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Abstract

We review the known decidability and undecidability results for reachability in para-
metric timed automata. Then, we present a new proof of undecidability in dense
time for open timed automata that avoids equalities in clock constraints. Our result
shows that the undecidability of parametric timed automata does not follow from
their ability to specify punctual constraints in a dense time domain.
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1 Introduction

The design and verification of real-time systems has intensively used formal methods
for several years. In that context, timed automata have played an important role [1].
A timed automaton is essentially a finite automaton augmented with a set of clocks
that allow to specify timing constraints on the transitions of the automaton. Two
models of time are usually considered, either the time domain T is discrete (T = N)

or dense (T = R2? or T = Q=Y).

An important result about timed automata is that the reachability problem (‘Is a
given location of the automaton reachable from the initial state ?’) is decidable when
the constants that appear in the timing constraints are rational numbers [1]. The
problem becomes undecidable when irrational constants are allowed [10].

In this paper, we are interested in the reachability problem for parametric extensions

of timed automata, where constants in timing constraints are replaced by parameters
representing unknown constants. The possibility to specify parametric constraints
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allows to design systems independently of a particular implementation. For exam-
ple, the speed of the hardware or the time transmission in a communication protocol
could be left as parameters in the early phases of the design. The parametric reach-
ability problem asks then whether there exists a valuation for the parameters such
that a given location is reachable. We review the known (un)decidability results
about this problem when the domain P of the parameters is either discrete (P = N)
or dense (P = R2? or P = Q="). The main result is that the problem is undecidable
when T and PP are dense [4, 7].

The classical proofs of that result use the expressiveness of equality in timed au-
tomata to encode Turing-machine computations. Similar results exist for real-time
logics. However, if the use of equality is disallowed in the logic, decidability can
often be established. This is the case for MITL [3| and the parametric extension of
TCTL [6]. The hope has then arisen that decidability of the parametric reachability
problem could be established for more robust models like open timed automata that
avoid equality constraints. Unfortunately, we show that this is not the case and that
parametric timed automata are robustly undecidable. The proof that we present is
the main contribution of the paper. It is based on a non-trivial novel encoding of
two-counter Minsky machines.

2 Parametric Timed Automata

Given a set Var of clocks and a set P of parameters, let ®(Var, P) be the set of clock
constraints ¢ defined by the grammar rule ¢ = z ~ ¢ | ¢ A ¢ where z € Var,
ceNUPand ~€ {<,<,=,>,>}.

Definition 1 |PTA - Parametric Timed Automata| A parametric timed automaton
is a tuple A = (Loc, g, Var, P, Lab, Edg, Inv) where : (i) Loc is a finite set of locations;
(17) £y € Loc is the initial location; (#i7) Var is a finite set of variables called clocks;
(7v) P is a finite set of parameters; (v) Lab is a finite alphabet of labels; (vi) Edg C
Loc x Loc x ®(Var,P) x Lab x 2V is a set of edges. An edge (¢,¢,g,a, R) € Edg,
represents a transition from location £ to location ¢ with guard g, label a and a
subset R C Var of the clocks to be reset; (vii) Inv : Loc — ®(Var, P) is the invariant
condition. The automaton can stay in location £ as long as the current values of the
clocks satisfy the constraint Inv(¢).

The semantics of PTA is given by a transition system. The states are pairs (¢, v)
where £ € Loc and v : Var — T is a clock valuation. The transition relation depends
on the valuation of the parameters. Let x : P — P be a parameter valuation and
define k(c) = ¢ for every ¢ € N. For a formula ¢ € ®(Var,P) and a clock valuation
v, we write v =, @ iff v(z) ~ k(c) for each ‘¢ ~ ¢ appearing in . Define [p],=
{v | v =k ¢}. Given a valuation v and t € T, the valuation v 4 ¢ assigns the value
v(x) 4+ t to each variable x € Var.



Clocks compared | Other | Parameters
T to parameters | clocks (P=T) Decidability
N 1 any any Vv (4]
R 1 0 any v [4, 10]
Nor R 3 0 6 X [4]
R 3 0 1 x [10]
R 1 3 1 X [10]

Table 1. Existing decidability (/) and undecidability (x) results for PTA.

Definition 2 [Semantics of PTA] Given a parameter valuation s, the semantics of
a PTA A = (Loc, ¥y, Var,P,Lab,Edg, Inv) is given by the labelled transition sys-
tem [A]x= (5,S0,L,—) where : (i) S = {({,v)|¢ € Loc Av €]Inv()].}; (i7)
So = {(lp,vo)} where vo(z) = 0 for every x € Var; (iii) L = LabUT; (iv) The
relation —C S x £ x S is defined as follows: (a) Discrete transitions. For o € Lab,
((L,v),0,(l',v")) €— iff there exists an edge (¢, g,0, R) € Edg such that v = g,
V() =0if x € R and V'(z) = v(z) if z ¢ R. (b) Timed transitions. For t € T,
((L,v),t,(0',0") e—iff ¢/ =0, v =v+tand for every ¢’ € [0,¢] : v+t €]Inv({)].

A state sy is reachable in a labelled transition system 7 = (S, Sp, £,+—) iff there
., 8p, of states s; € S such that sg € So, s, = s¢
and for every 0 < i < n, there exists some o; € £ such that (s;,0;,$;+1) € —. We
write Reach(7') for the set of reachable states of 7.

exists a finite sequence s = sy, s1, . .

3 Parametric Reachability

Given a PTA A and a location £y, the set 'y, (A) = {x | (¢;,vy) € Reach([A],) for
some valuation v} contains the parameter valuations such that £¢ is reachable in A.

Definition 3 Given a PTA A and a location £y, the parametric reachability problem
asks whether I'y,(A) is empty.

In Table 1, we give a summary of the existing results about decidability of this
problem, depending on the time domain T and the number of clocks and parameters.
We assume that the parameters take their value in the set T, that is P = T. It would
make sense to consider the case T = R2Y and P = N, but the problem is obviously
undecidable in general since it is already the case for P = T = N (3rd line in Table 1).
Notice that all the results presented for P = T = R2? hold for P = T = Q=°.

The parametric reachability problem in discrete time is decidable for the class of
PTA with an arbitrary number of clocks in which only one clock is compared to the
parameters [4]. The proof is in two steps. First the non parametrically constrained
clocks are eliminated, and then a linear formula defining I'y, (A) is constructed. The
decidability of testing emptiness of Iy, (A) follows.



In dense time, decidability is established only for PTA with one single clock and the
problem is NP-complete in this case [4, 10|. However, for PTA with four clocks, the
parametric reachability problem is undecidable even if only one clock is parametri-
cally constrained [10]. Finally, as stated by Theorem 1, the parametric reachability
problem is undecidable in both discrete and dense time for PTA with at least three
clocks and six parameters [4].

Theorem 1 ([4]) The parametric reachability problem is undecidable in dense time
for general PTA.

The proof uses a reduction from the halting problem for 2-counter machine which
is known to be undecidable [11]. A 2-counter machine consists of a finite set of
states @ = {qo,...,qm} (with an initial state gy and a final state g,,), a finite set
of instructions and two counters C7 and Cs. An instruction is associated to each
machine state, and it can be either (increment) Cy = Cx + 1 goto ¢;, or (decrement)
Cr = Cj — 1 goto ¢;, or (zero-testing) if C; = 0 then goto ¢; else goto g,
where k£ € {1,2} and ¢;,q; € @ are machine states. The decrement is not allowed
if the counter value is 0. We may assume that a zero-testing is done before every

decrement.

A configuration of the machine is a triple (¢;,c1,c2) where ¢; € @ is a state and
c1,co € N are the values of C; and Cs respectively. An execution of the machine
is an infinite sequence m = mym ... of configurations such that 7y = (go,0,0) and
for all ¢ > 0, if m; = (g, c1,c2) then 711 is obtained as expected, according to the
instruction associated to the state q. The halting problem for 2-counter machines
is to decide if a given machine M has an execution that reaches a configuration
(qm, c1, c2) for some values ¢ and co.

The reduction presented in [4] uses three clocks and six parameters to encode the
value of the two counters, and instructions of the 2-counter machine are translated
into operations on clocks. In [10], an original proof is presented for dense time. It
works for PTA with three clocks and one parameter. The idea is to use a new un-
decidability result for irrational timed automata where constants can be irrational
instead of integers. Once again, this result is proven by reduction of the halting prob-
lem for 2-counter machines. Then, it is shown that the reduction is still applicable
if the irrational constants are replaced by a parameter (since a rational parameter
can be chosen arbitrarily close to an irrational). Refer to [10] for details. Finally, for
the subclass of PTA called L/U automata, the parametric reachability problem is
decidable [9].

In the field of parametric real-time verification, there are several works where the pa-
rameters are introduced in real-time logics like TCTL [12, 8, 2, 5] or simultaneously
in the model and in the logic [6].
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Fig. 1. Intervals of the form I; =]i - o, 4 - 8] in which the clocks z and y lie.
4 Robust Undecidability

In both undecidability proofs of the previous section (Theorem 1), the fact that
PTA allow to define strong constraints of the form 'z = o’ where « is a parameter
is essential for simulating 2-counter machine. It could be argued that perhaps the
parametric decision problem is undecidable simply because equality is too expressive.
However, we show that a 2-counter machine can be simulated without using equality.
Our reduction technique is inspired by the widget construction presented in |7].

A PTA is open if all the guards and invariants are generated by the grammar rule
pu=x<c|lx>cl|lpAp where x € Var and ¢ € NUP.

Theorem 2 The parametric reachability problem is undecidable in dense time for
open PTA (for P € {R29 Q2°} and T € {R=°,Q=0}).

Proof. Given a 2-counter machine M, we construct an open PTA Aj; with five
clocks and two parameters a and 3. The states qo, ..., ¢, of the 2-counter machine
are encoded by the locations £1, ..., ¢, of Aps respectively. The construction is such
that the location ¢, is reachable for some valuation of the parameters if and only
if M halts (or equivalently reaches the state ¢,,). The value of each counter Cj is
encoded by two clocks xp and y; of the timed automaton, and we use an additional
clock t to generate pseudo-periodical ticks: we put the guard ¢ > « on every edge,
and we put the invariant ¢ < (3 on every location (except for the automaton of Fig. 2
that we use in an initialization step). Also, we reset ¢ on every edge so that a new
tick occurs every between « and 3 time units with o < 3 (typically, the value of the
parameters o and (3 is intended to be much less than 1).

After ¢ such ticks, a clock x (initially 0) has a value in the interval I; =i - o7 - .
Now, assume that for some n € N (see also Fig. 1):

(A1) the intervals I; and I;4; are disjoint for each 0 < i < n;

(A2) I,_y C [0,1] and I,, C [1,+00] .

Then, if we reset the clock  when x € I,, that is n ticks after the last reset,
we can simulate a modulo-n counter. Now, we use the difference between two such
counters to maintain the value of the machine counters as time elapses. Given a
maximal constant n, we define the value c of a counter encoded with clocks x and y
as follows:

i—j if i >

if x € I; and y € I; then ¢ = val(i,j) =
PmeyEy (8.4) {n+i—jﬁi<j
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The assumption (A1) guarantees the uniqueness of ¢ such that = € I; (and similarly
for 7). Tt is easy to establish the following invariance property for this encoding:

V0 <i,5 <n: wval(i+1modn,j+1modn)=wval(i,j) (1)

Note that the assumption (A1) is equivalent to ask that I,_; and I, are disjoint
(since a < B and (n — 1) < n -« entails (i — 1) < i-« for all i < n), which is
implied by (A2). On the other hand, (A2) is equivalent to the following condition
on the parameters: (n — 1) <1< n-a.

We check this condition with the initialization widget A" of Fig. 2 whose location
¢y (corresponding to the machine state qg) is reachable if and only if there exists
n € N such that (n —1)8 <1 < n-« (in fact n is the number of times the location
agp is visited before reaching ¢y, thus the loop ag, a1 is taken n — 1 times). Observe
that the clock z; is always reset when 27 < «, so that when the edge (as,%p) is
taken, we have t < n -« and ¢t > 1 which implies 1 < n - @. On the other hand, the
condition (n — 1)3 < 1 is trivially satisfied for n = 1. For n > 1, since y; is reset
when y; > (3, we have t > (n — 1) in the location ay when the edge to ag is taken
with ¢ < 1. This entails (n — 1) < 1.

(0%
a lower value for v we can encode larger values of the counters. Since parameters

are valued in R29, this is sufficient to guarantee faithful simulation of the 2-counter
machine, if its counters remain bounded. If a counter overflow occurs in the simula-
tion of M, an error location is reached in Aj; where it is impossible to reach £,,. In

In this setting, the maximal value of a counter isn — 1 = | 1] = I_%J Thus, with

summary,

e if M reaches g,,, then the values of its counters remain bounded, and so by choos-
ing sufficiently small values for the parameters, Aj; will be able to simulate M
and thus to reach /Z,,.

e On the other hand, if M does not reach g, then either the counters are unbounded
and Ay falls in overflow no matter the choice of the value of the parameters, or
Aps can mimic the execution of M forever (as before by choosing sufficiently small
values for the parameters), yet cannot reach ¢, since M does not.
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Fig. 4. Incrementing Cj with A;. Fig. 5. Zero-testing Cj, with AY.

We present the widgets that we use to construct the timed automaton Aps. In all
the subsequent figures, the invariant ¢ <  on each location, the guard ¢ > « and
the reset ¢t := 0 on every edge are not depicted for the sake of clarity.

First, consider the idling automaton A€ of Fig. 3 (for k € {1,2}). This automaton
maintains the value of the counter C}, by resetting xj and y, whenever they exceed 1.
This widget is used to preserve the value of a counter while executing an instruction
involving the other counter. The correctness of A};dle relies on Equation (1). Now,
we show how to execute the three types of instruction of M with Ay,.

Increment An instruction of the form C}, = Cj +1 goto g; at state g; is translated
into the synchronized product of AZ‘and A?ﬂi where A: is depicted in Fig. 4. It
is assumed that all their edges have the same label (not depicted) which ensures
synchronizations of the two automata.

We informally explain the structure of AZ. Remember that each edge is a tick. The
first step is to obtain an encoding of Cj such that y, = 0 in ¢/. To do this, the
automaton AZ is idling in location ¢; until either 3 > 1 or x; > 1. In the first case,
we can directly reset y; and jump to ¢/, and in the second case we have to wait in
location £ until y, > 1 to do so. The second step is the increment itself. From £"7,
we reset y; after the next tick and we proceed to ¢;. However, if we had 1 > 1
at that time, it would mean that the counter overflows and that the simulation
cannot continue. The deadlock location overflow is then reached where no transition
is possible.

Decrement A decrement of the form C} = C — 1 goto ¢; at state g; is translated
into the synchronized product of A,  and Aéd_li where A, is depicted in Fig. 6. Again,
all their edges have the same label.

Decrementing the counter Cy is the dual of incrementing: we proceed to location ¢/
when zj is reset so that y, € I,_; if the value of C} is i. Then, with the next tick,
we reset xy so that x;, € Iy and y;, € I,,_;41. Thus, the value of C}, is now ¢ —1 in /;.
Note that an edge guarded by xx > 1 Ay > 1 is missing from location ¢; in Fig. 6



<1 Ay <l

e > 1Ay <17 yr <1 @
i j
xp =0

rp > 1

Fig. 6. Decrementing Cj, with A, .

since it corresponds to a counter equal to O which is prevented by the assumption
that counters are zero-tested before decrementing.

Zero-testing An instruction of the form if Cj = 0 then goto g; else goto ¢/ at
location ¢; is translated into the synchronized product of Ag and A?ﬂi where Ag
is depicted in Fig. 5. The value of a counter C} is zero iff xy,y, € I; for some 1,
which means that the two clocks will eventually exceed 1 during the same tick. This
is checked by Ag, branching to either £; or £;,. Again, all their edges have the same
label.

The automaton Ay is now built up by concatenating A" and each of the widget
translated from the instructions of M. By concatenation, we mean taking the union
of the locations and edges of the widgets, with initial location ag of A" and final
location £,,. It is now clear from the above construction that the following claims
are equivalent:

(1) The state (fy,,v) is reachable in [Aa/], for some valuation v.

(2) There exists an execution 7’ of M containing a configuration (g, c1,cs) for

some ¢y, c2 € Nand such that for all ¢ > 0, if 7, = (g, ¢1, ¢2) then ¢, ¢0 < I_L)j

K

This allows to conclude that I'y, (Aar) is not empty if and only if the answer to the
reachability problem for M is YES, and thus the parametric reachability problem is
undecidable for open PTA. O

The proof that we have presented uses five clocks and two parameters, but three
clocks are compared with parameters, namely x1, y; and ¢. It is clear that the same
reduction holds with only two clocks compared with parameters: in the initialization
widget A" since all the clocks are reset before entering ¢y, we could swap for
example z1 and t so that x1 is no more compared to parameters.



5 Conclusion

We have seen that introducing parameters in the model of timed automata yields
a parametric version of the reachability problem that is undecidable in dense time
except for some very restricted cases, with few interactions with parameters (and
only one clock in dense time). We have strengthened this result with a new proof of
undecidability for parametric timed automata. Unlike the classical proofs of unde-
cidability, our proof does not rely on the use of equality in timing constraints and
thus it is more robust. Formally, it applies to open parametric timed automata, with
at least two parameters and five clocks (among which two are compared with the
parameters). It is an open question whether this number of clocks and parameters
is tight for undecidability of the reachability problem.
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