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1 Introdu
tionThe design and veri�
ation of real-time systems has intensively used formal methodsfor several years. In that 
ontext, timed automata have played an important role [1℄.A timed automaton is essentially a �nite automaton augmented with a set of 
lo
ksthat allow to spe
ify timing 
onstraints on the transitions of the automaton. Twomodels of time are usually 
onsidered, either the time domain T is dis
rete (T = N)or dense (T = R≥0 or T = Q≥0).An important result about timed automata is that the rea
hability problem (`Is agiven lo
ation of the automaton rea
hable from the initial state ?') is de
idable whenthe 
onstants that appear in the timing 
onstraints are rational numbers [1℄. Theproblem be
omes unde
idable when irrational 
onstants are allowed [10℄.In this paper, we are interested in the rea
hability problem for parametri
 extensionsof timed automata, where 
onstants in timing 
onstraints are repla
ed by parametersrepresenting unknown 
onstants. The possibility to spe
ify parametri
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allows to design systems independently of a parti
ular implementation. For exam-ple, the speed of the hardware or the time transmission in a 
ommuni
ation proto
ol
ould be left as parameters in the early phases of the design. The parametri
 rea
h-ability problem asks then whether there exists a valuation for the parameters su
hthat a given lo
ation is rea
hable. We review the known (un)de
idability resultsabout this problem when the domain P of the parameters is either dis
rete (P = N)or dense (P = R≥0 or P = Q≥0). The main result is that the problem is unde
idablewhen T and P are dense [4, 7℄.The 
lassi
al proofs of that result use the expressiveness of equality in timed au-tomata to en
ode Turing-ma
hine 
omputations. Similar results exist for real-timelogi
s. However, if the use of equality is disallowed in the logi
, de
idability 
anoften be established. This is the 
ase for MITL [3℄ and the parametri
 extension ofTCTL [6℄. The hope has then arisen that de
idability of the parametri
 rea
habilityproblem 
ould be established for more robust models like open timed automata thatavoid equality 
onstraints. Unfortunately, we show that this is not the 
ase and thatparametri
 timed automata are robustly unde
idable. The proof that we present isthe main 
ontribution of the paper. It is based on a non-trivial novel en
oding oftwo-
ounter Minsky ma
hines.
2 Parametri
 Timed AutomataGiven a set Var of 
lo
ks and a set P of parameters, let Φ(Var,P) be the set of 
lo
k
onstraints ϕ de�ned by the grammar rule ϕ ::= x ∼ c | ϕ ∧ ϕ where x ∈ Var,
c ∈ N ∪ P and ∼∈ {<,≤,=,≥, >}.De�nition 1 [PTA - Parametri
 Timed Automata℄ A parametri
 timed automatonis a tuple A = 〈Loc, ℓ0,Var,P,Lab,Edg, Inv〉 where : (i) Loc is a �nite set of lo
ations;(ii) ℓ0 ∈ Loc is the initial lo
ation; (iii) Var is a �nite set of variables 
alled 
lo
ks;(iv) P is a �nite set of parameters; (v) Lab is a �nite alphabet of labels; (vi) Edg ⊆
Loc × Loc × Φ(Var,P) × Lab × 2Var is a set of edges. An edge (ℓ, ℓ′, g, α,R) ∈ Edg,represents a transition from lo
ation ℓ to lo
ation ℓ′ with guard g, label α and asubset R ⊆ Var of the 
lo
ks to be reset; (vii) Inv : Loc → Φ(Var,P) is the invariant
ondition. The automaton 
an stay in lo
ation ℓ as long as the 
urrent values of the
lo
ks satisfy the 
onstraint Inv(ℓ).The semanti
s of PTA is given by a transition system. The states are pairs (ℓ, v)where ℓ ∈ Loc and v : Var → T is a 
lo
k valuation. The transition relation dependson the valuation of the parameters. Let κ : P → P be a parameter valuation andde�ne κ(c) = c for every c ∈ N. For a formula ϕ ∈ Φ(Var,P) and a 
lo
k valuation
v, we write v |=κ ϕ i� v(x) ∼ κ(c) for ea
h `x ∼ c' appearing in ϕ. De�ne [[ϕ]]κ=
{v | v |=κ ϕ}. Given a valuation v and t ∈ T, the valuation v + t assigns the value
v(x) + t to ea
h variable x ∈ Var. 2



T
Clo
ks 
ompared Other Parameters De
idabilityto parameters 
lo
ks (P = T)

N 1 any any √ [4℄
R 1 0 any √ [4, 10℄

N or R 3 0 6 × [4℄
R 3 0 1 × [10℄
R 1 3 1 × [10℄Table 1. Existing de
idability (√) and unde
idability (×) results for PTA.De�nition 2 [Semanti
s of PTA℄ Given a parameter valuation κ, the semanti
s ofa PTA A = 〈Loc, ℓ0,Var,P,Lab,Edg, Inv〉 is given by the labelled transition sys-tem [[A]]κ= (S, S0,L, 7→) where : (i) S = {(ℓ, v)|ℓ ∈ Loc ∧ v ∈[[Inv(ℓ)]]κ}; (ii)

S0 = {(l0, v0)} where v0(x) = 0 for every x ∈ Var; (iii) L = Lab ∪ T; (iv) Therelation 7→⊆ S × L× S is de�ned as follows: (a) Dis
rete transitions. For σ ∈ Lab,
((ℓ, v), σ, (ℓ′, v′)) ∈ 7→ i� there exists an edge (ℓ, ℓ′, g, σ,R) ∈ Edg su
h that v |=κ g,
v′(x) = 0 if x ∈ R and v′(x) = v(x) if x 6∈ R. (b) Timed transitions. For t ∈ T,
((ℓ, v), t, (ℓ′, v′)) ∈ 7→ i� ℓ′ = ℓ, v′ = v + t and for every t′ ∈ [0, t] : v + t′ ∈[[Inv(ℓ)]]κ.A state sf is rea
hable in a labelled transition system T = (S, S0,L, 7→) i� thereexists a �nite sequen
e s̄ = s0, s1, . . . , sn of states si ∈ S su
h that s0 ∈ S0, sn = sfand for every 0 ≤ i < n, there exists some σi ∈ L su
h that (si, σi, si+1) ∈ 7→. Wewrite Reach(T ) for the set of rea
hable states of T .3 Parametri
 Rea
habilityGiven a PTA A and a lo
ation ℓf , the set Γℓf

(A) = {κ | (ℓf , vf ) ∈ Reach([[A]]κ) forsome valuation vf} 
ontains the parameter valuations su
h that ℓf is rea
hable in A.De�nition 3 Given a PTA A and a lo
ation ℓf , the parametri
 rea
hability problemasks whether Γℓf
(A) is empty.In Table 1, we give a summary of the existing results about de
idability of thisproblem, depending on the time domain T and the number of 
lo
ks and parameters.We assume that the parameters take their value in the set T, that is P = T. It wouldmake sense to 
onsider the 
ase T = R≥0 and P = N, but the problem is obviouslyunde
idable in general sin
e it is already the 
ase for P = T = N (3rd line in Table 1).Noti
e that all the results presented for P = T = R≥0 hold for P = T = Q≥0.The parametri
 rea
hability problem in dis
rete time is de
idable for the 
lass ofPTA with an arbitrary number of 
lo
ks in whi
h only one 
lo
k is 
ompared to theparameters [4℄. The proof is in two steps. First the non parametri
ally 
onstrained
lo
ks are eliminated, and then a linear formula de�ning Γℓf

(A) is 
onstru
ted. Thede
idability of testing emptiness of Γℓf
(A) follows.3



In dense time, de
idability is established only for PTA with one single 
lo
k and theproblem is NP-
omplete in this 
ase [4, 10℄. However, for PTA with four 
lo
ks, theparametri
 rea
hability problem is unde
idable even if only one 
lo
k is parametri-
ally 
onstrained [10℄. Finally, as stated by Theorem 1, the parametri
 rea
habilityproblem is unde
idable in both dis
rete and dense time for PTA with at least three
lo
ks and six parameters [4℄.Theorem 1 ([4℄) The parametri
 rea
hability problem is unde
idable in dense timefor general PTA.The proof uses a redu
tion from the halting problem for 2-
ounter ma
hine whi
his known to be unde
idable [11℄. A 2-
ounter ma
hine 
onsists of a �nite set ofstates Q = {q0, . . . , qm} (with an initial state q0 and a �nal state qm), a �nite setof instru
tions and two 
ounters C1 and C2. An instru
tion is asso
iated to ea
hma
hine state, and it 
an be either (in
rement) Ck = Ck +1 goto qi, or (de
rement)
Ck = Ck − 1 goto qi, or (zero-testing) if Ck = 0 then goto qi else goto qj ,where k ∈ {1, 2} and qi, qj ∈ Q are ma
hine states. The de
rement is not allowedif the 
ounter value is 0. We may assume that a zero-testing is done before everyde
rement.A 
on�guration of the ma
hine is a triple (qi, c1, c2) where qi ∈ Q is a state and
c1, c2 ∈ N are the values of C1 and C2 respe
tively. An exe
ution of the ma
hineis an in�nite sequen
e π = π0π1 . . . of 
on�gurations su
h that π0 = (q0, 0, 0) andfor all i ≥ 0, if πi = (q, c1, c2) then πi+1 is obtained as expe
ted, a

ording to theinstru
tion asso
iated to the state q. The halting problem for 2-
ounter ma
hinesis to de
ide if a given ma
hine M has an exe
ution that rea
hes a 
on�guration
(qm, c1, c2) for some values c1 and c2.The redu
tion presented in [4℄ uses three 
lo
ks and six parameters to en
ode thevalue of the two 
ounters, and instru
tions of the 2-
ounter ma
hine are translatedinto operations on 
lo
ks. In [10℄, an original proof is presented for dense time. Itworks for PTA with three 
lo
ks and one parameter. The idea is to use a new un-de
idability result for irrational timed automata where 
onstants 
an be irrationalinstead of integers. On
e again, this result is proven by redu
tion of the halting prob-lem for 2-
ounter ma
hines. Then, it is shown that the redu
tion is still appli
ableif the irrational 
onstants are repla
ed by a parameter (sin
e a rational parameter
an be 
hosen arbitrarily 
lose to an irrational). Refer to [10℄ for details. Finally, forthe sub
lass of PTA 
alled L/U automata, the parametri
 rea
hability problem isde
idable [9℄.In the �eld of parametri
 real-time veri�
ation, there are several works where the pa-rameters are introdu
ed in real-time logi
s like TCTL [12, 8, 2, 5℄ or simultaneouslyin the model and in the logi
 [6℄. 4



0 1

I2 Ii In−1I1 . . .. . . InFig. 1. Intervals of the form Ii = ]i · α, i · β[ in whi
h the 
lo
ks x and y lie.4 Robust Unde
idabilityIn both unde
idability proofs of the previous se
tion (Theorem 1), the fa
t thatPTA allow to de�ne strong 
onstraints of the form 'x = α' where α is a parameteris essential for simulating 2-
ounter ma
hine. It 
ould be argued that perhaps theparametri
 de
ision problem is unde
idable simply be
ause equality is too expressive.However, we show that a 2-
ounter ma
hine 
an be simulated without using equality.Our redu
tion te
hnique is inspired by the widget 
onstru
tion presented in [7℄.A PTA is open if all the guards and invariants are generated by the grammar rule
ϕ ::= x < c | x > c | ϕ ∧ ϕ where x ∈ Var and c ∈ N ∪ P.Theorem 2 The parametri
 rea
hability problem is unde
idable in dense time foropen PTA (for P ∈ {R≥0, Q≥0} and T ∈ {R≥0, Q≥0}).Proof. Given a 2-
ounter ma
hine M , we 
onstru
t an open PTA AM with �ve
lo
ks and two parameters α and β. The states q0, . . . , qm of the 2-
ounter ma
hineare en
oded by the lo
ations ℓ1, . . . , ℓm of AM respe
tively. The 
onstru
tion is su
hthat the lo
ation ℓm is rea
hable for some valuation of the parameters if and onlyif M halts (or equivalently rea
hes the state qm). The value of ea
h 
ounter Ck isen
oded by two 
lo
ks xk and yk of the timed automaton, and we use an additional
lo
k t to generate pseudo-periodi
al ti
ks: we put the guard t > α on every edge,and we put the invariant t < β on every lo
ation (ex
ept for the automaton of Fig. 2that we use in an initialization step). Also, we reset t on every edge so that a newti
k o

urs every between α and β time units with α < β (typi
ally, the value of theparameters α and β is intended to be mu
h less than 1).After i su
h ti
ks, a 
lo
k x (initially 0) has a value in the interval Ii =]i · α, i · β[.Now, assume that for some n ∈ N (see also Fig. 1):(A1) the intervals Ii and Ii+1 are disjoint for ea
h 0 ≤ i < n;(A2) In−1 ⊂ [0, 1] and In ⊂ [1,+∞[ .Then, if we reset the 
lo
k x when x ∈ In, that is n ti
ks after the last reset,we 
an simulate a modulo-n 
ounter. Now, we use the di�eren
e between two su
h
ounters to maintain the value of the ma
hine 
ounters as time elapses. Given amaximal 
onstant n, we de�ne the value c of a 
ounter en
oded with 
lo
ks x and yas follows: if x ∈ Ii and y ∈ Ij then c = val(i, j) =

{

i − j if i ≥ j

n + i − j if i < j5



a0 a1

a2 ℓ0

t < β

x1 < α

x1 := 0

y1 > β

y1 := 0t < 1

x1 < α ∧ t > 1

x1, y1, x2, y2, t := 0Fig. 2. Ainit

idle

xk > 1

∧ y > 1

xk, yk := 0

xk < 1

∧ yk < 1

xk > 1

∧ yk < 1

xk := 0

xk < 1

∧ yk > 1

yk := 0Fig. 3. Idling with Aidle
k .The assumption (A1) guarantees the uniqueness of i su
h that x ∈ Ii (and similarlyfor j). It is easy to establish the following invarian
e property for this en
oding:

∀0 ≤ i, j < n : val(i + 1 mod n, j + 1 mod n) = val(i, j) (1)Note that the assumption (A1) is equivalent to ask that In−1 and In are disjoint(sin
e α < β and (n − 1)β < n · α entails (i − 1)β < i · α for all i ≤ n), whi
h isimplied by (A2). On the other hand, (A2) is equivalent to the following 
onditionon the parameters: (n − 1)β < 1 < n · α.We 
he
k this 
ondition with the initialization widget Ainit of Fig. 2 whose lo
ation
ℓ0 (
orresponding to the ma
hine state q0) is rea
hable if and only if there exists
n ∈ N su
h that (n − 1)β < 1 < n · α (in fa
t n is the number of times the lo
ation
a0 is visited before rea
hing ℓ0, thus the loop a0, a1 is taken n − 1 times). Observethat the 
lo
k x1 is always reset when x1 < α, so that when the edge (a2, ℓ0) istaken, we have t < n · α and t > 1 whi
h implies 1 < n · α. On the other hand, the
ondition (n − 1)β < 1 is trivially satis�ed for n = 1. For n > 1, sin
e y1 is resetwhen y1 > β, we have t > (n − 1)β in the lo
ation a0 when the edge to a2 is takenwith t < 1. This entails (n − 1)β < 1.In this setting, the maximal value of a 
ounter is n − 1 = ⌊ 1

α
⌋ = ⌊ 1

β
⌋. Thus, witha lower value for α we 
an en
ode larger values of the 
ounters. Sin
e parametersare valued in R≥0, this is su�
ient to guarantee faithful simulation of the 2-
ounterma
hine, if its 
ounters remain bounded. If a 
ounter over�ow o

urs in the simula-tion of M , an error lo
ation is rea
hed in AM where it is impossible to rea
h ℓm. Insummary,

• if M rea
hes qm, then the values of its 
ounters remain bounded, and so by 
hoos-ing su�
iently small values for the parameters, AM will be able to simulate Mand thus to rea
h ℓm.
• On the other hand, if M does not rea
h qm, then either the 
ounters are unboundedand AM falls in over�ow no matter the 
hoi
e of the value of the parameters, or

AM 
an mimi
 the exe
ution of M forever (as before by 
hoosing su�
iently smallvalues for the parameters), yet 
annot rea
h ℓm sin
e M does not.6



ℓi

ℓ′i

ℓ′′i ℓj

over�owxk < 1

∧ yk < 1

xk > 1 ∧ yk > 1

xk, yk := 0

xk < 1 ∧ yk > 1

yk := 0

xk > 1

∧ yk < 1

xk := 0

yk < 1

yk > 1

yk := 0

xk < 1

yk := 0

xk > 1

Fig. 4. In
rementing Ck with A+
k .

ℓi ℓj

ℓj′

xk > 1

∧ yk > 1

xk, yk := 0

xk < 1

∧ yk < 1

xk < 1

∧ yk > 1

yk := 0

xk > 1
∧ yk < 1

xk := 0

Fig. 5. Zero-testing Ck with A0
k.We present the widgets that we use to 
onstru
t the timed automaton AM . In allthe subsequent �gures, the invariant t < β on ea
h lo
ation, the guard t > α andthe reset t := 0 on every edge are not depi
ted for the sake of 
larity.First, 
onsider the idling automaton Aidle

k of Fig. 3 (for k ∈ {1, 2}). This automatonmaintains the value of the 
ounter Ck by resetting xk and yk whenever they ex
eed 1.This widget is used to preserve the value of a 
ounter while exe
uting an instru
tioninvolving the other 
ounter. The 
orre
tness of Aidle
k relies on Equation (1). Now,we show how to exe
ute the three types of instru
tion of M with AM .In
rement An instru
tion of the form Ck = Ck +1 goto qj at state qi is translatedinto the syn
hronized produ
t of A+

k and Aidle
3−k where A+

k is depi
ted in Fig. 4. Itis assumed that all their edges have the same label (not depi
ted) whi
h ensuressyn
hronizations of the two automata.We informally explain the stru
ture of A+
k . Remember that ea
h edge is a ti
k. The�rst step is to obtain an en
oding of Ck su
h that yk = 0 in ℓ′′i . To do this, theautomaton A+

k is idling in lo
ation ℓi until either yk > 1 or xk > 1. In the �rst 
ase,we 
an dire
tly reset yk and jump to ℓ′′i , and in the se
ond 
ase we have to wait inlo
ation ℓ′i until yk > 1 to do so. The se
ond step is the in
rement itself. From ℓ′′i,we reset yk after the next ti
k and we pro
eed to ℓj . However, if we had x1 > 1at that time, it would mean that the 
ounter over�ows and that the simulation
annot 
ontinue. The deadlo
k lo
ation over�ow is then rea
hed where no transitionis possible.De
rement A de
rement of the form Ck = Ck − 1 goto qj at state qi is translatedinto the syn
hronized produ
t of A−
k and Aidle

3−k where A−
k is depi
ted in Fig. 6. Again,all their edges have the same label.De
rementing the 
ounter Ck is the dual of in
rementing: we pro
eed to lo
ation ℓ′′iwhen xk is reset so that yk ∈ In−i if the value of Ck is i. Then, with the next ti
k,we reset xk so that xk ∈ I0 and yk ∈ In−i+1. Thus, the value of Ck is now i−1 in ℓj .Note that an edge guarded by xk > 1 ∧ yk > 1 is missing from lo
ation ℓi in Fig. 67



ℓi

ℓ′i

ℓ′′i ℓj

xk < 1 ∧ yk < 1

xk > 1 ∧ yk < 1

xk := 0

xk < 1

∧ yk > 1

yk := 0

xk < 1

xk > 1

xk := 0

yk < 1

xk := 0

Fig. 6. De
rementing Ck with A−
k .sin
e it 
orresponds to a 
ounter equal to 0 whi
h is prevented by the assumptionthat 
ounters are zero-tested before de
rementing.Zero-testing An instru
tion of the form if Ck = 0 then goto qj else goto qj′ atlo
ation qi is translated into the syn
hronized produ
t of A0

k and Aidle
3−k where A0

kis depi
ted in Fig. 5. The value of a 
ounter Ck is zero i� xk, yk ∈ Ii for some i,whi
h means that the two 
lo
ks will eventually ex
eed 1 during the same ti
k. Thisis 
he
ked by A0
k, bran
hing to either ℓj or ℓj′. Again, all their edges have the samelabel.The automaton AM is now built up by 
on
atenating Ainit and ea
h of the widgettranslated from the instru
tions of M . By 
on
atenation, we mean taking the unionof the lo
ations and edges of the widgets, with initial lo
ation a0 of Ainit and �nallo
ation ℓm. It is now 
lear from the above 
onstru
tion that the following 
laimsare equivalent:(1) The state (ℓm, v) is rea
hable in [[AM ]]κ for some valuation v.(2) There exists an exe
ution π′ of M 
ontaining a 
on�guration (qm, c1, c2) forsome c1, c2 ∈ N and su
h that for all i ≥ 0, if π′

i = (q, c1, c2) then c1, c2 ≤ ⌊ 1
κ(α)⌋.This allows to 
on
lude that Γℓm

(AM ) is not empty if and only if the answer to therea
hability problem for M is Yes, and thus the parametri
 rea
hability problem isunde
idable for open PTA. 2The proof that we have presented uses �ve 
lo
ks and two parameters, but three
lo
ks are 
ompared with parameters, namely x1, y1 and t. It is 
lear that the sameredu
tion holds with only two 
lo
ks 
ompared with parameters: in the initializationwidget Ainit, sin
e all the 
lo
ks are reset before entering ℓ0, we 
ould swap forexample x1 and t so that x1 is no more 
ompared to parameters.8



5 Con
lusionWe have seen that introdu
ing parameters in the model of timed automata yieldsa parametri
 version of the rea
hability problem that is unde
idable in dense timeex
ept for some very restri
ted 
ases, with few intera
tions with parameters (andonly one 
lo
k in dense time). We have strengthened this result with a new proof ofunde
idability for parametri
 timed automata. Unlike the 
lassi
al proofs of unde-
idability, our proof does not rely on the use of equality in timing 
onstraints andthus it is more robust. Formally, it applies to open parametri
 timed automata, withat least two parameters and �ve 
lo
ks (among whi
h two are 
ompared with theparameters). It is an open question whether this number of 
lo
ks and parametersis tight for unde
idability of the rea
hability problem.A
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