFWMP(ℓ)
is closed under suffixes. Every vertex in Wd is moreover winning for Player 1 with objective
GW(ℓ), by definition.

A winning strategy of Player 1 is to play for the objective GW(ℓ) until the window
closes (which Player 1 can ensure within at most ℓ steps), and then to restart with the same
strategy, playing for GW(ℓ) and so on. Using memory space Q = {1, . . . , ℓ}, we may store
the number of steps remaining before the window must close to satisfy GW(ℓ), and reset
the memory to q0 = ℓ whenever the window closes. However, the window may close any
time within ℓ steps, and the difficulty is to detect when this happens: how to update the
memory q = i, given the next visited vertex v, but independently of the history? Intuitively,
the memory should be updated to q = i− 1 if the window did not close yet upon reaching v,
and to q = ℓ if it did, but that depends on which path was followed to reach v (not just on
v), which is not stored in the memory space.

The crux is to show that it is not always necessary for Player 1 to be able to infer when
the window closes. Given the current memory state q = i, and the next visited vertex v,
the memory update is as follows: if Ci(v) ≥ 0 (that is, Player 1 can ensure the window
from v will close within i steps), then we update to q = i − 1 (decrement) although the
window may or may not have closed upon reaching v; otherwise Ci(v) < 0 and we update to
q = ℓ− 1 (reset to ℓ and decrement) and we show that in this case the window did close.
Intuitively, updating to q = i− 1 is safe even if the window did close, because the strategy
of Player 1 will anyway ensure the (upcoming) window is closed within i − 1 < ℓ steps.
For the case Ci(v) < 0, we want the Mealy machine to be in state ℓ when v is being read.
However, there is an additional difficulty to this. Assume that vertex v′ is read by the Mealy
machine before reading v. The Mealy machine is thus in state i+ 1 and Ci+1(v

′) ≥ 0. Now
Ci(v) < 0 denotes that an open window is closed on the edge (v′, v), and the state of the
Mealy machine should be reset to ℓ. However, if v′ is a Player 2 vertex, since the vertex
chosen by a Player 2 strategy from v′ is not known to Player 1 (the output on the transition
of the Mealy machine is thus ϵ), the state of the Mealy machine is updated from i+ 1 to i
while reading v′. The state is then updated to ℓ − 1 after reading v to simulate that the
window was already closed upon reaching v.

For v ∈ V1, we define the next vertex chosen by the strategy as

Di(v) = arg max
(v,v′)∈E

{max{w(v, v′), w(v, v′) + Ci−1(v
′)}},

the out-neighbour from v that maximizes the expression of Algorithm 3 for the GW(ℓ)
objective, Line 7. If there is more than one such out-neighbour, we choose one arbitrarily.
Example 4.2 illustrates how computing Ci(v) and checking if it is nonnegative is useful in
constructing a winning strategy for Player 1. We see in Construction 4.3 a formal description
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of a Mealy machine with ℓ states defining a winning strategy of Player 1 for the DirFWMP(ℓ)
objective. This concludes the proof of Lemma 4.1.

Example 4.2. In this example, we show why checking if Ci(v) is negative or not is sometimes
necessary. Figure 3 shows a fragment of a game where if Player 1 does not know if the
window has closed, then she may choose a vertex that causes her to lose the DirFWMP(ℓ)
objective for ℓ = 4. Suppose it is the case that all windows in the play have closed when the

v
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v1 v2 v3
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Figure 3. The successor of v that Player 1 should choose depends on how
many more steps she has to close the window. If Player 1 does not detect
that the window is closed on (u4, u5), then she chooses v4 from v. Otherwise,
she chooses v1 from v. Computing C2(u5) shows that it is negative and this
implies that the window starting at u3 must have closed at u5.

token reaches u1 and u3. If the token reaches v along u1u2, then Player 1 must move the
token from v to D2(v) = v4 as this closes the window starting at u1. If Player 1 moves the
token from v to v1 instead, then this results in an open window u1u2vv1v2 of length 4 which
is not desirable for Player 1.

On the other hand, if the token reaches v along u3u4u5, then since the window starting
at u3 closes at u5, we have that Player 1 must choose a successor of v such that the window
starting at u5 closes in at most three steps from v. Hence, if Player 1 moves the token from v
to D3(v), that is, v1, then the window starting at u5 closes in at most 4 steps. However,
suppose Player 1 does not detect that the window starting at u3 closes at u5. Although the
total payoff along u3u4u5vv4 is nonnegative (which implies that the window starting at u3 is
closed at v4), one cannot use the inductive property of windows to claim that all subsequent
windows are closed at v4. The inductive property of windows does not hold since the window
starting at u3 closes at u5 and this gives no information about when the window starting
at u5 closes. If Player 1 plays from v as if she has only one more step to close the window,
then she moves the token to D1(v) = v4 and this results in an open window u5vv4v5v6 of
length 4 which is undesirable for Player 1.

Thus, if Player 1 never detects window closings, then this may result in open windows
of length ℓ in the outcome. Since C2(u5) is negative and u5 belongs to the winning region
for DirFWMP(ℓ), this implies that the window starting at u3 must have closed at u5 and
Player 1 cannot continue playing as if the window did not close at u5. Computing Ci(v)
in general helps detect those window closings where Player 1 cannot continue on as if the
window did not close. If Ci(v) ≥ 0, then even if a window closes along a path when v is
reached, it is safe not to detect it, and we can still construct a winning strategy if one
exists.

Construction 4.3. We construct a Mealy machine Md = (Qd, q0, V, V ∪ {ϵ},∆d, δd) with ℓ
states that defines a winning strategy σd of Player 1 for the DirFWMP(ℓ) objective, where:
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• the memory Qd = {1, . . . , ℓ} stores a counter (modulo ℓ), and we assume arithmetic
modulo ℓ (that is, ℓ+ 1 = 1, 1− 1 = ℓ, etc.);
• the initial state is q0 = ℓ (although we show that an arbitrary initial state also induces a
winning strategy);
• the input alphabet is V , as the Mealy machine reads vertices of the game,
• the output alphabet is V ∪ {ϵ}, as the Mealy machine either outputs a vertex (upon
reading a vertex of Player 1) or ϵ (upon reading a vertex of Player 2);
• The transition function ∆d : Qd × V → Qd is defined as follows:

∆d(i, v) =

{
i− 1 (mod ℓ) if Ci(v) ≥ 0 (decrement)

ℓ− 1 if Ci(v) < 0 (reset and decrement)

• The output function δd : {1, . . . , ℓ} × V → V ∪ {ϵ} is defined as follows:

δd(i, v) =


ϵ if v ∈ V2

Di(v) if v ∈ V1 and Ci(v) ≥ 0

Dℓ(v) if v ∈ V1 and Ci(v) < 0

Note that if Ci(v) < 0, then δd(i, v) = δd(ℓ, v), that is, on a reset the strategy plays as if the
counter was equal to ℓ.

We establish the correctness of the construction as follows. We show that the strategy
σd of Player 1 defined by Md is winning, that is for all strategies σ2 of Player 2, the outcome
π of the strategy profile (σd, σ2) satisfies the objective DirFWMP(ℓ).

We show that every window in π closes within at most ℓ steps. We split the outcome π
into segments (where the last vertex of each segment is the same as the first vertex of the
next segment) such that for each segment, the state of the Mealy machine is updated to ℓ− 1
upon reading the last vertex of the segment (thus also upon reading the first vertex of each
segment), but the Mealy machine is never in state ℓ− 1 in between. Note that the initial
memory state of the Mealy machine is ℓ, thus the first segment starts at the beginning of
the outcome, and the segments cover the whole outcome. Note also that the length of each
segment (i.e., the number of transitions) is at most ℓ since either the memory state is either
updated to ℓ− 1, or decreased by 1 (modulo ℓ).

For all segments in the outcome π, we show that all windows that open in the segment
are closed by (or before) the end of the segment, from which we can conclude that the
objective DirFWMP(ℓ) is satisfied.

Consider a segment vℓvℓ−1vℓ−2 · · · vp+1vp (where p ≥ 0 since each segment has at most ℓ
transitions), and the sequence of memory states along the segment:

qℓ
vℓ−→ qℓ−1

vℓ−1−−−→ qℓ−2 · · · qp+1
vp+1−−−→ qp

vp−→ qp−1

which can be written as:

x
vℓ−→ ℓ− 1

vℓ−1−−−→ ℓ− 2 · · · p+ 1
vp+1−−−→ y

vp−→ ℓ− 1

where qℓ−1 = ℓ − 1 and qp−1 = ℓ − 1 by the definition of segments, and qi = i for
i = p+ 1, . . . , ℓ− 2 since the counter is decremented whenever it is not reset to ℓ− 1 (and
thus we also have Ci(vi) ≥ 0 for i = p + 1, . . . , ℓ − 1). We discuss the possible values of
qp = y (and qℓ = x for which the situation is similar). There are two possibilities: either
y = ℓ and the counter is decremented upon reading vp (and thus p = 0 and Cp(vp) = 0), or
y = p < ℓ and the counter is reset upon reading vp (and thus Cp(vp) < 0). It follows that in
both cases Cp(vp) ≤ 0.
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Moreover at the beginning of the segment (considering qℓ = x), the strategy chooses
Dℓ(vℓ) upon reading vℓ (if vℓ ∈ V1 is a player-1 vertex), as either x = ℓ and the output on a
decrement is Dx(vℓ) = Dℓ(vℓ), or x < ℓ and Cx(vℓ) < 0 (and the output on a reset is Dℓ(vℓ)
by definition). Hence we have vi−1 = Di(vi) whenever vi ∈ V1 is a player-1 vertex, for all
i = p+ 1, . . . , ℓ.

We now show by induction on i that Ci(vi) ≤ TP(vi · · · vp+1vp) for all i ∈ {p+1, . . . , ℓ−1},
which implies, since Ci(vi) ≥ 0, that TP(vi · · · vp+1vp) ≥ 0, and thus all windows in the
segment close within ℓ steps.

For the base case i = p+1, since Cp(vp) ≤ 0, the max subexpression at Line 7 and Line 9 of
Algorithm 3 simplifies to w(vp+1, vp), and accordingly we get either Cp+1(vp+1) = w(vp+1, vp)
if vp+1 ∈ V1 is a player-1 vertex, or Cp+1(vp+1) ≤ w(vp+1, vp) if vp+1 ∈ V2 is a player-2
vertex, which establishes the base case Cp+1(vp+1) ≤ w(vp+1, vp) = TP(vp+1vp).

For the induction step, let i ∈ {p + 2, . . . , ℓ − 1}. Since Ci−1(vi−1) ≥ 0, we have
Ci(vi) ≤ w(vi, vi−1)+Ci−1(vi−1) by a similar argument as in the base case. By the induction
hypothesis, we get Ci(vi) ≤ w(vi, vi−1) + TP(vi−1 · · · vp) = TP(vi · · · vp).

We show that the result holds no matter which is the initial memory state of the Mealy
machine. It suffices to remark that with initial state q0 = i instead of q0 = ℓ, the prefix of
the outcome until the first reset occurs (and the first segment starts) can be considered as a
truncated segment (thus of length at most i ≤ ℓ) where the same argument can be used to
show that all windows close within the length of the segment.

Theorem 4.4. If Player 1 wins in a non-stochastic game G with objective FWMP(ℓ), then
Player 1 has a winning strategy with memory of size ℓ.

Proof. Since FWMP(ℓ) is a prefix-independent objective, we have that the winning region
⟨⟨1⟩⟩G(FWMP(ℓ)) of Player 1 is a trap for Player 2 (Remark 2.1), and induces a subgame,

say G0. We construct a winning strategy σNS
1 for Player 1 in G0, with memory of size

ℓ. Let there be k + 1 calls to the subroutine NonStocDirFWMP from Algorithm 1. We
denote by (Wi)i∈{1,...,k} the nonempty Wd returned by the ith call to the subroutine, and let

Ai = Attr1(Wi). The Ai’s are pairwise disjoint, and their union is
⋃k

i=1Ai = ⟨⟨1⟩⟩G(FWMP(ℓ)).
For i ∈ {1, . . . , k}, inductively define Gi to be the subgame induced by the complement of
Ai in Gi−1. Since DirFWMP(ℓ) is closed under suffixes, for all i ∈ {1, . . . , k}, we have that
Wi is a trap for Player 2 in Gi (Remark 2.1).

Let W =
⋃k

i=1Wi be the union of the regions Wi over all subgames Gi, and let

A =
⋃k

i=1(Ai\Wi) be the union of the regions Ai\Wi over all subgames Gi, for i ∈ {1, . . . , k}.
Note that W ∩A = ∅ and W ∪A = ⟨⟨1⟩⟩G(FWMP(ℓ)).

We construct a strategy σNS
1 that plays according to the (memoryless) attractor strategy

in A, and according to the winning strategy σd for DirFWMP(ℓ) objective (defined in
Construction 4.3) in W . Formally, define the Mealy machine MNS

1 with ℓ states that defines
σNS
1 . The Mealy machine MNS

1 is given by the tuple (QNS
1 , ℓ, V, V ∪ {ϵ},∆NS

1 , δNS1 ), where

• the memory QNS
1 = {1, . . . , ℓ} of the Mealy machine stores a counter (modulo ℓ);

• the initial state is q0 = ℓ;
• the input alphabet is V , as the Mealy machine reads vertices of the game;
• the output alphabet is V ∪ {ϵ}, as the Mealy machine either outputs a vertex (upon
reading a vertex of Player 1) or ϵ (upon reading a vertex of Player 2);
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• The transition function ∆NS
1 : QNS

1 × V → QNS
1 is defined as:

∆NS
1 (i, v) =

{
ℓ if v ∈ A (follow attractor strategy)

∆d(i, v) if v ∈W (follow σd for objective DirFWMP(ℓ))

• The output function δNS1 : {1, . . . , ℓ} × V → V ∪ {ϵ} is defined as follows. Here, A(v) is
the output of a (memoryless) attractor strategy to reach the set W .

δNS1 (i, v) =


ϵ if v ∈ V2

A(v) if v ∈ A ∩ V1

δd(i, v) if v ∈W ∩ V1

We establish the correctness of the construction as follows. We show that the strategy
σNS
1 of Player 1 defined by MNS

1 is winning, that is for all strategies σ2 of Player 2, the
outcome π of the strategy profile (σNS

1 , σ2) satisfies the objective FWMP(ℓ).
The crux is to show that one of the sets Wi for some i ∈ {1, . . . , k} is never left from

some point on. Intuitively, given the token is in Ai for some i ∈ {1, . . . , k} (thus in Gi),
following σNS

1 the token will either remain in Ai, or leave the subgame Gi, thus entering
Aj for a smaller index j < i. Repeating this argument (at most k times, as the index is
decreasing) shows that the token eventually remains in some Wi (i ∈ {1, . . . , k}). From that
point on, the strategy plays like σd (with some initial memory state i ∈ {1, . . . , ℓ}) which
ensures objective DirFWMP(ℓ) (proof of Lemma 4.1), and thus from the initial state the
objective FWMP(ℓ) is satisfied.

Remark 4.5. In every play π consistent with σNS
1 , eventually, all windows close in at most

ℓ steps. If Player 1 follows the strategy σNS
1 , then irrespective of how Player 2’s choices

are made (whether they are deterministic or randomized), the outcome always satisfies the
FWMP(ℓ) objective. The proof of Theorem 4.4 thus continues to hold even if the strategy
σ2 of Player 2 is not deterministic. Since the constructed strategy σNS

1 is a deterministic
strategy, we have that deterministic strategies suffice for the FWMP(ℓ) objective for Player 1,
and memory of size ℓ suffices.

Lower bound on memory requirement for Player 1. In [CDRR15], the authors show
an example of game with ℓ = 4 where Player 1 requires memory at least 3. While it is not
difficult to generalize this to arbitrary ℓ, we state it here for completeness.

Theorem 4.6. There exists a family of games {Gℓ}ℓ≥2 with objective FWMP(ℓ) for Player 1
such that every winning strategy of Player 1 in Gℓ requires at least ℓ− 1 memory.

Proof. We describe the game Gℓ with objective FWMP(ℓ) in Figure 4. The vertex u0 belongs
to Player 2. All other vertices in the game belong to Player 1. For each i ∈ {1, . . . , ℓ− 1},
there is an edge from (u0, ui) with payoff −i. For all i ∈ {1, . . . , ℓ − 2}, there is an edge
(ui, ui+1) with payoff 0. There are ℓ− 1 disjoint paths from uℓ−1 to v, each of length ℓ− 1.
The ith edge on the ith path has payoff +i. All other edges in all paths from uℓ−1 to v have
payoff 0. Finally, there is an edge (v, u0) with payoff 0.

If Player 2 moves the token from u0 to ui for i ∈ {1, . . . , ℓ − 1}, then Player 1 needs
to ensure a payoff of at least +i from uℓ−1 in at most i steps to ensure that the window
starting at u0 closes in at most ℓ steps. When Player 2 moves the token from u0 to ui, we
have that Player 1 must take the ith path from uℓ−1 so the window starting at u0 closes in
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u0 u1 u2 uℓ−2 uℓ−1

v
−1 0 0

−2
−(ℓ− 2)
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0

+2

0

0

0
0
0

+(ℓ− 1)

0

Figure 4. Memory ℓ− 1 is necessary for Player 1.

at most ℓ steps. If Player 1 chooses any other successor of uℓ−1, then the window starting
at u0 remains open for more than ℓ steps. Since there are ℓ− 1 different choices for Player 1
from uℓ−1, a Mealy machine defining a winning strategy of Player 1 requires at least ℓ− 1
distinct states. Thus, a winning strategy of Player 1 in the game Gℓ requires at least ℓ− 1
memory.

Remark 4.7. The game Gℓ in Figure 4 shows that the memory requirement of Player 1 is
ℓ − 1 even if she uses randomized strategies. This is because after a certain point in the
play, each time the token reaches uℓ−1, Player 1 must choose the correct successor with
probability 1 in order to win the FWMP(ℓ) objective. Thus, randomization does not improve
the lower bound for the size of the memory required.

4.2. Memory requirement for Player 2 for FWMP objective.

Upper bound on memory requirement for Player 2. Now we show that for FWMP(ℓ)
objective, Player 2 has a winning strategy that requires at most |V | · ℓ memory. This has
been loosely stated in [CDRR15] without a formal proof. We use this result to show in
Section 6 that the same memory bound for Player 2 also suffices in stochastic games. In fact,
we show a stronger result that the memory required in the stochastic window mean-payoff
games is no more than the optimal memory bounds for non-stochastic games.

Theorem 4.8. Let G be a non-stochastic game with objective FWMP(ℓ) for Player 2. Then,
Player 2 has a winning strategy with memory size at most |V | · ℓ.

Proof. Since FWMP(ℓ) is a prefix-independent objective, so is FWMP(ℓ). We have that

⟨⟨2⟩⟩G(FWMP(ℓ)) is a trap for Player 1 (Remark 2.1) and induces a subgame, sayH0, of G. Let
there be k+1 calls to the subroutine GoodWin from Algorithm 2, and let Hi be the subgame
corresponding to the ith call of the subroutine. We denote by (Wi)

k
i=1 the complement of

Wgw in Hi, where Wgw is returned by the ith call to the subroutine, and let Ai = Attr2(Wi).

The Ai’s are pairwise disjoint, and their union is
⋃k

i=1Ai = ⟨⟨2⟩⟩G(FWMP(ℓ)).

We describe a winning strategy for the FWMP(ℓ) objective with memory k · ℓ, which is
at most |V | · ℓ. The strategy is always in either attractor mode or window-open mode. When
the game begins, it is in attractor mode. If the strategy is in attractor mode and the token is
on a vertex v ∈ Ai \Wi for some i ∈ {1, . . . , k}, then the attractor strategy is to eventually
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reach Wi. If the token reaches Wi, then the strategy switches to window-open mode. Since
all vertices in Wi are winning for Player 2 for the GW(ℓ) objective, he can keep the window
open for ℓ more steps, provided that Player 1 does not move the token out of the subgame Hi.
If, at some point, Player 1 moves the token out of the subgame Hi to Aj for a smaller index
j < i, then the strategy switches back to attractor mode, this time trying to reach Wj in
the bigger subgame Hj . Otherwise, if Player 2 keeps the window open for ℓ steps, then the

strategy switches back to attractor mode until the token reaches a vertex in
⋃k

i=1Wi. This

strategy can be defined by a Mealy machine MNS
2 with states {1, . . . , k} × {1, . . . , ℓ}, where

the first component tracks the smallest subgame Hi in which the window started to remain
open, and the second component indicates how many more steps the window needs to be
kept open for. A formal description of MNS

2 is given in Construction 4.9.

Construction 4.9. Let W =
⋃k

i=1Wi, and A =
⋃k

i=1(Ai \Wi). For 1 ≤ i ≤ k, let Hi

denote the set of vertices in the subgame Hi. For all v ∈ V , let Γ(v) denote the largest
j ≥ 1 such that v ∈ Hj . That is, HΓ(v) is the smallest subgame that v belongs to. Given

j ≥ 1 and v ∈ A ∩ V2 ∩ (Hj \Hj+1), let A
j(v) denote a successor vertex that Player 2 can

choose to eventually reach the Wj region in W ∩ (Hj \Hj+1). This is given by a memoryless

attractor strategy. Given i ∈ {1, . . . , ℓ}, j ≥ 1 and v ∈ V2 ∩Hj , let D
j
i (v) denote the best

successor that Player 2 should choose from v to ensure that the window remains open for
i more steps. These values can be computed for all i ∈ {1, . . . , ℓ} and for all v ∈ Hj by
running the GoodWin algorithm on the subgame Hj . Recall from Line 9 in Algorithm 3

that Ci(v) = min(v,v′)∈E{max{w(v, v′), w(v, v′) +Ci−1(v
′)}}. We let Dj

i (v) be the successor
vertex v′ ∈ E(v) of v such that the value of {max{w(v, v′), w(v, v′)+Ci−1(v

′)}} is minimized.
If there is more than one such v′, we choose one arbitrarily.

We construct a Mealy machine MNS
2 that defines σNS

2 , a winning strategy of Player 2.
The Mealy machine MNS

2 is a tuple (QNS
2 , (1, ℓ), V, V ∪ {ϵ},∆NS

2 , δNS2 ) where

• the set of states QNS
2 is the set {1, . . . , k} × {1, . . . , ℓ},

• the initial state of the Mealy machine is (1, ℓ) irrespective of where the game begins in H1.
We could also instead have set the initial state of the Mealy machine as (Γ(vinit), ℓ), where
vinit is the initial vertex of the game. However, to keep the initial state of the Mealy
machine independent of the initial vertex of the game, we have the initial state of the
Mealy machine as (1, ℓ). The transitions are defined such that the state of the Mealy
machine is changed to Γ(v) in the very next step.
• the input alphabet is V , same as in MNS

1 ,
• the output alphabet is V ∪ {ϵ}, same as in MNS

1 .

The transition function ∆NS
2 : QNS

2 × V → QNS
2 is defined as follows:

∆NS
2 (q, v) =



∆NS
2 ((1, ℓ), v) q = (j, i), v ∈ H1 \Hj , for all i ∈ {1, . . . , ℓ}, j ∈ {2, . . . , k}

(Γ(v), ℓ) q = (j, ℓ), v ∈ A ∩Hj , for all j ∈ {1, . . . , k}
(Γ(v), ℓ− 1) q = (j, ℓ), v ∈W ∩Hj , for all j ∈ {1, . . . , k}
(j, i− 1) q = (j, i), v ∈ Hj , for all i ∈ {2, . . . , ℓ− 1}, j ∈ {1, . . . , k}
(1, ℓ) q = (j, 1), v ∈ Hj , for all j ∈ {1, . . . , k}

Suppose the Mealy machine is in state q ∈ QNS
2 and the token is in vertex v ∈ V . We

describe the definition of ∆NS
2 (q, v).
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• If q = (j, i) for i ∈ {1, . . . , ℓ} and j ∈ {2, . . . , k}, but v ∈ H1 \Hj , then this means that
Player 1 must have moved the token out of the subgame Hj . Player 2 may have been in
the process of keeping the window open for ℓ steps in Hj , but the move by Player 1 may
have closed the window. The strategy switches to attractor mode, and the state of the
Mealy machine changes to ∆NS

2 ((1, ℓ), v). Note that Player 1 can only move the token out
of a subgame finitely many times, and once the token is in H1 \H2, then Player 1 can
no longer move the token out of H1, and Player 2 will be able to keep the window open
for ℓ steps without resetting the strategy. Now, for the remaining cases, suppose that if
q = (j, i), then v ∈ Hj .
• If q = (j, ℓ) for j ∈ {1, . . . , k} and v ∈ A∩Hj , then the strategy is in attractor mode. Since
v ∈ Hj , we have that Γ(v) ≥ j, i.e. HΓ(v) is a subgame of Hj . When the game begins, or
when Player 2 manages to keep the window open for ℓ steps, the first component resets to
1 according to the fifth type of transition in the definition of ∆NS

2 (q, v). In such cases, it
may happen that Γ(v) > j. Another possibility is that, at some point, the Mealy machine
is in state (j′, i) for j′ ∈ {2, . . . , k} and i ∈ {1, . . . , ℓ}, and the token is in a vertex u ∈ Hj′ .
If u belongs to Player 1 and she moves the token from u to a vertex u′ that is outside Hj′ ,

then in the next turn, the first kind of transition of ∆NS
2 occurs, that is, ∆NS

2 ((1, ℓ), u′). In
this case, it is possible that Γ(u′) > 1. For such scenarios, the first component of the state
of the Mealy machine updates to Γ(v) to be an indicator of the smallest subgame that v
belongs to. The second component remains equal to ℓ.
• If q = (j, ℓ) for j ∈ {1, . . . , k} and v ∈W ∩Hj , then the strategy was in attractor mode,
but switches to window-open mode in this step. Again, if the game begins, or if Player 2
manages to keep the window open for ℓ steps, or if Player 1 moves the token out of a
subgame to a W -vertex, it may be the case that Γ(v) > j. Thus, the first component of
the state of the Mealy machine updates to Γ(v) to correctly reflect the smallest subgame
that Player 2 begins to keep the window open in. The second component decreases by
one, since Player 2 has begun to keep the window open from v and only needs to keep the
window open for ℓ− 1 steps after this.
• If q = (j, i) for j ∈ {1, . . . , k} and i ∈ {2, . . . , ℓ − 1}, and v ∈ Hj , then the strategy is
in window-open mode. The state of the Mealy machine changes to (j, i − 1). The first
component of the state of the Mealy machine keeps track of the smallest subgame in which
Player 2 began to keep the window open in order to decide the optimal successor vertex

Dj
i (v), so it remains unchanged. The second component decreases to i− 1, and we now

describe why. If v belongs to Player 2, and since Hj is a trap for Player 2, the successor
v′ of v chosen by Player 2 also belongs to Hj , and Player 2 chooses the successor that lets
him keep the window open for i− 1 more steps after v′. On the other hand, if v belongs
to Player 1, then the successor v′ of v chosen by Player 1 may or may not belong to Hj .
If v′ belongs to Hj , then Player 2 can still keep the window open for i − 1 more steps

after v′, since Player 2 has been playing optimally for the objective GW(ℓ) restricted to
the subgame Hj . However, if Player 1 moves the token out of Hj , then the window may
have closed, but we let the state of the Mealy machine change to (j, i− 1) regardless. In
the next turn, the Mealy machine will be in state (j, i− 1), but v′ will not belong to Hj .

Thus, by the first kind of transition of ∆NS
2 , after the next step, the state of the Mealy

machine will change to ∆NS
2 ((1, ℓ), v′). The Mealy machine will behave as if its state had

changed to (1, ℓ) (instead of (j, i− 1)) after reading v.
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• If q = (j, 1) for j ∈ {1, . . . , k} and v ∈ Hj , then the strategy is in window-open mode.
After this step, Player 2 has successfully kept the window open for ℓ steps, and the strategy
switches to attractor mode. The second component resets to ℓ to indicate that the strategy
switches to attractor mode. The first component of the state of the Mealy machine resets
to 1, the way it was at the beginning of the game. Since Γ(v) ≥ 1, the first component
will correctly change to Γ(v) in the next step by the second or third type of transition in
the definition of ∆NS

2 (q, v).

The output function δNS2 : QNS
2 × V → V ∪ {ϵ} is defined as follows:

δNS
2 (q, v) =



ϵ q ∈ QNS
2 , v ∈ V1

δNS2 ((1, ℓ), v) q = (j, i), v ∈ V2 ∩H1 \Hj , for all i ∈ {1, . . . , ℓ}, j ∈ {2, . . . , k}
AΓ(v)(v) q = (j, ℓ), v ∈ A ∩ V2 ∩Hj , for all j ∈ {1, . . . , k},
D

Γ(v)
ℓ (v) q = (j, ℓ), v ∈W ∩ V2 ∩Hj , for all j ∈ {1, . . . , k},

Dj
i (v) q = (j, i), v ∈ V2 ∩Hj , for all i ∈ {1, . . . , ℓ− 1}, j ∈ {1, . . . , k}

Suppose the Mealy machine is in state q ∈ QNS
2 and the token is in vertex v ∈ V . We

describe the definition of δNS2 (q, v).

• If v ∈ V1, then the Mealy machine outputs ϵ since a strategy of Player 2 is not defined for
prefixes ending with a Player 1 vertex.
• If q = (j, i) for some i ∈ {1, . . . , ℓ} and j ∈ {2, . . . , k}, but v ∈ H1 \Hj , then as described

in the definition of the transition function ∆NS
2 (q, v), this means that Player 1 must have

moved the token out of the subgame Hj when the last vertex before v was read. The

Mealy machine behaves as if it was in state (1, ℓ), and outputs δNS2 ((1, ℓ), v).
• If q = (j, ℓ) and v ∈ A ∩ V2 ∩Hj for j ∈ {1, . . . , k}, then the strategy is in attractor mode.
Player 2 must move the token by following the attractor strategy to reach WΓ(v). The

vertex given by the attractor strategy is AΓ(v)(v).
• If q = (j, ℓ) and v ∈ W ∩ V2 ∩ Hj for j ∈ {1, . . . , k}, then the strategy switches to
window-open mode. Player 2 has not started to keep to window open, but can now begin
to keep the window open for ℓ steps. The best vertex to choose for this is given by the

successor D
Γ(v)
ℓ (v).

• Finally, if q = (j, i) and v ∈ V2 ∩Hj for i ∈ {1, . . . , ℓ − 1} and j ∈ {1, . . . , k}, then the
strategy is in window-open mode. Player 2 has kept the window open for ℓ − i steps
already, with the first vertex in the window from Hj \Hj+1. He must keep the window

open for i more steps, and hence chooses Dj
i (v) as the successor vertex.

This concludes the construction of a Mealy machine defining a winning strategy of Player 2.

Remark 4.10. The definitions ∆NS
2 (q, v) and δNS2 (q, v) are recursive definitions when

q = (j, i) and v ∈ H1\Hj . Recall that when this is the case, we have ∆NS
2 (q, v) = ∆NS

2 ((1, ℓ), v)

and δNS
2 (q, v) = δNS2 ((1, ℓ), v). The output and the transition of the Mealy machine MNS

2

from the state (j, i) are as if the Mealy machine is actually in state (1, ℓ). If the Mealy
machine is in state (1, ℓ), then since j = 1, it is not possible for v to belong to H1 \ H1

because it is an empty set. Thus, when j = 1, the transition and output functions do not
make recursive calls to themselves. Hence, the depth of recursion in both ∆NS

2 and δNS2 is
never greater than 1.
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Remark 4.11. Note that the memory required for Player 2 to play optimally is k · ℓ, where
k is the number of recursive calls to the GoodWin algorithm. This gives a tighter bound
than that claimed in [CDRR15] since k ≤ |V |.

Remark 4.12. Every play π that is consistent with the strategy constructed in Construc-
tion 4.9 has infinitely many open windows of length ℓ, and therefore satisfies the FWMP(ℓ)
objective. If Player 2 follows this strategy, then the outcome is always winning for him,
irrespective of how Player 1’s choices are made (whether deterministic or randomized).
The proof of Theorem 4.8 thus continues to hold even if the strategy of Player 1 is not
deterministic. Since the strategy constructed in Construction 4.9 is a deterministic strategy,
we have that deterministic strategies suffice for the FWMP(ℓ) objective for Player 2, and
memory of size |V | · ℓ suffices.

Lower bound on memory requirement for Player 2. In [CDRR15], it was shown that
memoryless strategies do not suffice for Player 2. We improve upon this lower bound. Given
a window length ℓ ≥ 2, for every k ≥ 1, we construct a graph {Gk,ℓ} with 2k + ℓ− 1 vertices
such that every winning strategy of Player 2 in {Gk,ℓ} requires at least k + 1 memory.

Theorem 4.13. There exists a family of non-stochastic games {Gk,ℓ}k≥1,ℓ≥2 with objective
FWMP(ℓ) for Player 1 and edge weights −1, 0,+1 such that every winning strategy of
Player 2 requires at least 1

2(|V | − ℓ+ 1) + 1 memory, where |V | = 2k + ℓ− 1.

Proof. Let A = {a1, . . . , ak}, B = {b1, . . . , bk}, and C = {c1, . . . , cℓ−1} be pairwise disjoint
sets. The vertices of Gk,ℓ are A∪B ∪C with V1 = A∪C and V2 = B. Now we list the edges
in Gk,ℓ:
(1) For all p ∈ {1, . . . , k} and r ∈ {1, . . . , k} such that p ≤ r, we have an edge (ap, br) with

payoff −1.
(2) For all p ∈ {2, . . . , k}, we have an edge (ap, ap−1) with payoff +1.
(3) For all p ∈ {2, . . . , k}, we have an edge (ap, bp−1) with payoff +1.
(4) For all p ∈ {1, . . . , k}, we have an edge (bp, cℓ−1) with payoff 0.
(5) For all p ∈ {1, . . . , k}, we have an edge (bp, ap) with payoff +1.
(6) For all p ∈ {2, . . . , ℓ− 1}, we have an edge (cp, cp−1) with payoff 0.
(7) We have edges (c1, ak) and (c1, bk) with payoff +1 each.

Figure 5 shows the game G4,3.
Observe that the only open windows of length ℓ in the game Gk,ℓ are sequences of the

form apbrcℓ−1 · · · c1 for all p ≤ r. Also note that Player 2 has a winning strategy that wins
starting from every vertex in the game:

• If the token is in C, then it eventually reaches c1. From c1, the token can move to either ak
or bk. In the latter case, Player 2 moves the token from bk to ak. In both cases, the token
reaches A.
• If the token is in A, then it cannot remain in A forever; it must eventually move to B.
Moreover, Player 2 can ensure that the token eventually moves from A to B along an edge
with negative payoff. Suppose whenever the token moves from A to B, it moves an edge
with positive payoff, i.e., from ap ∈ A to bp−1 ∈ B for some p ∈ {2, . . . , k}. Then, Player 2
moves the token from bp−1 back to ap−1 ∈ A. The token then eventually reaches a1 from
which all out-edges have negative payoff, and must necessarily move to B along an edge
with negative payoff.
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Figure 5. The game G4,3 with parameter k = 4 and window length ℓ = 3.
Red edges have payoff −1, black edges have payoff 0, and blue edges have
payoff +1. Memory of size at least k = 4 is needed to define a winning
strategy for the FWMP(ℓ) objective for Player 2 in this game.

a1b1 → c2 a2b1 → a1
a1b2 → c2 a2b2 → c2 a3b2 → a2
a1b3 → c2 a2b3 → c2 a3b3 → c2 a4b3 → a3
a1b4 → c2 a2b4 → c2 a3b4 → c2 a4b4 → c2 c1b4 → a4

Table 1. Good choices χ(u, br) for all u ∈ A ∪ {c1} and br ∈ B in the game
G4,3.

• Eventually, the token moves from ap to br for some p ≤ r. In this case, Player 2 moves the
token from br to cℓ−1 and eventually to c1. The edge (ap, br) has a negative payoff and
the ℓ− 1 edges on the path from br to c1 have payoff 0 each. Hence, the window starting
at ap remains open for ℓ steps.
• Now, the token is on c1 again and Player 2 can eventually keep the window open for ℓ
steps again.

In this manner, Player 2 can ensure that open windows of length ℓ occur infinitely often in
the play.

Good choices. When the token reaches a vertex br ∈ B, Player 2 can either move the
token to ar ∈ A or to cℓ−1 ∈ C. Depending on which vertex the token was on before reaching
br, one of the two choices is good for Player 2. If the token reaches br from the left or above,
i.e., from ap for p ≤ r, then the edge (ap, br) has negative payoff. In this case, it is good
for Player 2 to move the token to cℓ−1 ∈ C so that the window starting at ap remains open
for ℓ steps. Otherwise, if the token reaches br from the right, i.e., from ar+1, then it is good
for Player 2 to move the token to ar so that an edge with negative payoff may eventually be
taken.

For all u ∈ A ∪ {c1}, for all br ∈ B such that (u, br) is an edge in Gk,ℓ, we denote by
χ(u, br) the vertex ar or cℓ−1 that is good for Player 2. We list the good choices in the game
G4,3 in Table 1. The columns are indexed by u ∈ A ∪ {c1} and the rows are indexed by
br ∈ B. If the edge (u, br) does not exist in the game, then the cell corresponding to this
edge is left empty in the table.

In Lemma 4.14, we show that for each column in the table, there exists a distinct
memory state in every Mealy machine defining a winning strategy of Player 2. This gives
a lower bound of k + 1 on the number of states of such a Mealy machine. Since Gk,ℓ has
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2k + ℓ − 1 vertices, the memory requirement of a winning strategy of Player 2 is at least
1
2(|V | − ℓ+ 1) + 1. This concludes the proof of Theorem 4.13.

Constructing Mealy machines. We show that every winning strategy of Player 2 in Gk,ℓ
requires at least k + 1 memory. Let σNS

2 be a winning strategy of Player 2 in Gk,ℓ, and let

MNS
2 = (QNS

2 , q0, V, V ∪ {ϵ},∆NS
2 , δNS

2 ) be a Mealy machine defining σNS
2 .

For all u ∈ A∪{c1}, let Qu denote the set of all states that MNS
2 could be in after reading

a prefix ending in u, i.e., Qu = {q ∈ QNS
2 | ∃ρ ∈ Prefs : ∆̂NS

2 (q0, ρ · u) = q}. Lemma 4.14
gives a lower bound on the number of states in MNS

2 .

Lemma 4.14. Let σNS
2 be a winning strategy for Player 2 for the FWMP(ℓ) objective, and

let MNS
2 be a Mealy machine defining σNS

2 . Then, for all vertices u ∈ A∪ {c1}, there exists a
state qu ∈ Qu such that for all br ∈ B ∩E(u), we have that δNS2 (qu, br) = χ(u, br). Moreover,
the Mealy machine MNS

2 has k + 1 distinct states.

Proof. We prove the contrapositive. Suppose there exists a vertex u ∈ A ∪ {c1} such that
for all qu ∈ Qu, there exists a vertex br ∈ B ∩ E(u) such that δNS2 (qu, br) ̸= χ(u, br). Then,
we show that σNS

2 is not winning for Player 2. We show this by constructing a strategy σ1 of
Player 1 such that the outcome (σ1, σ

NS
2 ) satisfies FWMP(ℓ) and is thus losing for Player 2.

We have that either u ∈ A or u = c1.

• Suppose u = c1.
Irrespective of which vertex the game begins from, the strategy σ1 tries to eventually
move the token to c1. If the token never reaches c1, then this implies that the token never
reaches cℓ−1, and therefore, this implies that every time the token reaches B, Player 1
moves it to A and not C. Thus, no windows remain open for ℓ steps. Otherwise, the
token eventually reaches c1 after having seen at most one open window of length ℓ. After
the token reaches c1 for the first time, we show that under the assumption that for all
qc1 ∈ Qc1 , there exists a vertex br ∈ B ∩ E(c1) such that δNS2 (qc1 , br) ̸= χ(c1, br), that
subsequently there are no more open windows of size ℓ in the outcome.

To see this, observe that B∩E(c1) = {bk} and χ(c1, bk) = ak. Since for all qc1 ∈ Qc1 we
have that δNS2 (qc1 , bk) ̸= χ(c1, bk), we have that δNS2 (qc1 , bk) = cℓ−1. That is, each time the
token reaches bk from c1, the strategy σNS

2 moves the token to cℓ−1. Hence, the token is
stuck in the cycle (bkcℓ−1 · · · c1) where every edge has nonnegative payoff, and no windows
open.
• Otherwise, suppose u = aj ∈ A for some j ∈ {1, . . . , k}.
Irrespective of which vertex the game begins from, the strategy σ1 eventually moves the
token to aj encountering at most one open window of length ℓ. Under the assumption in
the contrapositive statement, we have that each time the token reaches aj , there exists a

successor br of aj such that σNS
2 does not play according to χ(u, br) from br. Specifically,

at least one of the following holds:
– If σ1 moves the token from aj to bj−1, then σNS

2 moves the token from bj−1 to cℓ−1.

– There exists r ≥ j such that if σ1 moves the token from aj to br, then σNS
2 moves the

token from br to ar.
In particular, if j = 1, then the first statement does not hold since b0 is not defined. Hence,
in the case of j = 1, the second statement holds.
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To see this, suppose that when the token reaches aj , the state of the Mealy machine MNS
2

becomes q′. When the token moves from aj to a successor of aj , suppose that the

state of MNS
2 becomes q ∈ Qaj , i.e., we have that δNS2 (q′, aj) = q. Now, there exists

br ∈ B ∩E(aj) such that δNS2 (q, br) ̸= χ(aj , br). Recall that B ∩E(aj) = {bj−1, bj , . . . , bk},
and that χ(aj , bj−1) = aj−1, and χ(aj , br) = cℓ−1 for all r ≥ j. Therefore, we have that

at least one of the following holds: δNS2 (q, bj−1) ̸= aj−1 or there exists r ≥ j such that

δNS
2 (q, br) ̸= cℓ−1. Equivalently, at least one of the following holds: δNS2 (q, bj−1) = cℓ−1 or

there exists r ≥ j such that δNS2 (q, br) = ar.
In the first case, the window does not open at aj . When the token reaches cℓ−1, the

strategy σ1 eventually moves the token back to aj without opening any new windows. In
the second case, since the edge (aj , br) has payoff −1, a window opens at aj . However,
since the edge (br, ar) has payoff +1, this window closes in the next step and does not
remain open for ℓ steps. The strategy σ1 eventually moves the token back to aj along
vertices in A.

Therefore, each time the token reaches aj , the strategy σ1 moves the token to a

successor br of aj from which σNS
2 does not play according to χ(aj , br). This way there

are subsequently no open windows of length ℓ in the outcome.

This completes the proof of the contrapositive. We now show that such a Mealy machine
MNS

2 has at least k + 1 distinct states. For all u ∈ A ∪ {c1}, let qu denote a state in Qu

that plays in accordance with the good choices, i.e., for all br ∈ B ∩ E(u), we have that
δNS
2 (qu, br) = χ(u, br). Then, for all i, j such that 0 ≤ i < j < k, we have that qai and qaj
are distinct states since δNS2 (qai , bj−1) = cℓ−1 but δNS2 (qaj , bj−1) = aj−1. This gives k distinct

states in MNS
2 . In addition to this, since δNS2 (qc1 , bk) = ak but δNS2 (qaj , bk) = cℓ−1 for all

j ∈ {1, . . . , k}, we have that qc1 is distinct from each of the k distinct states found before.
Thus MNS

2 has at least k + 1 distinct states.

If we allow Player 2 to use randomized strategies, then the upper bound on the memory
size required for Player 2 improves to memoryless strategies.

Proposition 4.15. A memoryless randomized winning strategy exists for Player 2 for the
FWMP(ℓ) objective.

A memoryless randomized winning strategy for Player 2 for the FWMP(ℓ) objective is
the following: Recall that the winning region of Player 2 is a trap for Player 1. In each turn,
Player 2 picks an out-edge uniformly at random out of all out-edges that keep the token
in the trap. It is always the case that with probability 1, an open window of length ℓ will
eventually occur in the play. Thus, following this strategy, with probability 1, infinitely
many open windows of length ℓ occur in the outcome, resulting in Player 2 winning the
FWMP(ℓ) objective.

Given a (deterministic) winning strategy σNS
2 of Player 2 for the FWMP(ℓ) objective,

the following lemma gives an upper bound on the number of steps between consecutive open
windows of length ℓ in any play consistent with σNS

2 . This lemma is used in Section 6, where

we construct an almost-sure winning strategy of Player 2 for the FWMP(ℓ) objective.

Lemma 4.16. Let G be a non-stochastic game such that all vertices in G are winning for
Player 2, that is, ⟨⟨2⟩⟩G(FWMP(ℓ)) = V . Let σNS

2 be a finite-memory strategy of Player 2 of

memory size M that is winning for FWMP(ℓ) from all vertices in G. Then, for every play π
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of G consistent with σNS
2 , every infix of π of length M · |V | · ℓ contains an open window of

length ℓ.

Proof. Since σNS
2 has memory of size M, fixing this strategy in G gives a one-player game GσNS

2

with M · |V | vertices. Then, the claim is that every path of length M · |V | · ℓ in GσNS
2 contains

an open window of length ℓ. Suppose towards a contradiction that there exists a path of
length M · |V | · ℓ in the one-player game that does not contain an open window of length ℓ.
Since every window is closed in no more than ℓ steps, and the window is closed at the initial
vertex to begin with, there are at least M · |V | + 1 vertices in this path where a window

closes. Since there are only M · |V | vertices in GσNS
2 , by the pigeonhole principle, there exists

a vertex u that is visited twice in this path, both times with the window closed. Thus, the
path contains a cycle without open windows of length ℓ. Since Player 1 can reach this cycle
and loop in it forever, it gives an outcome that is winning for Player 1 in G, which is a
contradiction.

5. Reducing stochastic games to non-stochastic games

In this section, we recall a sufficient condition that allows us to solve stochastic games by
solving, as a subroutine, a non-stochastic game with the same objective. The sufficient
condition was presented in [CHH09b] for solving finitary Streett objectives and can be
generalized to arbitrary prefix-independent objectives. Under this condition, the qualitative
problems for stochastic games can be solved as efficiently (up to a factor of |V |2) as non-
stochastic games with the same objective. Also, it follows that the memory requirement for
Player 1 to play optimally in stochastic games is the same as in non-stochastic games with
the same objective.

We now describe the sufficient condition that we call the sure-almost-sure property.
Given a stochastic game G, let GNS = ((V,E), (V1, V2 ∪ V♢,∅), w) be the (adversarial)
non-stochastic game corresponding to G, obtained by changing all probabilistic vertices to
Player 2 vertices. We omit the probability function in the tuple since there are no more
probabilistic vertices.

Definition 5.1 (Sure-almost-sure (SAS) property). A prefix-independent objective φ in
a game G satisfies the SAS property if ⟨⟨2⟩⟩GNS

(φ) = V implies ⟨⟨2⟩⟩ASG (φ) = V , that is, if
Player 2 wins the objective φ from every vertex in GNS, then Player 2 almost-surely wins
the same objective φ from every vertex in G.

The definition of the SAS property implies that if there exists a vertex from which
Player 1 wins the objective φ positively in the stochastic game G, then there exists a vertex
from which Player 1 wins the same objective φ in the non-stochastic game GNS. Note that
every prefix-independent objective satisfies the converse of the SAS property since if Player 2
wins almost-surely from all vertices in G, then since he controls all probabilistic vertices in
GNS, he wins from all vertices in GNS by choosing optimal successors of probabilistic vertices.

Remark 5.2. We show in Section 6 that for all stochastic games G, the objectives FWMPG(ℓ)
and BWMPG satisfy the SAS property. As noted earlier in Section 3, the FWMPG(1) objective
is equivalent to a coBüchi objective, and thus, coBüchi satisfies the SAS property as well.
One can show that the generalized coBüchi objective, that is, an objective that is a union of
several coBüchi objectives also satisfies the SAS property. In particular, objectives such as
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Figure 6. Büchi objective does not satisfy the SAS property in this game.

BWMPG , and finitary parity and finitary Streett objectives (as defined in [CHH09b]) can be
seen as countable unions of coBüchi objectives, and these objectives satisfy the SAS property.

Now, we present an example of objective that does not satisfy the SAS property. Consider
the example in Figure 6. The objective φ in this game is a Büchi objective: a play π satisfies
the Büchi objective if π visits vertex v1 infinitely often. Although from every vertex, with
positive probability (in fact, with probability 1), a play visits v1 infinitely often, from none
of the vertices, Player 1 can ensure the Büchi objective in the non-stochastic game GNS.

The following theorem states that if an objective φ satisfies the SAS property, then
solving the positive (resp., almost-sure) satisfaction problem can be done within a linear
(resp., quadratic) factor of the time needed to solve non-stochastic games with the same
objective.

Theorem 5.3. Given G and φ, suppose in every subgame G′ of G, the objective φ restricted
to G′ satisfies the SAS property. Let NonStocWinφ(GNS) be an algorithm computing ⟨⟨1⟩⟩GNS

(φ)
in GNS in time C. Then, the positive and almost-sure satisfaction of φ can be decided in
time O(|V | · (C+ |E|)) and O(|V |2 · (C+ |E|)) respectively.

Moreover, for positive and almost-sure satisfaction of φ, the memory requirement for
Player 1 to play optimally in stochastic games is no more than that for non-stochastic games.

Theorem 5.3 does not give bounds on memory requirement for winning Player 2 strategies
for objective φ in the stochastic game, but we provide such bounds specifically for FWMP(ℓ)
and BWMP in Section 6. The proof of the theorem appears shortly after Corollary 5.4.

Finally, we look at the quantitative decision problem. The quantitative satisfaction for
φ can be decided in NPB ([CHH09b, Theorem 6]), where B is an oracle deciding positive
and almost-sure satisfaction problems for φ. It is not difficult to see that the quantitative
satisfaction for φ can be decided in NPB∩coNPB. Moreover, as stated in [CHH09b, Definition
2], the vertices of a stochastic game can be partitioned into classes from which Player 1 wins
φ with the same maximal probability. From [CHH09b, Lemma 7], a strategy of Player 1
that is almost-sure winning in every class for the objective φ ∪ Reach(Z) for some suitable
subset Z of the class is a winning strategy of Player 1 for the quantitative satisfaction of
φ. Analogously, a strategy of Player 2 that is positive winning in every class for objective
φ ∩ Safe(Z), where Z is the complement of Z in the class, is a winning strategy for Player 2.
Thus, the memory requirement of winning strategies for both players for the quantitative
decision problem is no greater than that for the qualitative decision problem.

Corollary 5.4. Given G and φ as described in Theorem 5.3, let B be an oracle deciding the
qualitative satisfaction of φ. Then, the quantitative satisfaction of φ is in NPB ∩ coNPB.
Moreover, the memory requirement of optimal strategies for both players is no greater than
that for the positive and almost-sure satisfaction of φ.

Now, we describe an algorithm PosWinφ to compute the positive winning region of
Player 1 in G with objective φ. The algorithm uses NonStocWinφ as a subroutine. Then, we
describe an algorithm ASWinφ that uses PosWinφ as a subroutine to compute the almost-sure
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Algorithm 4 PosWinφ(G)
Input: G = ((V,E), (V1, V2, V♢),P, w), the stochastic game
Output: The set of vertices from which Player 1 positively wins objective φ in G
1: W1 ← NonStocWinφ(GNS)
2: if W1 = ∅ then
3: return ∅
4: else
5: A1 ← PosAttr1(W1)
6: return A1 ∪ PosWinφ(G ↾ (V \A1))

Algorithm 5 ASWinφ(G)
Input: G = ((V,E), (V1, V2, V♢),P, w), the stochastic game
Output: The set of vertices in V from which Player 1 almost-surely wins φ in G
1: W2 ← V \ PosWinφ(G)
2: if W2 = ∅ then
3: return V
4: else
5: A2 ← PosAttr2(W2)
6: return ASWinφ(G ↾ (V \A2))

winning region for Player 1 for the objective φ. The algorithms and their correctness proof
are the same as in the case of finitary Streett objectives described in [CHH09b].

Proof of Theorem 5.3. We recall the recursive procedures (in Algorithm 4 and Algorithm 5)
to compute the positive and the almost-sure winning regions for Player 1 in stochastic games
with an objective that satisfies the SAS property. The algorithms are similar to the case of
finitary Streett objectives [CHH09b], which satisfy the SAS property. Note that, because of
determinacy, the positive winning region ⟨⟨1⟩⟩PosG (φ) for Player 1 is the complement of the

almost-sure winning region ⟨⟨2⟩⟩ASG (φ) for Player 2.
The depth of recursive calls in Algorithm 4 is bounded by |V |, the number of vertices

in G, as the argument in the recursive call (Line 6) has strictly fewer vertices than |V |,
since A1 ̸= ∅. The Player 1 positive attractor is computed in time O(|E|), and suppose
NonStocWinφ runs in time C. These subroutines are executed at most |V | times, once in
every depth of the recursive call. Thus, the total running time of PosWinφ is O(|V |·(C+|E|)).

Let W i
1 and Ai

1 denote the sets W1 and A1 computed in the recursive call of depth i
respectively. Recall that the sets Ai

1 form a partition of the positive winning region ⟨⟨1⟩⟩PosG (φ)

for Player 1, and that for all i, we have that W i
1 ⊆ Ai

1. Let σNS
1 be a winning strategy of

Player 1 in the non-stochastic game GNS. We construct a positive-winning strategy σPos
1

for Player 1 in the stochastic game as follows. Given a prefix ρ ∈ Prefs1G , we determine the

value of i for which Last(ρ) ∈ Ai
1. Then, if Last(ρ) ∈ W i

1, then σPos
1 plays like σNS

1 , that is
σPos
1 (ρ) = σNS

1 (ρ); otherwise, Last(ρ) ∈ Ai
1 \W i

1, and let σPos
1 (ρ) = σAttr

1 (ρ) where σAttr
1 is

a positive-attractor strategy to W i
1 (which is memoryless, i.e., σAttr

1 (ρ) = σAttr
1 (Last(ρ))).

Then, σPos
1 is a positive-winning strategy for Player 1 from all vertices in PosWinφ(G).

The depth of recursive calls in Algorithm 5 is also bounded by |V |. The set W2 from
which Player 2 wins almost-surely for objective φ is computed in time O(|V | · (C+ |E|)), and
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the Player 2 positive attractor is computed in time O(|E|). This leads to a total running
time O(|V |2 · (C+ |E|)).

The following lemma, which is a special case of Theorem 1 in [Cha07] where it has been
proved for concurrent stochastic games, allows us to use results from the computation of
the positive winning region for Player 1 in G to obtain the almost-sure winning region for
Player 1 in G. In Theorem 1 in [Cha07], it has been shown that for a prefix-independent
objective, if there exists a vertex from which Player 1 wins positively, then there exists
a vertex from which Player 1 wins almost-surely. Since prefix-independent objectives are
closed under complementation, the theorem also holds for Player 2. Considering the theorem
for Player 2, and taking the contrapositive, we have the following lemma for the special
case of turn-based zero-sum stochastic games. In particular, in Algorithm 5, since W2 = ∅
denotes that all vertices are positively winning for Player 1, this gives that all vertices are
almost-surely winning for Player 1 by Lemma 5.5.

Lemma 5.5. [Cha07, Theorem 1] If Player 1 positively wins a stochastic game G with a
prefix-independent objective φ from every vertex in V , then Player 1 almost surely wins G
with objective φ from every vertex in V , that is, if ⟨⟨1⟩⟩PosG (φ) = V , then ⟨⟨1⟩⟩ASG (φ) = V .

Let σPos
1 be the strategy of Player 1 as described in the PosWinφ algorithm. An almost-

sure winning strategy σAS
1 of Player 1 for objective φ is the same as σPos

1 ; if Player 1 follows
the strategy σPos

1 , then she almost-surely satisfies φ from all vertices in ASWinφ(G). For
both positive and almost-sure winning, Player 1 does not require any additional memory in
the stochastic game compared to the non-stochastic game.1

6. Reducing stochastic window mean-payoff games: A special case

In this section, we show that for all stochastic games G and for all ℓ ≥ 1, the fixed window
mean-payoff objective FWMPG(ℓ) and the bounded window mean-payoff objective BWMPG ,
which are prefix independent objectives, satisfy the SAS property of Definition 5.1. Thus,
by Theorem 5.3, we obtain bounds on the complexity and memory requirements of Player 1
for positive satisfaction and almost-sure satisfaction of these objectives. The algorithms to
compute the positive and the almost-sure winning regions of Player 1 for FWMP(ℓ) (resp.,
BWMP) objective can be obtained by instantiating Algorithms 4 and 5 respectively with φ
equal to FWMP(ℓ) (resp., BWMP). We also show that for both these objectives, the memory
requirements of Player 2 to play optimally for positive and almost-sure winning in stochastic
games is no more than that of the non-stochastic games.

6.1. Fixed window mean-payoff objective. We show that the SAS property holds for
the objective FWMP(ℓ) for all stochastic games G and for all ℓ ≥ 1.

Lemma 6.1. For all stochastic games G and for all ℓ ≥ 1, the objective FWMP(ℓ) satisfies
the SAS property.

1If deterministic strategies suffice for Player 1 in non-stochastic games to win an objective φ satisfying the
SAS property, then deterministic strategies also suffice for Player 1 for the positive and almost-sure winning
strategies of the same objective φ in stochastic games.
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Proof. We need to show that if ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) = V , then ⟨⟨2⟩⟩ASG (FWMP(ℓ)) = V .

If ⟨⟨2⟩⟩GNS
(FWMP(ℓ)) = V , then from Theorem 4.8, there exists a finite-memory strategy

σNS
2 (say, with memory M) of Player 2 that is winning for objective FWMP(ℓ) from every

vertex in GNS. Given such a strategy, we construct below a strategy σAS
2 of Player 2 in the

stochastic game G that is almost-sure winning for FWMP(ℓ) from every vertex in G.
In GNS, Player 2 chooses the successor of vertices in V2∪V♢ according to the strategy σNS

2 .

Since σNS
2 is a winning strategy, Player 2 can satisfy the FWMP(ℓ) objective irrespective of

Player 1’s strategy. In the stochastic game G, however, Player 2 has less control. He can
only choose successors for vertices in V2, while the successors for vertices in V♢ are chosen
according to the probability function P that is specified in the game. It is possible that
for a probabilistic vertex, the successor chosen by the distribution is not what Player 2
would have chosen, resulting in a potentially worse outcome for him. We use the fact that
FWMP(ℓ) is a Büchi-like objective (Player 2 would like to always eventually see an open
window of length ℓ), and that σNS

2 is winning from every vertex to show that despite having
control over fewer vertices, Player 2 has a strategy σAS

2 that is almost-sure winning for the

FWMP(ℓ) objective from every vertex in the stochastic game G.
Let π = v0v1 · · · be an outcome in the stochastic game G when Player 2 follows the

strategy σNS
2 , i.e., for all vi in π such that vi ∈ V2, we have that vi+1 = σNS

2 (v0v1 · · · vi).
For all probabilistic vertices vj ∈ V♢ in the play π, if the successor vertex of vj chosen by

the probability distribution is not equal to the successor vertex σNS
2 (v0v1 · · · vj) of vj given

by the strategy σNS
2 , i.e., if vj+1 ̸= σNS

2 (v0v1 · · · vj), then we say that a deviation from the

strategy σNS
2 occurs in π at vj . Note that the prefix v0v1 · · · vjvj+1 with the deviation does

never appears in any play in GNS that is consistent with σNS
2 .

Some deviations may cause the outcome to be losing for Player 2. Therefore, starting
with the strategy σNS

2 , we construct a strategy σAS
2 that mimics σNS

2 as long as no such
deviations occur, and resets otherwise, i.e., the strategy forgets the prefix of the play before
the deviation. We call the strategy σAS

2 a reset strategy. We see in Construction 6.3, given a
Mealy machine MNS

2 that defines σNS
2 , how to construct a Mealy machine MAS

2 that defines
the reset strategy σAS

2 . In the construction, we show that the memory size of σAS
2 is no more

than that of σNS
2 . Therefore, all games with objective FWMP(ℓ) satisfy the SAS property.

In Example 6.2, we see an example of a stochastic game G along with a strategy σNS
2

that is winning for Player 2 from all vertices in the adversarial game GNS. We show that this
strategy σNS

2 need not be almost-sure winning for Player 2 in the stochastic game G and then
give an intuition on how to use σNS

2 to construct a reset strategy σAS
2 that is almost-sure

winning from all vertices in G. In Construction 6.3, we formally show how to obtain a Mealy
machine that defines σAS

2 from a Mealy machine that defines σNS
2 without adding any new

states.

Example 6.2. Figure 7 shows a stochastic game G with objective FWMP(3) for Player 2.
The edges (v2, v4) and (v3, v5) have negative payoffs and all other edges have zero payoff.
For each probabilistic vertex v ∈ V♢, we have that the probability function P(v) is a uniform
distribution, i.e., we have: P(v2)(v4) = P(v2)(v5) = 1

2 , P(v3)(v4) = P(v3)(v5) = 1
2 , and

P(v6)(v7) = P(v6)(v8) = 1
2 .

Figure 8 shows a Mealy machine MNS
2 defining a strategy σNS

2 that is winning for

FWMP(3) from all vertices in the adversarial game GNS. In figures, for states qi, qj of the
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v1

v2

v3

v4

v5

v6 v7

v8

−1

−1

Figure 7. The game G with objective FWMP(3) for Player 2 from Ex-
ample 6.2. All edges except (v2, v4) and (v3, v5) have payoff 0. For all
probabilistic vertices v ∈ V♢, the probability function P(v) is a uniform
distribution over the out-neighbours E(v) of v.

q0 q1 q2 q3 q4 q5
v1/ϵ

v8/v1

v2/v4, v3/v5

v4/v6, v5/v6

v6/v8, v7/v8

v2/v4, v3/v5 v4/v6, v5/v6 v6/v8 v7/v8

v8/v1

v8/v8

Figure 8. Mealy machine MNS
2 defining a strategy σNS

2 that is winning from

all vertices in GNS for FWMP(3).

Mealy machine and for vertices v, v′ of the game, an edge from state qi to qj with label v/v′

denotes that the next state of the Mealy machine is ∆(qi, v) = qj and the next vertex is

δ(qi, v) = v′. To see that σNS
2 is a winning strategy, note that each time the token reaches

v1, we have that Player 1 may move the token from v1 to either v2 or v3. The strategy σNS
2

moves the token from v2 and v3 to v4 and v5 respectively, ensuring that a window opens.
Then, when the token reaches v6, the strategy always moves the token to v8 and then back
to v1. The Mealy machine never moves the token to v7. If the game begins in v7, then the
token is moved to v8 and then to v1 and the token never goes to v7 after that. Each time the
token reaches v1, the token must move to v2 or v3. Since there are no edges with positive
payoff, the window starting at v2 or v3 never closes, and in particular, remains open for 3
steps. Since the token reaches v1 infinitely often, by following this strategy, Player 2 ensures
for all strategies of Player 1, the outcome contains infinitely many open windows of length 3
and thus, the strategy σNS

2 is winning for Player 2 for FWMP(3) in GNS.
Observe that the strategy σNS

2 is not almost-sure winning for Player 2 from any vertex
in the stochastic game G. If Player 2 follows the strategy σNS

2 in G, then the probability

that he wins FWMP(3) is less than 1. This is because when the token reaches v6, then with
probability 1

2 , it moves to v7. Once that happens, the state of the Mealy machine changes
to q5 and the strategy moves the token to v8 and keeps it there forever. No new windows
open, and the outcome is losing for FWMP(3). Hence, if Player 2 follows the strategy σNS

2

in G, then with positive probability, he does not win FWMP(3).
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q0 q1 q2 q3 q4
v1/ϵ

v8/v1

v2/ϵ, v3/ϵ

v4/v6, v5/v6

v6/ϵ, v7/v8

v2/ϵ, v3/ϵ v4/v6, v5/v6

v6/ϵ

v8/v1 v1/ϵ
v2/ϵ, v3/ϵ

v4/v6, v5/v6

v6/ϵ, v7/v8

Figure 9. Part of the Mealy machine MAS
2 defining a reset strategy that is

almost-sure winning from all vertices in G. Reset transitions out of q1, q2,
and q3 have been omitted from the figure.

This is not an issue in the non-stochastic game GNS since the q4
v7−→ q5 transition is never

taken in GNS as long as Player 2 plays according to σNS
2 . If Player 2 plays according to σNS

2 ,
then in any transition that changes the state of the Mealy machine to q4, the token moves
to v8 by that transition. There does not exist any prefix ρ in GNS that is consistent with

σNS
2 that causes the Mealy machine to take the q4

v7−→ q5 transition. We call such transitions
that cannot be taken in MNS

2 in GNS when Player 2 plays according to σNS
2 unreachable. We

see that there are no reachable transitions that change the state of MNS
2 to q5, and thus, the

outgoing transition q5
v8−→ q5 from q5 is also unreachable. One can verify that all transitions

in MNS
2 other than the two mentioned above are reachable in GNS.
If Player 2 follows the strategy σNS

2 in the stochastic game G, then a deviation may occur
at a vertex in V♢ and the Mealy machine MNS

2 may follow a transition that is otherwise
unreachable in GNS. If an unreachable transition is taken, then we cannot guarantee that
the output of the Mealy machine will result in a play that is winning for Player 2. For
example, when the token moves from v6 to v7, the Mealy machine takes the unreachable

q4
v7−→ q5 transition, which as we saw above results in an outcome that is not winning for

the FWMP(3) objective.
Since we do not know how the Mealy machine MNS

2 behaves on taking unreachable
transitions, we design the Mealy machine MAS

2 that defines the almost-sure winning strategy
in G to reset instead of taking an unreachable transition. For instance, we define the
transition in MAS

2 from state q4 on reading vertex v7 to be as if the game started from
v7. The Mealy machine MNS

2 on reading v7 from the initial state, outputs v8 and changes
its state to q4. Therefore, we want the same behaviour in MAS

2 from q4, i.e., on reading
vertex v7 from v4, the Mealy machine outputs v8 and update its state to q4. We add the
necessary reset transitions in this manner for all states. For every state q, for every vertex

v, if there is a reachable transition q
v−→ q′ from q on reading v, then we retain the same

transition in MAS
2 , i.e., with the same output and same next state. If there is no reachable

transition from q on reading v, then we add a reset transition. We go to the same state
and output the same vertex that would be output from q0 on reading v. (For all vertices in
V♢, we change the output of the Mealy machine to ϵ since Player 2 does not control these
vertices in the stochastic game G.) This gives us a complete Mealy machine.
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Finally, after defining the new transitions, we see that there are no transitions that lead
to q5. It is an unreachable state and we delete it. Figure 9 shows some of the transitions in
the Mealy machine MAS

2 obtained after the resetting. The figure excludes all unreachable
transitions, and shows reset transitions out of q4. There exist reset transitions out of states
q1, q2 and q3 as well, but we omit them in the figure for the sake of clarity.

Now, we formally state a procedure to construct an almost-sure winning strategy in G
from a given winning strategy in GNS and show the correctness of this procedure.

Construction 6.3 (Reset strategy). Let σNS
2 be a strategy of Player 2 that is winning

for FWMP(ℓ) from every vertex in GNS, and let MNS
2 = (QNS

2 , q0, V, V ∪ {ϵ},∆NS
2 , δNS2 ) be

a Mealy machine that defines the strategy σNS
2 , where the set of states is QNS

2 , the initial
state is q0, the input alphabet is V , the output alphabet is V ∪ {ϵ}, the transition function
is ∆NS

2 : QNS
2 × V → QNS

2 , and the output function is δNS2 : QNS
2 × V → V ∪ {ϵ}. Since the

strategy σNS
2 is winning for FWMP(ℓ) in GNS irrespective of the initial vertex of the game,

the transition and output functions are defined from the initial state of the Mealy machine
MNS

2 for all vertices in the game, that is, ∆NS
2 (q0, v) and δNS2 (q0, v) are defined for all v ∈ V .

From this, we give a construction of a Mealy machine MAS
2 = (Q2, q0, V, V ∪ {ϵ},∆2, δ2)

with Q2 ⊆ QNS
2 that defines the reset strategy σAS

2 for Player 2 in the stochastic game G.
We begin with all the states of MNS

2 and then over the course of the construction, delete
some states that are not needed. The initial state of MAS

2 is q0, the same as the initial state
of MNS

2 . The input and output alphabets of MAS
2 are the same as that of MNS

2 . It remains
to define the transition function ∆NS

2 and the update function δNS2 .
We begin by computing all the transitions in MNS

2 that are reachable from the initial

state q0. For all states q1, q2 ∈ QNS
2 and vertices v ∈ V , the transition q1

v−→ q2 is reachable

inMNS
2 from q0 if there exists a prefix ρ·v in GNS consistent with σNS

2 such that ∆̂NS
2 (q0, ρ) = q1

and ∆NS
2 (q1, v) = q2.

We have that for all v ∈ V , the transition q0
v−→ ∆NS

2 (q0, v) is reachable. Moreover, for

all transitions q
v−→ q′ that are reachable, we have the following:

• if v ∈ V2, then the transition from q′ on input δNS2 (q, v) is also reachable;
• if v ∈ V1, then for all vertices v′ ∈ E(v), the transition from q on input v′ is also reachable.

Since we do not know how MNS
2 behaves along unreachable transitions, we exclude

unreachable transitions in MAS
2 and add reset transitions which we define now.

For all q ∈ QNS
2 and all v ∈ V , we define the transition function ∆2:

∆2(q, v) =

{
∆NS

2 (q, v) if there exists q′ ∈ QNS
2 such that q

v−→ q′ is reachable,

∆NS
2 (q0, v) otherwise.

The Mealy machine on a reset transition behaves in the way it would on reading v if it were
in the initial state q0, that is, if the game began from v. This effectively resets the state of
the Mealy machine. For all q ∈ QNS

2 and all v ∈ V , we define the output function δ2:

δ2(q, v) =


ϵ if v ∈ V♢ ∪ V1,

δNS2 (q, v) if v ∈ V2 and there exists q′ ∈ QNS
2 such that q

v−→ q′ is reachable,

δNS2 (q0, v) otherwise.
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If v ∈ V♢ ∪ V1, then we have δ2(q, v) equal to ϵ since σAS
2 is a Player 2 strategy in the

stochastic game G and is not defined for prefixes ending in vertices from V♢ ∪ V1. Otherwise,
if v ∈ V2, then δ2(q, v) is defined in a similar manner as ∆2(q, v).

A state q′ is unreachable if there does not exist q ∈ QNS
2 and v ∈ V such that the

transition q
v−→ q′ is reachable. We delete the unreachable states so we have Q2 ⊆ QNS

2 . Since
the unreachable states do not have incoming reachable transitions, this does not delete any
transition that is reachable. Since the set of states in MAS

2 is a subset of the set of states in
MNS

2 , the memory size of σAS
2 is no greater than the memory size of σNS

2 . This completes
the construction of the Mealy machine MAS

2 defining the reset strategy σAS
2 .

We now show that this strategy is almost-sure winning for Player 2 from all vertices.
For all q ∈ Q2 and v ∈ V , the output function ∆2(q, v) and the transition function δ2(q, v)
are defined, and hence, MAS

2 is a complete Mealy machine. Moreover, from the way MAS
2 is

constructed, we see that every transition in MAS
2 is either reachable in MNS

2 or is a reset
transition.

Suppose Player 2 plays in the stochastic game G according to MAS
2 and this results in

the prefix ρ · v for some v ∈ V . Let ρ′ · v be the infix obtained from ρ · v by removing all
vertices until the last occurrence of a reset transition in MAS

2 . In particular, if no reset
transition occurs in MAS

2 on reading ρ · v, then ρ′ · v is equal to ρ · v. From the definition of
resetting, we have that starting from the initial state q0 of MAS

2 , both ρ′ · v and ρ · v take

MAS
2 to the same state, i.e., ∆̂2(q0, ρ

′ · v) = ∆̂2(q0, ρ · v).
Since no reset transitions occur in MAS

2 on reading ρ′ · v, all transitions that occur are
reachable if the Mealy machine MNS

2 is used for the stochastic game G. Therefore, on reading
ρ′ · v, the sequence of states visited in MNS

2 is the same as the sequence of states visited in
MAS

2 . In particular, the state of MNS
2 on reading ρ′ · v is the same as the state of MAS

2 on
reading ρ′ · v, which is also the same as the state of MAS

2 on reading ρ · v. Thus, we have that
∆̂NS

2 (q0, ρ
′ · v) = ∆̂2(q0, ρ · v). Note that ρ′ · v may contain deviations that MAS

2 does not
reset on. For instance, in Example 6.2, if the token is on v2, then with positive probability,
it moves to v5. This is a deviation as MNS

2 never moves the token from v2 to v5. However,
in doing so, the Mealy machine MAS

2 does not follow any unreachable transition and does
not reset. Note that both MAS

2 and MNS
2 , on reading the prefix v1v2v5 with a deviation,

reach the same state q3.
Given ρ′ · v, there exists a finite path ρ′′ · v of vertices without any deviations such that

∆̂NS
2 (q0, ρ

′ · v) = ∆̂NS
2 (q0, ρ

′′ · v). This is because the transition from state ∆̂NS
2 (q0, ρ

′) on
input v is reachable in MNS

2 . Corresponding to the prefix v1v2v5 in Example 6.2, we have
that v1v3v5 is a finite path without deviations that takes MAS

2 to the same state as v1v2v5.
Thus, for every prefix ρ · v of an outcome of G, there exists a finite path ρ′′ · v without

deviations such that ∆̂2(q0, ρ · v) = ∆̂NS
2 (q0, ρ

′′ · v). As long as no deviations occur, the
sequence of vertices seen after ρ · v is the same irrespective of whether Player 2 uses the
strategy σAS

2 or σNS
2 . If a play in G continues for M · |V | · ℓ steps without deviating, then

by Lemma 4.16, it contains an open window of length ℓ. From any point in the play, the
probability that σAS

2 successfully copies σNS
2 for i steps (that is, no deviations occur) is at

least pi, where p is the minimum probability over all the edges in G. It follows that from
every point in the play, the probability that an open window of length ℓ occurs in the next
M · |V | · ℓ steps is at least pM·|V |·ℓ. Therefore, from every position in the play, the probability

that an open window of length ℓ occurs eventually is at least
∑

i≥0(1−pM·|V |·ℓ)i ·pM·|V |·ℓ = 1.
Thus, with probability 1, infinitely many open windows of length ℓ occur in the outcome, and
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v1v2 v3

0, .2
0, .8

−1
0 0

(a) A stochastic game G with three vertices.

v1v2 v3

0
0

−1
0 0

(b) The non-stochastic game corresponding
to G.

Figure 10. For all ℓ ≥ 1, Player 1 can positively satisfy FWMP(ℓ) from
every vertex in G.

the outcome satisfies FWMP(ℓ). Thus, all vertices in G are almost-sure winning for Player 2

for FWMP(ℓ). This concludes the construction of a reset strategy that is almost-sure winning
for Player 2 from all vertices in the stochastic game.

We now construct a strategy σPos
2 of Player 2 that is positive winning from all vertices in

⟨⟨2⟩⟩PosG (FWMP(ℓ)). Let W i
2 and Ai

2 denote the sets W2 and A2 computed in the ith recursive
call of ASWinFWMP(ℓ) algorithm respectively. Here, ASWinFWMP(ℓ) is the algorithm obtained

by instantiating φ to FWMP(ℓ) in Algorithm 5. If the token is in
⋃

iW
i
2, then σPos

2 mimics

σAS
2 ; if the token is in

⋃
iA

i
2 \W i

2, then σPos
2 is a positive-attractor strategy to W i

2 which

is memoryless. Then, σPos
2 is a positive winning strategy for Player 2 from all vertices in

⟨⟨2⟩⟩PosG (FWMP(ℓ)).
We have shown that for two-player stochastic games with FWMP(ℓ) objective, the

memory requirements of optimal strategies of both players is no greater than that for
non-stochastic games with the same objective.

Remark 6.4. All plays consistent with the reset strategy of Player 2 described in Con-
struction 6.3 are winning for Player 2. Thus, the reset strategy continues to be almost-sure
winning even when Player 1 uses randomized strategies. Since the reset strategy is a deter-
ministic strategy, we have that deterministic strategies suffice for Player 2 for the positive
and almost-sure winning of the FWMP(ℓ) objective.

From [CDRR15], we have that the satisfaction problem for the FWMP(ℓ) objective in
non-stochastic games is in PTIME. Thus, from Theorem 5.3, Corollary 5.4, and Lemma 6.1,
we have the following.

Theorem 6.5. Given a stochastic game G, a window length ℓ ≥ 1, and a threshold p ∈ [0, 1],
for FWMPG(ℓ), the positive and almost-sure satisfaction problems for Player 1 are in PTIME,
and the quantitative satisfaction problem is in NP ∩ coNP. Moreover for optimal strategies,
memory of size ℓ is sufficient for Player 1 and memory of size |V | ·ℓ is sufficient for Player 2.

Example 6.6. Consider the stochastic game G shown in Figure 10a, and objective FWMP(ℓ)
with window length ℓ = 2. It is easy to see that all vertices are positively (even almost-surely)
winning for Player 1 in G. We compute the positive winning region as follows. First, consider
the non-stochastic game GNS (Figure 10b). The winning region for Player 1 in GNS is {v3},
and we thus have that the Player 1 positive attractor of {v3}, which is {v1, v3} is positively
winning. The complement of the positive attractor induces the subgame with a single
vertex v2, that can be solved recursively to get that Player 1 positively (even almost-surely)
wins from v2. Therefore, we conclude that Player 1 is positive winning from every vertex.
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v1 v2 v3 v4−1 0 0, .1

0, .9

0 −1

Figure 11. Player 1 almost surely wins in G for the objective FWMP(2)
from {v3}, while Player 2 positively wins from {v1, v2, v4}.

Example 6.7. Consider the stochastic game G shown in Figure 11, and objective FWMP(ℓ)
with window length ℓ = 2. We compute the almost-sure winning region for Player 1 by
first computing the positive winning region for Player 2, which we do as follows. Using
PosWinFWMP(ℓ), the positive winning region for Player 1 in G is {v1, v2, v3}. The complement
of this set, {v4}, is the almost-sure winning region for Player 2 in G. The Player 2 positive
attractor of {v4} is {v2, v4}, and we can conclude that this set is positively winning for
Player 2. The complement of the positive attractor induces the subgame with vertices
{v1, v3}, which can be solved recursively to get that Player 2 positively (even almost-surely)
wins from {v1} but does not win even positively from {v3}. Therefore, we conclude that
Player 2 positively wins in the original stochastic game from {v1, v2, v4}, and Player 1 almost
surely wins from the complement {v3}.

6.2. Bounded window mean-payoff objective. We show that the SAS property holds
for the objective BWMPG for all stochastic games G.

Lemma 6.8. For all stochastic games G, the objective BWMP satisfies the SAS property.

Proof. We need to show that for all stochastic games G, if ⟨⟨2⟩⟩GNS
(BWMP) = V , then

⟨⟨2⟩⟩ASG (BWMP) = V . Since every play that satisfies BWMP also satisfies FWMP(ℓ) for all

ℓ ≥ 1, we have that ⟨⟨2⟩⟩GNS
(BWMP) = V implies ⟨⟨2⟩⟩GNS

(FWMP(ℓ)) = V . It follows that for

each ℓ ≥ 1, Player 2 has a finite-memory strategy (say, with memory Mℓ), that is winning

for the FWMP(ℓ) objective from all vertices in GNS. For every such strategy, we construct a
reset strategy σℓ

2 of memory size at most Mℓ as described in the proof of Lemma 6.1 that is

almost-sure winning for the FWMP(ℓ) objective from all vertices. We use these strategies
to construct an infinite-memory strategy σAS

2 of Player 2 that is almost-surely winning for

BWMP from all vertices in the stochastic game G.
Let p be the minimum probability over all edges in the game, and for all ℓ ≥ 1, let q(ℓ)

denote pMℓ·|V |·ℓ. We partition a play of the game into phases 1, 2, . . . such that for all ℓ ≥ 1,
the length of phase ℓ is equal to Mℓ · |V | · ℓ · ⌈1/q(ℓ)⌉. We define the strategy σAS

2 as follows:
if the game is in phase ℓ, then σAS

2 is σℓ
2, the reset strategy that is almost-sure winning for

FWMP(ℓ) in G.
We show that σAS

2 is almost-sure winning for Player 2 for BWMP in G. Let Eℓ denote
the event that phase ℓ contains an open window of length ℓ. Given a play π, if Eℓ occurs in π
for infinitely many ℓ ≥ 1, then for every suffix of π and for all ℓ ≥ 1, the suffix contains an
open window of length ℓ, and π satisfies BWMP. For all ℓ ≥ 1, we compute the probability
that Eℓ occurs in the outcome. For all ℓ ≥ 1, we can divide phase ℓ into ⌈1/q(ℓ)⌉ blocks of
length Mℓ · |V | · ℓ each. If at least one of these blocks contains an open window of length ℓ,
then the event Eℓ occurs. It follows from the proof of Lemma 6.1 that if Player 2 follows σℓ

2,
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then the probability that there exists an open window of length ℓ in the next Mℓ · |V | · ℓ
steps is at least q(ℓ). Hence, the probability that none of the blocks in the phase contains an

open window of length ℓ is at most (1− q(ℓ))⌈1/q(ℓ)⌉. Thus, the probability that Eℓ occurs in

phase ℓ is at least 1− (1− q(ℓ))⌈1/q(ℓ)⌉ > 1− 1
e ≈ 0.63 > 0. It follows that with probability 1,

for infinitely many values of ℓ ≥ 1, the event Eℓ occurs in π.
To show that Eℓ occurs for infinitely many ℓ ≥ 1 in the outcome with probability 1,2 we

show an equivalent statement: the probability that Eℓ occurs for only finitely many values
of ℓ ≥ 1 in the outcome is 0. Let F be the set of all plays consistent with σAS

2 in which only
finitely many Eℓ occur. We construct countably many subsets F0, F1, . . . of F as follows:
let F0 be the set of all plays in F in which Ek does not occur for all k ≥ 1; and for all j ≥ 1,
let Fj consist of all plays in F in which Ej occurs, but for all k > j, the events Ek do not
occur (and for i < j, the event Ei may or may not occur). Observe that

⋃
j≥0 Fj = F and

Fi ∩ Fj = ∅ for all i ̸= j.

For all k ≥ 1, the probability that Ek does not occur is at most (1− q(k))⌈1/q(k)⌉ which
is at most 0.37, irrespective of whether any other Ej ’s occur or not (again, this is because
the probability that a block contains an open window of length ℓ is at least q(ℓ), independent
of what happens in the rest of the play). For all j ≥ 0, in the event Fj , for all k > j, we
have that Ek does not occur. Since each Ek does not occur with probability at most 0.37,
the probability of Fj is at most

∏
k>j(0.37), which is 0. The event that finitely many Eℓ’s

occur is the countable union of disjoint events
⋃

j≥0 Fj . Since the probability measure of

each Fj is zero, and a countable sum of zero measure events has zero measure [Rud87], this
implies that finitely many Eℓ occur with probability zero. Thus, the probability that Eℓ

occurs for infinitely many i ≥ 1 is 1.
Hence, the objective BWMP is satisfied with probability 1 from all vertices in the

stochastic game G, and we have that ⟨⟨2⟩⟩ASG (BWMP) = V .

Note that Lemma 2 in [CHH09b] is similar to Lemma 6.8 but refers to a different
objective (finitary Streett instead of BWMP). However, the proofs have the following
differences. In our proof, each phase of a play lasts for a fixed predetermined length and we
show that for all ℓ ≥ 1, in phase ℓ, the probability that an open window of length ℓ occurs
is at least 0.37, which is independent of ℓ. We use this to conclude that with probability
1, for infinitely many ℓ ≥ 1, phase ℓ contains an open window of length ℓ, and thus with
probability 1, the play satisfies BWMP. In the proof in [CHH09b], a play continues to be in
the ℓth phase until an open window of length ℓ appears. The ℓth phase does not end until
an open window of length ℓ is observed in the phase. They show that for each phase in the
play, the phase ends with probability 1, and thus with probability 1, the play contains open
windows of length ℓ for all ℓ ≥ 1.

Note that solving a non-stochastic game with the BWMP objective is in NP∩coNP [CDRR15].

Thus by Corollary 5.4, quantitative satisfaction for BWMP is in NPNP∩coNP ∩ coNPNP∩coNP.
From [Sch83], we have that NPNP∩coNP = NP and coNPNP∩coNP = coNP. To see this, suppose
for an alphabet Σ, if L ⊆ Σ∗ is a language in NP ∩ coNP, then for all x ∈ Σ∗, there either
exists a short witness for x belonging to L or a short witness for x not belonging to L. A
nondeterministic Turing machine can guess one of these witnesses and verify in polynomial

2The sum
∑

ℓ≥1 Pr(Eℓ) diverges to infinity. If we can show that the events Eℓ are independent, then by

the second Borel-Cantelli lemma [Dur10], this would directly imply that the probability of infinitely many
of Eℓ occurring is 1. However, we do not know if they are independent, so we are not able to apply the
Borel-Cantelli lemma.
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time whether x ∈ L or x /∈ L. Hence, an NP ∩ coNP oracle can be simulated by an NP
machine, and we have NPNP∩coNP = NP. For an oracle A, a language L belongs to coNPA if
and only if its complement L belongs to NPA. Since the quantitative satisfaction problem
belongs to coNPA, its complement belongs to NPA, which is NP for A in NP ∩ coNP, and
thus, the value problem belongs to coNP. Therefore, quantitative satisfaction of BWMP is
in NP ∩ coNP.

Moreover, from [CDRR15], Player 1 has a memoryless strategy and Player 2 needs
infinite memory to play optimally in non-stochastic games with BWMP objective. From
the proof of Lemma 6.8, by using the strategy σAS

2 , Player 2 almost-surely wins BWMP
from all vertices in ⟨⟨2⟩⟩ASG (BWMP). We can construct a positive winning strategy σPos

2 for

Player 2 from all vertices in ⟨⟨2⟩⟩PosG (BWMP) in a similar manner as done for the positive

winning strategy for FWMP(ℓ) in Section 6.1. Using similar reasoning as in Remark 6.4 in
Section 6.1, it follows that deterministic strategies suffice for Player 2 for the positive and
almost-sure satisfaction of the BWMP objective. We summarize the results in the following
theorem:

Theorem 6.9. Given a stochastic game G and a threshold p ∈ [0, 1], for BWMPG, the
positive, almost-sure, and quantitative satisfaction for Player 1 are in NP∩ coNP. Moreover,
a memoryless strategy suffices for Player 1, while Player 2 requires an infinite memory
strategy to play optimally.

Remark 6.10. Solving non-stochastic games with BWMP objective is at least as hard as
solving traditional mean-payoff games [CDRR15]. Since non-stochastic games are a special
case of stochastic games, it follows that solving the positive, almost-sure, and quantitative
satisfaction problems for stochastic games with BWMP objective is at least as hard as solving
traditional mean-payoff games.
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