
Realizability of Real-Time Logics⋆

L. Doyen1, G. Geeraerts1, J.-F. Raskin1, and J. Reichert2

1 Département d’Informatique, Université Libre de Bruxelles (U.L.B.)
{ldoyen,gigeerae,jraskin}@ulb.ac.be

2 École Normale Supérieure de Cachanjreicher@dptinfo.ens-cachan.fr

Abstract. We study the realizability problem for specifications of reactive sys-
tems expressed in real-time linear temporal logics. The logics we consider are
subsets ofMITL (Metric Interval Temporal Logic), a logic for which the satisfi-
ability and validity problems are decidable, a necessary condition for the realiz-
ability problem to be decidable. On the positive side, we show that the realizabil-
ity of LTL extended with past real-time formulas is decidable in 2EXPTIME, with
a matching lower bound. On the negative side, we show that a simple extension
of this decidable fragment with future real-time formulas leads to undecidability.
In particular, our results imply that the realizability problem is undecidable for
ECL (Event Clock Logic), and therefore also forMITL.

1 Introduction

Thesatisfiabilityandmodel-checking problemsfor real-time temporal logics have been
widely studied since the nineties [4, 13]. The main application of these problems is the
verification of reactive systems: given a model of the systemand of its environment, one
can check whether the parallel composition of the two modelssatisfies a specification
given by a real-time logic formula. This well-established procedure applies toclosed
modelsobtained when both the system and the environment are fully specified.

However, in the design of real-time reactive systems, such aprecise model of the
reactive system is usually difficult to construct manually;and on the other hand, the
environment may be only partially known, especially in the early stages of development.
Therefore, it is natural to consider the problem of the automatic synthesis of a behavior
policy for the reactive system that would be correct by construction with respect to
the specification. This problem is usually formalized as a two-players game, in which
Player 1 controls the execution of the system, and Player 2 controls the execution of
environment. The specification is encoded as the winning condition for Player 1 in the
game. Roughly speaking, the behaviors of Player 1 representall possible models for the
system, and computing a winning strategy for Player 1 amounts to selecting one model
which is guaranteed to be correct whatever the environment does.

In the setting of timed systems, most of the previous works3 have considered games
played ondeterministic timed automata, whose set of edges is partitioned into those
⋆ Work supported by the projects:(i) Quasimodo: “Quantitative System Properties in

Model-Driven-Design of Embedded”,http://www.quasimodo.aau.dk/, (ii) Ga-
sics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, and (iii) Moves: “Fundamental Issues in
Modelling, Verification and Evolution of Software”,http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Gouvernment.

3 With the notable exception of [18] see the ‘related works’ paragraph.

controlled by Player 1 and those controlled by Player 2. The winning condition is a
simple safety objective (some set of locations should be avoided, no matter what the
environment does), or more generally, anω-regular objective defined as a parity condi-
tion over the locations of the automaton.

In this paper, we consider an abstract definition of two-players timed games with
a winning condition expressed by a real-time temporal logicformula. Consider a finite
setΣ1 of actions controlled by Player1, and a finite setΣ2 of actions controlled by
Player2. Let ϕ be a real-time temporal logic formula defining a set of timed words
overΣ = Σ1 ∪ Σ2. The timed game is played for infinitely many rounds as follows.
In each round, the players announce (simultaneously and independently of each other)
a pair(∆,α) consisting of a delay∆ ∈ R

≥0 and an actionα from their set of con-
trollable actions. The player who has announced the shortest delay is allowed to play
its action after the corresponding delay, and then the next round starts. The outcome
of the game is an infinite timed word. Player1 wins the game if the outcome satisfies
the formulaϕ. Note that no game graph needs to be provided in this abstractdefinition.
The problem to decide whether Player1 has a strategy to win the game regardless of
the choices of Player2 is called therealizability problem, borrowing the terminology
introduced forLTL (Linear Temporal Logic) [24]. In a variant of this problem [9], one
asks that Player1 wins without announcing a converging sequence of delays (thus with-
out blocking time), i.e., the outcome has to be either time-diverging and then belong to
ϕ, or time-converging and then Player1 has announced the shortest delay only finitely
often. All results in this paper hold for both variants of therealizability problem.

As it is easy to show that the realizability problem for a logic is at least as hard as
both the satisfiability problem and the validity problem forthat logic, we need to con-
sider specifications that are expressible in real-time logics for which these two problems
are decidable. One of the most natural way to obtain a real-time logic is to equip the
modalities ofLTL [23] with real-time constraints. For instance,♦[a,b]ϕ holds in some
positionp iff there is a future positionp′ in whichϕ holds, and the time elapsed between
p andp′ is betweena andb time units. This extension ofLTL is the Metric Temporal
Logic (MTL) introduced by Koymans [14]. Unfortunately, it has been shown that the
satisfiability problem is undecidable forMTL [5] when interpreted over infinite timed
words. However, when prohibiting singular time intervals of the form [a, a], this logic
becomes decidable (and is then called Metric Interval Temporal Logic, orMITL) [2].
Another way of obtaining a decidable real-time logic is to extendLTL with new real-
time operators, as in the Event Clock Logic (ECL) [26, 25, 13]. Note that here punctual
intervals are allowed. InECL, the operators⊲I and ⊳I are introduced, allowing to
speak about thenext(resp.last) time a formula will be (was) true. For instance,⊲[a,b] ϕ
holds in a positionp if there exists a future positionp′ whereϕ holds, the time elapsed
betweenp andp′ is in [a, b], andϕ has been false in all positions betweenp andp′. This
is to be contrasted with the intuitive meaning of theMTL formula♦[a,b]ϕ which does
not constrain the truth value ofϕ in the interval[0, a). It is known that the expressivity
of ECL is subsumed by that ofMITL and therefore the satisfiability problem forECL is
decidable [26, 25]. Thus, bothMITL andECL are good candidates for the realizability
problem. It is a long-standing open question whether realizability is decidable forMITL.
Surprisingly however, a consequence of our results is that the realizability problem for
bothECL andMITL is undecidable.

Contributions This paper provides two main theoretical results about the realizability
problem forECL. First, we show that the realizability problem forECL is undecid-
able. This result is surprising as this logic can be translated to recursive event-clock
automata [26, 25, 3], a determinizable class of timed automata. Unfortunately, those au-
tomata are only deterministic in a weak sense, as already noted in [17]: while every
infinite word has indeed a unique run in an event-clock automaton, it may be that two
timed words with a common prefix (say up to positioni) have runs with different pre-
fixes (up to positioni). This is due to the fact that runs in event-clock automata constrain
their future by using prophecy clocks. While weak determinism is sufficient to ensure
closure under complement for example, our undecidability result formally shows that
this notion of determinism is not sufficient to obtain an algorithm for the realizability
problem. AsECL is a subset ofMITL, this result immediately entails the undecidabil-
ity of the realizability problem forMITL. Second, we show thatLTL extended with the
past fragments ofECL (called henceforthLTL⊳), has a decidable realizability problem.
We provide a translation of this real-time extension ofLTL to classical Alur-Dill deter-
ministic timed automata [1]. Using this translation, we obtain a 2EXPTIME algorithm
for the realizability problem, and a matching lower bound since the problem is already
2EXPTIME-hard forLTL.

Related WorksAs already mentioned, there have been several previous works about
timed games, see for instance [20, 7]. In those works, the objectives are specified by
deterministic timed automata. We focus here on related works where real-time log-
ics have been used to define the objective of the timed game. In[18], a decidability
result is obtained for the realizability problem of bounded-response properties which
are expressible a fragment ofMTL with future operators. The result holds under the
a bounded-variability semantics, i.e., the number of events per time unit is bounded
by a constant. In our case, we do not need this hypothesis. Note that under bounded-
variability semantics, the fullMITL can be translated to deterministic timed automata.
In [17], the past fragment ofMITL is translated into deterministic timed automata. The
logics there are interpreted over finite signals for the purpose of monitoring while our
logics are interpreted over infinite timed words for the purpose of realizability. The past
fragment ofMITL is incomparable with the logicLTL⊳ for which we have the decid-
ability result. Note that over finite words, the satisfiability problem forMTL is decid-
able [21]. Unfortunately, the synthesis problem is in general undecidable even on finite
words, but becomes decidable when the resources of the controller are bounded [6].

RemarkDue to lack of space, the proofs are omitted but can be found inthe full version
of the paper [11].

2 Preliminaries

An interval is a nonempty convex subset of the setR
≥0 of nonnegative real numbers.

Intervals may be left-open or left-closed; right-open or right-closed; bounded or un-
bounded. An interval has one of the following forms:[a, b], [a, b), [a,∞), (a, b], (a, b),
(a,∞), with endpointsa, b ∈ N anda ≤ b. A word over a finite alphabetΣ is a (finite
or infinite) sequencew = w0w1 . . . of symbolswi ∈ Σ. We denote by|w| the length
of w, i.e., the number of symbols inw. A timed wordoverΣ is a pairθ = (w, τ)

wherew is a word overΣ, andτ = τ0τ1 . . . is a sequence of length|w| of time values
τi ∈ R

≥0 such thatτi ≤ τi+1 for all 0 ≤ i < |w|. We often denote a timed word(w, τ)
as a sequence(w0, τ0)(w1, τ1) . . . of symbols paired with their time stamp. An infinite
timed wordθ = (w, τ) is divergingif for all t ∈ R

≥0, there exists a positioni ∈ N such
thatτi ≥ t.

Automata formalisms.We first define automata on (untimed) words. A (nondetermin-
istic) finite automatonover a finite alphabetΣ is a tupleA = (Q, qin, E, α) whereQ is
a finite set of states,qin ∈ Q is the initial state,E ⊆ Q×Σ ×Q is a set of transitions,
andα is an acceptance condition on transitions. We consider two kinds of acceptance
conditions: thegeneralized B̈uchi conditionwhenα ⊆ 2E is a set of sets of transitions,
and theparity conditionwith d priorities whenα : E → {0, 1, . . . , d}.4 The automaton
A is deterministicif for all statesq and all symbolsσ ∈ Σ, there exists(q, σ, q′) ∈ E
for exactly oneq′ ∈ Q.

A run of a finite automatonA over a wordw is a sequenceq0w0q1w1q2 . . . such
thatq0 = qin and(qi, wi, qi+1) ∈ E for all 0 ≤ i < |w|. For finite runsr, we denote
by Last(r) the last state inr, and for infinite runsr, we denote byInf(r) the set of
transitions occurring infinitely often inr. An infinite runr is acceptingaccording to
the generalized Büchi conditionα if for all sets of edgesF ∈ α, Inf(r) ∩ F 6= ∅. An
infinite runr is acceptingaccording to the parity conditionα if min{α(e) | e ∈ Inf(r)}
is even. Thelanguagedefined by a finite automatonA, notedL(A), is the set of infinite
words on whichA has an accepting run.

We next define timed automata over infinite timed words [1]. Let X be a finite set
{x1, x2, . . . , xn} of variables calledclocks. An atomic clock constraintis a formula of
the formx ∈ I whereI is an interval with integer endpoints (and possibly unbounded).
A guardis a boolean combination of atomic clock constraint. We denote byGuards(X)
the set of all guards onX . A valuationfor the clocks inX is a functionv : X → R

≥0.
We writev |= g whenever the valuationv satisfies the guardg. ForR ⊆ X , we write
v[R := 0] for the valuation that assigns0 to all clocksx ∈ R, andv(x) to all clocks
x 6∈ R. For t ∈ R

≥0, we writev + t for the valuation that assigns the valuev(x) + t
to each clockx ∈ X . A timed automatonover alphabetΣ and clocksX is a tuple
A = (Q, qin, E, α) whereQ is a finite set of states,qin ∈ Q is the initial state, E ⊆
Q×Σ×Guards(X)×2X ×Q is a set oftransitions, andα is an acceptance condition,
either ageneralized B̈uchi conditionif α ⊆ 2E, or aparity conditionwith d priorities if
α : E → {0, 1, . . . , d}. The timed automatonA is deterministicif for every stateq and
valuationv, for all σ ∈ Σ, there exists at most one transition(q, σ, g, R, q′) ∈ E such
thatv |= g.

A timed runr of a timed automatonA over a timed word(w, τ) is an infinite
sequence(q0, v0)(w0, τ0)e0(q1, v1)(w1, τ1)e1 . . . such that(i) q0 = qin, (ii) v0(x) =
0 for all x ∈ X , and(iii) for all positionsi ≥ 0, ei = (qi, wi, g, R, qi+1) ∈ E is such
thatvi + τi − τi−1 |= g andvi+1 = (vi + τi − τi−1)[R := 0] (assumingτ−1 = 0). The
definition ofacceptingtimed run is adapted from the untimed case. Thetimed language
of a timed automatonA, is the setL(A) of timed words on whichA has an accepting
timed run.

4 Acceptance conditions on transitions can be easily transformed into acceptance conditions
over states by doubling the state space of the automaton for the generalized Büchi condition
and by takingd copies of the state space for the parity condition.

Real-time logics.We consider the logicECL (Event Clock Logic) and some of its
fragments [25, 26, 13].ECL is an extension ofLTL with two real-time operators: the
history operator⊳I ϕ expressing thatϕ was true for the last timet time units ago for
somet ∈ I, and the prediction operator⊲I ϕ expressing that the next timeϕ will be
true is int time units for somet ∈ I. Given a finite alphabetΣ, the syntax ofECL is
the following:

ϕ ∈ ECL ::= a | ¬ϕ | ϕ ∨ ϕ | ϕS ϕ | ϕU ϕ | ⊳I ϕ | ⊲I ϕ

wherea ∈ Σ andI is an interval. The models of anECL formula are infinite timed
words. A timed wordθ = (w, τ) satisfiesa formulaϕ ∈ ECL at positioni ∈ N, written
θ, i |= ϕ, according to the following rules:

– if ϕ = a, thenwi = a;
– if ϕ = ¬ϕ′, thenθ, i 6|= ϕ′;
– if ϕ = ϕ1 ∨ ϕ2, thenθ, i |= ϕ1 or θ, i |= ϕ2;
– if ϕ = ϕ1 S ϕ2, then there exists0 ≤ j < i such thatθ, j |= ϕ2 and for all
j < k < i, θ, k |= ϕ1;

– if ϕ = ϕ1 U ϕ2, then there existsj > i such thatθ, j |= ϕ2 and for alli < k < j,
θ, k |= ϕ1;

– if ϕ = ⊳I ϕ
′, then there exists0 ≤ j < i such thatθ, j |= ϕ′, τi − τj ∈ I, and for

all j < k < i, θ, k 6|= ϕ′;
– if ϕ = ⊲I ϕ

′, then there existsj > i such thatθ, j |= ϕ′, τj − τi ∈ I, and for all
i < k < j, θ, k 6|= ϕ′;

Whenθ, 0 |= ϕ, we simply writeθ |= ϕ and we say thatθ satisfiesϕ. We denote
by [[ϕ]] the set{θ | θ |= ϕ} of models ofϕ. Finally, we define the following shortcuts:
true ≡ a ∨ ¬a with a ∈ Σ, false ≡ ¬true, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡
¬ϕ1 ∨ ϕ2, ♦ϕ ≡ trueU ϕ, �ϕ ≡ ϕ ∧ ¬♦(¬ϕ), ©ϕ ≡ falseU ϕ, ⊖ϕ ≡ falseS ϕ,
and♦-ϕ ≡ trueS ϕ. We also freely use notations like≥x to denote the interval[x,∞),
or<x for [0, x), etc. in the⊳ and⊲ operators.

Then, we define two fragments ofECL. PastECL is the fragment ofECL where
the temporal operators speak about thepastonly. A formulaϕ of ECL is in PastECL
if there is no occurrence of⊲I ϕ1 andϕ1 U ϕ2 in the subformulas ofϕ. LTL⊳ is an
extension ofLTL [23] with the ⊳I operator fromECL, with the restriction that only
formulas ofPastECL appear under the scope of a⊳I. A formulaψ of ECL is in LTL⊳

if (i) when⊳I ϕ1 is a subformula ofψ, thenϕ1 ∈ PastECL, and(ii) there is no⊲I ϕ1

in the subformulas ofψ. Formally,

ϕ ∈ PastECL ::= a | ¬ϕ | ϕ ∨ ϕ | ϕS ϕ | ⊳I ϕ

ψ ∈ LTL⊳ ::= a | ¬ψ | ψ ∨ ψ | ψ S ψ | ψ U ψ | ⊳I ϕ

The truth value of a formulaϕ of PastECL at a positioni in a timed wordθ depends
only on the events ofθ at positionsj, with 0 ≤ j ≤ i. On the other hand, a formula of
LTL⊳ may speak about the future of a word, but not in an timed fashion, i.e., only using
the (untimed)U operators.

Example 1.

– ϕ1 ≡ �(c → ⊲(2,3) a) is a formula ofECL (but neither ofLTL⊳, nor ofPastECL),
saying that everyc is followed by ana, between 2 and 3 time units.

– ϕ2 ≡ �
(

c → ⊳(2,3)(a∧⊖ b)
)

is a formula ofLTL⊳ (but not ofPastECL) saying
that everyc has to be preceded, between 2 and 3 time units before, by ana directly
precede by ab.

– ϕ3 ≡ a ∧ ⊳(2,3) c is a PastECL formula that holds in all positions where ana
occurs preceded, between 2 and 3 time units before, by ac.

Timed games and realizability.A timed gameis a tupleG = 〈Σ1, Σ2,W 〉 whereΣj is
the finite alphabet of Playerj (j = 1, 2),Σ1 ∩Σ2 = ∅, andW is a set of timed words
overΣ1 ∪ Σ2, called the winning condition for Player 1. Timed games are played as
in [9] but with a trivial game structure.

A timed game is played for infinitely many rounds as follows. In roundi (i ≥ 0),
Player 1 chooses a time delay∆i

1 ∈ R
≥0 and an actionαi1 ∈ Σ1, while independently

and simultaneously, Player 2 chooses a time delay∆i
2 ∈ R

≥0 and an actionαi2 ∈ Σ2.
Then, aplay in G is a timed word(w0, τ0)(w1, τ1) . . . overΣ1 ∪ Σ2 such that for
all i ≥ 0 (assumingτ−1 = 0), τi = τi−1 + min{∆i

1, ∆
i
2} and eitherwi = αi1 and

∆i
1 ≤ ∆i

2, orwi = αi2 and∆i
2 ≤ ∆i

1. Note that there can be several plays produced
by a given sequence of choices of the players, namely if∆i

1 = ∆i
2 for somei. We say

that Playerj plays firstin roundi if αi = αij , and we denote byBlameless1 the set of
timed words overΣ1 ∪Σ2 that contain only finitely many letters fromΣ1.

A timed wordθ is winning for Player 1 ifθ ∈ W . Let td be the set of diverging
timed words onΣ1∪Σ2. A timed wordθ is td-winningfor Player 1 ifθ ∈ WC1 (W) =
(W ∩ td) ∪ (Blameless1 \ td), i.e., Player 1 wins because the word is diverging and
belongs toW , or because Player 2 is responsible for the convergence of time.

A strategy for playerj is a functionπ that maps every finite timed wordθ =
(w0, τ0)(w1, τ1) · · · (wn, τn) to a pair (∆j , αj), where∆j ∈ R

≥0 andαj ∈ Σj .
A play (w0, τ0)(w1, τ1) . . . is consistentwith π (for player j) if for all i ≥ 0, ei-
therπ((w0, τ0)(w1, τ1) · · · (wi, τi)) = (wi+1, τi+1 − τi), orwi+1 ∈ Σ3−j and∆j ≥
τi+1 − τi where(∆j , ·) = π((w0, τ0)(w1, τ1) · · · (wi, τi)).

We denote byOutcomej (G, π) the set of all plays inG that are consistent withπ.
A strategyπ for player1 is winning(resp.td-winning) for player1 if Outcome1 (G, π)
contains only winning (resp. td-winning) plays. Finally, given a strategyπ1 for Player 1
and a strategyπ2 for Player 2, letOutcome (G, π1, π2) denote the set of all possible
plays inG that are consistent withπ1 andπ2. Note thatOutcome (G, π1, π2) is not
necessarily a singleton since there is nondeterminism in the game when the same delay
is proposed by the two players.

Therealizability problem(resp.td-realizability problem) for a logicL is to decide,
given two finite setsΣ1, Σ2 and a formulaϕ ∈ L overΣ1 ∪ Σ2, whether Player 1 has
a winning (resp. td-winning) strategy in the timed game〈Σ1, Σ2, [[ϕ]]〉.

Example 2.Consider the gameGe = 〈Σ1, Σ2, [[ϕe]]〉, whereΣ1 = {a, b}, Σ2 =

{c, d} andϕe ≡ ϕH → ϕC whereϕH ≡ �

(

c →
(

©(�¬c) ∨ (¬c)U a

)

)

and

ϕC ≡ �

(

(

c → ♦a
)

∧
(

a → (¬♦- c ∨ ⊳(2,3) c)
)

)

. In this game, Player 2 makes re-

quests by playingc’s, and Player 1 has to acknowledge the request by outputtinga’s.
The assumptionϕH prevents Player 2 to issue a second request before the first one has
been acknowledged. On the other hand, the conditionϕC forces Player 1 to acknowl-
edge every request within 2 to 3 time units. Moreover, Player1 can playb’s and Player 2
can playd’s freely.

In this game, Player 1 has a td-winning strategy but no winning strategy: every time
a c is played at timetc, Player 1 proposes to play(a, 2.5 − (t − tc)) at every time
stampt until ana has been played. More precisely, for a prefixθ = (w, τ) of length
ℓ: π(θ) = (a, 2.5 − (τ(ℓ − 1) − τ(i))) if there existsi < ℓ − 1 such thatw(i) = c

andw(j) 6= a for all i < j ≤ ℓ − 1. Otherwise,π(θ) = (b, 1). Thus, either Player 1
eventually plays first and ana is played2.5 time units after thec. Or Player 1 never
plays first again, and Player 2 is blocking the time. In both case, this is a td-winning
play for Player 1. However, this is not a winning play, and there cannot be any winning
play for Player 1, since she cannot prevent Player 2 from blocking the time after ac has
been played.

Lossy 3–counter machinesA deterministic lossy 3–counter machine (3CM) [16] is
a tupleM = 〈c1, c2, c3, Q, qin, δ〉 wherec1, c2, andc3 are three nonnegative coun-
ters,Q is a finite set of states,qin ∈ Q is the initial state, andδ : Q 7→ I is the
transition function whereI is a finite set of instructions of the formci++; goto q or
if ci 6= 0 then ci−−; goto q else goto q′ or halt, for i ∈ {1, 2, 3} andq, q′ ∈ Q.

A configuration of a3CM M is a tupleγ = (q, ν1, ν2, ν3) whereq ∈ Q and
ν1, ν2, ν3 ∈ N are the valuations of the counters. Letsize (γ) = ν1+ν2+ν3. A configu-
rationγ2 = (q2, ν

1
2 , ν

2
2 , ν

3
2) is a lossy successor of a configurationγ1 = (q1, ν

1
1 , ν

2
1 , ν

3
1),

written γ1 →M γ2, if: either (i) δ(q1) = ci++; goto q2, 0 ≤ νi2 ≤ νi1 + 1 and for all
j ∈ {1, 2, 3} \ {i}: νj2 ≤ νj1 : or (ii) δ(q1) = if ci 6= 0 then ci−−; goto q2 else goto q,
νi1 6= 0, 0 ≤ νi2 ≤ νi1 − 1 and for all j ∈ {1, 2, 3} \ {i}: 0 ≤ νj2 ≤ νj1 ; or
(iii) δ(q1) = if ci 6= 0 then ci−−; goto q else goto q2, νi1 = νi2 = 0 and for all
j ∈ {1, 2, 3} \ {i}: 0 ≤ νj2 ≤ νj1 . In particular, forδ(q) = halt, the configurations
with locationq have no successor. An infinite run of a3CM M is an infinite sequence
ρ = γ0, γ1, . . . , γi, . . . of configurations ofM such thatγ0 = (qin, 0, 0, 0) is the initial
configuration andγi →M γi+1 for all i ≥ 0. We say thatρ is space-boundedif there
existsk ∈ N such that for allj ≥ 0, size (γj) ≤ k. For a bounded runρ, we denote
the smallest suchk by bound (ρ). We denote byruns∞B (M) the set of infinite space-
bounded runs ofM . Therepeated reachability problemis to decide ifruns∞B (M) = ∅

for a given3CM M , and it is undecidable.

Theorem 1 ([16]).The repeated reachability problem for3CM is undecidable.

3 ECL realizability is undecidable

We present a reduction of the repeated reachability problemof 3CM to ECL real-
izability, showing that the realizability problem forECL is undecidable. To present
our reduction, consider a3CM M = 〈c1, c2, c3, Q, qin, δ〉, and a configurationγ =
〈

q, ν1, ν2, ν3
〉

of M . We encode runs and configurations as timed words over the al-
phabetΣEnc = {a, b1, b2, b3, tick} ∪ Q. The configurationγ is encoded as a word
of the formtick q aν

1

b1 a
∗
tick a

ν2

b2 a
∗
tick a

ν3

b3 a
∗ (time stamps omitted).

The number ofa’s occurring between atick and thebi encodes the value of theith
counter (note that thea’s after bi have no influence on the value of the counters). An
infinite bounded runρ of M is encoded as an infinite sequence of such words, one for
each configuration of the run. We require that the total number of a’s in each encoding
of a configurationdoes not increasealong the runρ. This requirement is sound since

we consider onlybounded runs. For instance, if we encode the initial configuration by
havingbound (ρ) a’s after eachbi, then we are sure to be able to encode the whole
run. Moreover, decreasing the total number ofa’s can only decrease the counter values
which corresponds to the lossy semantics of the machine. Finally, the operations on the
counters can be implemented as follows: decrementing (resp. incrementing) counterci
can be done by switchingbi with the firsta on its left (resp. right). If there is no such
a, then the counter cannot be decremented (resp. incremented).

We give the conditions that an infinite timedθ = (w, τ) word has to satisfy to
encode a runγ0, γ1, . . . , γi, . . . of M . In the sequel, we denotewi by w(i) andτi by
τ(i). The first condition constrainsw, the untimed part ofθ:

C1 w ∈ (tick ·Q · a∗ · b1 · a
∗ · tick · a∗ · b2 · a

∗ · tick · a∗ · b3 · a
∗)
ω

For θ = (w, τ) satisfyingC1, for k ≥ 0 andi ∈ {1, 2, 3}, let ptik be the position of
the3k + ith tick in w andpbik is the position of thek + 1st bi in w. Thus,pt1k is the
first position in the encoding ofγk. Then,C2 andC3 constrain the time stamps of the
letters:

C2 The firsttick appears as the first event:pt10 = 0, and atick corresponds to one
time unit: for everyk ≥ 0, for i ∈ {1, 2, 3}: τ(ptik) = τ(0) + 3k + (i− 1).

C3 The states ofM appear 0 time units after the precedingtick: for any j ≥ 0:
w(j) ∈ Q implies thatτ(j) = τ(j − 1).

Then, for allk ≥ 0, the subword ofθ with time stamps in the interval[τ(0)+3k, τ(0)+
3k + 3) is of the formtick Q a

∗
b1 a

∗
tick a

∗
b2 a

∗
tick a

∗
b3 a

∗ and encodes
γk =

(

qk, ν
1
k , ν

2
k, ν

3
k

)

with qk = w(pt1k + 1), ν1
k = pb1k − pt1k − 2, ν2

k = pb2k − pt2k − 1

andν3
k = pb3k − pt3k − 1. Thus,θ encodes the infinite sequenceγ0, γ1, . . . , γi, . . . of

configurations, yet this sequence is not necessarily arun of M , as we need to enforce
the semantics ofM . This is the purpose of conditionsC4 throughC7 given below.
ConditionC4 ensures that the first encoding corresponds to the initial configuration of
M . ConditionsC5, C6 andC7 encode the lossy semantics of the machine. In particular,
it is important to observe how the relation between two successive values of a given
counter, sayνik andνik+1 can be encoded as a relation between thetime stampsof the
bi’s that appear in the encodings ofγk andγk+1. More precisely, conditionsC6 and
C7 ensure that for everyk ≥ 1, everya or bi in the encoding ofγk is matched by
onea or bi exactly three time units before in the encoding ofγk−1. As a consequence,
the total number ofa’s does not increase along the run, and the valuesνik andνik+1 of
counteri in two successive configurations can be related by comparingthe time stamps
of thebi’s. For instance, if we wantνik+1 ≤ νik, then thebi in thek + 1st configuration
must appear at most three time units later than thebi in the kth configuration, i.e.,
τ(pbik+1) ≤ τ(pbik) + 3, and so forth.

C4 The first portion of the word corresponds to the encoding of the initial configuration
of M : w(0) = tick, w(1) = qin, andν1

0 = ν2
0 = ν3

0 = 0.
C5 The time stamps ofbi are chosen according to the semantics of the machine. For all

k ≥ 0: δ(qk) 6= halt and:(i) δ(qk) = ci++; goto q′ implies thatτ(pbik+1 − 1) ≤

τ(pbik) + 3 andqk+1 = q′; (ii) δ(qk) = if ci 6= 0 then ci−−; goto q′ else goto q′′

andνik = 0 implies thatqk+1 = q′′ andτ(pbik+1) ≤ τ(pbik) + 3; and(iii) δ(q) =

if ci 6= 0 then ci−−; goto q′ else goto q′′ andνik 6= 0 implies thatqk+1 = q′ and
τ(pbik+1) < τ(pbik) + 3.

C6 All a’s andb’s are separated by a strictly positive time delay: for allj ≥ 1,w(j) ∈
{a, b1, b2, b3} implies thatτ(j − 1) < τ(j).

C7 Everya or bi that appears inθ after time stampτ(0)+3, i.e., in the encoding ofγk
with k ≥ 1, is matched by ana or bi exactly three time units before, i.e., inγk−1.
For allj ≥ 1, if w(j) ∈ {a, b1, b2, b3} andτ(j) ≥ τ(0)+3, then there existsi < j
such thatw(i) ∈ {a, b1, b2, b3} andτ(i) = τ(j) − 3.

It is straightforward to see that a wordθ satisfying conditionsC1-C7 encodes a run
ρθ ∈ runs∞B (M).

Lemma 1. Let M be a 3CM and θ be an infinite timed word that satisfiesC1-C7.
Then,θ encodes a runγ0, γ1, . . . , γi, . . . ∈ runs∞B (M).

On the other hand, a runρ of M can be encoded by a timed wordEncComp (ρ)
that satisfiesC1-C7. Let κ = bound (ρ). For t ∈ R

≥0 andv ∈ N with v ≤ κ, let
EncVal (v, κ, t) = (a, t1) · · · (a, tv) (b, tv+1) (a, tv+2) · · · (a, tκ+1) where, for any1 ≤
i ≤ κ+1: ti = i/(κ+2). For a configurationγ =

(

q, ν1, ν2, ν3
)

, letEncConf (γ, b, t) =

(tick, t)(q, t) ·EncVal
(

ν1, κ, t
)

· (tick, t+ 1) ·EncVal
(

ν1, κ, t+ 1
)

· (tick, t+ 2) ·

EncVal
(

ν3, κ, t+ 2
)

. Finally, forρ = γ0, γ1, . . . , γj , . . . ∈ runs∞B (M), letEncComp (ρ)
be the infinite concatenation of theEncConf (γj , bound (ρ) , 3j) for j ≥ 0.

Lemma 2. LetM be a3CM. For all ρ ∈ runs∞B (M), the timed wordEncComp (ρ)
satisfiesC1-C7.

Corollary 1. LetM be a3CM. There exists a timed wordθ satisfyingC1-C7 if and
only if runs∞B (M) 6= ∅.

We have thus reduced the repeated reachability problem for3CM to the satisfia-
bility of conditionsC1-C7. Since the satisfiability problem forECL is decidable, it is
not possible to construct anECL formula whose semantics is equivalent to conditions
C1-C7. In fact, onlyC7 cannot be expressed inECL. For the other conditions, we pro-
pose theEncoding formula given below, whereAB denotes(a ∨ b1 ∨ b2 ∨ b3), andQ

denotes
(

∨

q∈Q q
)

.

Encoding ≡ tick ∧ ⊲=0

(

q0 ∧© b1

)

(1)

∧ ⊲=1

(

tick ∧© b2

)

(2)

∧ ⊲=2

(

tick ∧© b3

)

(3)

∧ � (tick → ⊲=1 tick) (4)

∧ � (Q → (⊖ tick ∧ ⊳=0 tick ∧ ⊲=3 Q)) (5)

∧ �
(

(b1 ∨ b2 ∨ b3) → (¬b1 ∧ ¬b2 ∧ ¬b3)U tick

)

(6)

∧ �
(

b1 → (¬b1 ∧ ¬b3)U b2

)

(7)

∧ �
(

b2 → (¬b1 ∧ ¬b2)U b3

)

(8)

∧ �
(

b3 → (¬b2 ∧ ¬b3)U b1

)

(9)

∧ � ((AB ∨Q ∨ tick) → ⊲>0 (AB ∨ tick)) (10)

∧
∧

q∈Q

� instr (q) (11)

where, forq ∈ Q, the formulainstr (q) is defined as follows:

1. If δ(q) = i++; goto q′, then:

instr (q) ≡ q → ⊲=3 q
′ ∧

inci ∧
∧

j 6=i

keepj

 ∨

∧

j

keepj

 (12)

2. If δ(q) = if i 6= 0 then i−−; goto q′ else goto q′′, then:

instr (q) ≡ (q ∧ isnulli) →

⊲=3 q
′′ ∧

∧

j

keepj

 (13)

∧ (q ∧ ¬isnulli) →

⊲=3 q
′ ∧ deci ∧

∧

j 6=i

keepj

 (14)

3. If δ(q) = halt, then:

instr (q) ≡ �

∧

q∈Q

¬q

 (15)

The formulasdeci, inci andkeepi are defined as follows. Fori ∈ {1, 2, 3}: deci ≡
⊲<3

(

bi ∧⊲<3 bi

)

; inci ≡ ⊲<3

(

bi ∧© a∧⊲≤3(a∧© bi)
)

; andkeepi ≡ ⊲<3

(

bi ∧

⊲≤3 bi

)

. Finally, isnull1 ≡ (¬a)U b1 and fori = 2, 3: isnulli ≡ ⊲=i-1

(

(¬a)U bi

)

. It
is easy to see thatEncoding corresponds to conditionsC1-C6:

Lemma 3. For all timed wordsθ, θ ∈ [[Encoding]] if and only ifθ satisfiesC1-C6.

Corollary 2. LetM be a3CM. There exists a timed wordθ ∈ [[Encoding]] satisfying
C7 if and only ifruns∞B (M) 6= ∅.

To conclude the proof thatECL realizability is undecidable, we show how timed
games can be exploited to check whether there exists a timed word θ that satisfies
Encoding and C7, and hence whetherruns∞B (M) 6= ∅. The game we consider is
GM = 〈ΣEnc, {c}, [[ϕM]]〉, and we show that Player 1 has a winning strategy inGM
iff runs∞B (M) 6= ∅. Before we formally defineϕM , we give some intuition. In this
game, we use the winning conditionϕM to force Player1 to faithfully simulateM by
satisfying conditionsC1-C7. Note that Player 1 controls the full alphabet of the config-
uration’s encoding. However, by Lemma 3 definingϕM = Encoding is not sufficient:
Player 1 couldcheatby inserting extraa’s in the play, in order to increase the values of
the counters. We use the game interaction with Player 2 to force conditionC7. Using
actionc, Player 2 will be given the possibility to check that Player 1does not increase
the counters as follows. First, Player 2 is allowed to play atmost onec, and only ex-
actly 0 time unit after ana or abi. In this case, we say that Player 2 performs acheck,
and the meaning of thisc is to pinpoint a particulara or bi in the word that should
correspond to a previousa or bi three time units before, as stated inC7. If it is not the
case, then we say that Player 2 hasdetected an error, and thusC7 is violated. Hence,

the second ingredient is to let Player 1 loose whenever anerror is detected, i.e. when a
c appears right after ana or abi that is not preceded exactly three time units before by
a correspondinga or bi.

These constraints on the number and positions of thec’s and on the detection of the
errors turn out to be expressible inECL. By combining these constraints withEncoding,
we obtainϕM ≡ Hyp → Goal where:

Hyp ≡ �

(

c →
(

⊳=0 AB
)

)

∧
(

(

¬c ∧ ⊲≥3 c
)

∨ �¬c
)

∧ �
(

c → �(¬c)
)

ensures that Player 2 performs the checks right after ana or abi has been produced, not
in the first configuration, and at most once. Moreover we letGoal ≡ Encoding∧Check,
with Check ≡ ♦c → ♦ (AB ∧ ⊲=3 c). Goal ensures that Player 1 generates a word that
satisfies conditionsC1-C6, and that she loses whenever she cheats: whenever she plays
an a or a bi that is not preceded by a correspondinga or bi exactly three time units
before, Player 2 can play ac (provided that she hasn’t played ac before) that will
falsify Check, and thusϕM .

Let us show there is a winning strategy inGM = 〈ΣEnc, {c}, [[Hyp → Goal]]〉 for
Player 1 iff runs∞B (M) 6= ∅. The ‘if’ direction is easy, since Player 1 can play ac-
cording toEncComp (ρ), for anyρ ∈ runs∞B (M). Indeed, sinceEncComp (ρ) satisfies
conditionC7, Player 2 will never detect an error.

Proposition 1. Let M be a3CM. If runs∞B (M) 6= ∅, then Player 1 has a winning
strategy in the timed gameGM = 〈ΣEnc, {c}, [[Hyp → Goal]]〉.

Let us finally show that, if Player 1 has a winning strategy, then runs∞B (M) 6= ∅.
The idea of the proof is as follows. We first observe that, by definition of ϕM , Player 1
can win the game if Player 2 does not satisfyHyp or if she decides to check ana or a
bi which is preceded by ana or abi three time units before (then Player 2 cannot make
further checks, which leaves to Player 1 the ability to cheatin the rest of the play). In
this case Player 1 wins without having to faithfully simulateM . Of course, Player 2
has a better strategy to choose the actionc exactly0 time unit after the first wronga
or bi has been issued. Since Player 1 has to win when Player 2 plays in this way, a
winning strategy for Player 1 has to ensure thatGoal holds, i.e. thatEncoding andC7
are satisfied, thus faithfully simulating an infinite run ofM .

In other words, we consider a strategyStratEnc for Player 2 that forces Player 1 to
play according toEncoding andC7. Given a strategyπ1 for Player1, defineStratEnc

as follows: for every finite prefixθ = (w, τ) of length ℓ, let StratEnc(θ) = (c, 0)
(i.e., Player 2is detecting an error) if and only if (i) w(ℓ − 1) ∈ {a, b1, b2, b3}, (ii)
τ(ℓ − 1) ≥ 3, (iii) there is nok < ℓ − 1 such thatτ(ℓ − 1) − τ(k) = 3 andw(k) ∈
{a, b1, b2, b2}, and(iv) there is nok′ < ℓ such thatw(k′) = c; otherwise, we let
StratEnc(θ) = (c, ∆ + 1) where∆ is the time delay proposed by Player 1 when she
plays according toπ1, i.e.,π1(θ) = (α,∆) for someα ∈ ΣEnc. The next lemma says
that, against strategyStratEnc for Player2, a winning strategy of Player1 produces a
play satisfyingGoal andC7.

Lemma 4. Let π1 be a winning strategy for Player 1 inGM . Then, for all playsθ ∈
Outcome (GM , π1,StratEnc): θ |= Goal andθ satisfiesC7.

Proposition 2. Let M be a 3CM. If Player 1 has a winning strategy inGM , then
runs∞B (M) 6= ∅.

By Theorem 1 and Proposition 1 and 2 we obtain the following result.

Theorem 2. The realizability problem forECL is undecidable.

It is easy to extend this undecidability result to the td-realizability problem forECL,
since the winning strategy presented in the proof of Proposition 1 is also winning for
WC1 ([[φM]]), and against strategyStratEnc for Player2, a winning strategy of Player1
for WC1 ([[φM]]) also produces plays that satisfyC7.

Theorem 3. The td-realizability problem forECL is undecidable.

4 Positive result onLTL⊳

In this section we show that the realizability problem is decidable for the syntactic
fragmentLTL⊳. More precisely, we present an algorithm to solve the realizability and
td-realizability problems forLTL⊳.

Given a timed gameG = 〈Σ1, Σ2, [[ψ]]〉 for ψ ∈ LTL⊳, the main idea of the al-
gorithm consists in building adeterministic timed automaton with parity conditionDψ

that accepts exactly the winning words for Player 1, i.e.,L(Dψ) = WC1 ([[ψ]]). This
automaton can then be used to build a winning strategy for Player 1 (if it exists), using
the techniques of [9].

First observe that we do not need to remember the exact time stamps of every event
in a timed word to evaluate the truth value of a formulaψ of LTL⊳. Indeed, there are
only finitely many subformulas of the form⊳I ϕ in ψ, and these are the only real-time
formulas. Intuitively, we can thus considerψ as anLTL formula over the augmented
alphabetΣ × 2P whereP is a set of proposition that tracks the truth values of the⊳I ϕ
subformulas. Such untimed words are calledHintikka sequencesof ψ, and we first
show that we can build a nondeterministic finite automatonAψ with generalized Büchi
condition that accepts those Hintikka sequences. After determinization ofAψ (giving
Bψ), we translateBψ into a deterministic timed automatonCψ with parity condition,
by relating the truth value of the propositions that track the subformulas⊳I ϕ with the
value of clocks of the automaton. We getL(Cψ) = [[ψ]]. For td-realizability, we use the
construction of [9] to construct a deterministic timed automatonDψ that accounts the
time-diverging condition on timed words. Thus,L(Dψ) = WC1 ([[Ψ]]). The automaton
Dψ can be used to extract a td-winning strategy for Player 1, andthe automatonCψ to
extract a winning strategy for Player 1 [9]. The automatonCϕe of the formulaϕe of
Example 2 is given in Fig. 1.

An Hintikka sequenceof a formulaψ is an (untimed) wordh over the alphabet
Σ × 2P whereP = {pϕ | ϕ ≡ ⊳I ϕ1 is a subformula ofψ}. The semantics ofh is the
set[[h]] of timed words(w, τ) overΣ such thath(i) = (w(i), Ωi) whereΩi = {pϕ ∈
P | (w, τ), i |= ϕ}, for all i ≥ 0. Note that for all Hintikka sequencesh 6= h′, we have
[[h]] ∩ [[h′]] = ∅. Therefore, given a timed wordθ = (w, τ), we denote byHs(θ) the
unique Hintikka sequenceh such thatθ ∈ [[h]], and given a languageL of timed words,
we denote byHs(L) the set{Hs(θ) | θ ∈ L}.

Lemma 5. For all LTL⊳ formulaψ, we have[[Hs([[ψ]])]] = [[ψ]].

Given anLTL⊳ formulaψ, we denote bySub(ψ) the set containing the formulas
ϕ and♦-ϕ for all subformulasϕ of ψ. Fromψ, we construct the following nondeter-
ministic (untimed) finite automaton with generalized Büchi condition on edges,Aψ =
〈Q, qin, E, α〉 over the alphabetΣ×2P (P = {pϕ | ϕ ≡ ⊳I ϕ1 is a subformula ofψ}).

1 2 3

4 5

a, b, d

c
x := 0

b, d

a, x ∈ (2, 3)

x := 0
c

b, d

a, x ∈ (2, 3)

a, b, c, d
a, b, c, d

a, x 6∈ (2, 3) a, x 6∈ (2, 3)
c

Fig. 1. A deterministic parity timed automaton forϕe. States1, 3, 4 have priority0, and states
2, 5 have priority1.

– Q containsqin and all theq ⊆ Sub(ψ) that areconsistent. A subsetq is consistent
iff: (i) there exists a uniquea ∈ Σ such thata ∈ q; (ii) for all subformulasϕ1, ϕ2

of ψ, if ϕ2 ≡ ¬ϕ1, thenϕ1 ∈ q iff ϕ2 6∈ q; and(iii) for all subformulasϕ1 ∨ ϕ2

of ψ, ϕ1 ∨ ϕ2 ∈ q iff ϕ1 ∈ q orϕ2 ∈ q.
– E ⊆ Q× (Σ × 2P) ×Q contains all edges(q, σ, q′) such thatσ = (a, {pϕ ∈ P |
ϕ ∈ q′} where{a} = Σ ∩ q′ and, either(i) q = qin, ψ ∈ q′ andϕ1 S ϕ2 6∈ q′ for
all formulasϕ1 S ϕ2 ∈ Sub(ψ), or (ii) q 6= qin, for all subformulaϕ1 U ϕ2 of ψ,
we haveϕ1 U ϕ2 ∈ q iff either (a) ϕ2 ∈ q′, or (b) ϕ1 ∈ q′ andϕ1 U ϕ2 ∈ q′; and
for all subformulaϕ1 S ϕ2 of ψ, we haveϕ1 S ϕ2 ∈ q′ iff either (a) ϕ2 ∈ q, or (b)
ϕ1 ∈ q andϕ1 S ϕ2 ∈ q.

– α is a set of accepting sets of edges, containing for each subformulaϕ1 U ϕ2 of ψ
the set{(q, σ, q′) ∈ E | ϕ1 U ϕ2 6∈ q orϕ2 ∈ q′}.

Lemma 6. For all LTL⊳ formulaψ, we have[[L(Aψ)]] = [[ψ]].

The next lemma is crucial to translateBψ (the deterministic version ofAψ) into
a timed automatonCψ . Indeed, in the time automatonCψ , we use one clock for each
formula of the form⊳I ϕ to remember the last timeϕ has been true. Lemma 7 shows
that only the information about the past of the word is relevant to know when these
clocks have to be reset.

Lemma 7. For all nonempty (untimed) finite wordsw over the set of propositionsΣ,
for all runs r1, r2 of Aψ overw, the statesLast(r1) andLast(r2) contain exactly the
samePastECL formulas.

FromAψ, we obtain a deterministic (untimed) automatonBψ with parity condition
such thatL(Bψ) = L(Aψ) by Piterman’s determinization procedure [22]. The states
of Bψ are Safra treess, whose rootroot(s) tracks the standard subset construction.
Therefore, by Lemma 7, for every transition(s, σ, s′) of Bψ, all statesq ∈ roots′ agree
on thePastECL subformulas ofψ. So, we can define a (deterministic) timed automaton
Cψ over alphabetΣ and clocks{xϕ | ⊳I ϕ is a subformula ofψ} as follows: the state
space ofCψ is a copy of the state space ofBψ, and for each transition(s, (a,Ω), s′) in
Bψ, if for all pϕ ∈ Ω with ϕ ≡ ⊳I ϕ1, we have♦-ϕ1 ∈ root(s), then there is a transition
(s, g, a, R, s′) in Cψ such that:R = {xϕ | pϕ ∈ Ω} andg is the conjunction of(i)
all constraintsxϕ1 ∈ I s.t.pϕ ∈ Ω andϕ ≡ ⊳I ϕ1 is a subformula ofψ, and(ii) all
constraintsxϕ 6∈ I s.t.pϕ 6∈ Ω, ϕ ≡ ⊳I ϕ1 is a subformula ofψ, and♦-ϕ1 ∈ root(s).

Proposition 3. For all PastECL formulaψ, the timed automatonCψ with parity con-
dition is deterministic andL(Cψ) = [[ψ]].

Using the results of [9], a deterministic timed automatonDψ with parity condition
can be constructed fromCψ such thatL(Dψ) = WC1 ([[ψ]]). The number of locations
ofD isO(|C| ·d) whered is the number of priorities inCψ , and the number of priorities
in D is d+ 2. To decide if Player1 has a winning strategy forWC1 ([[ψ]]), we evaluate
a µ-calculus fixpoint formula [10] that computes the set of winning states of Player
1 for the winning conditionWC1 ([[ψ]]). Theµ-calculus formula uses acontrollable
predecessor operatorCPre(Z) that computes the set of states in which Player1 can
force the game toZ in one move. The controllable predecessor operator preserves the
regions of the timed automatonDψ, i.e., if Z is a union of regions,CPre(Z) is also
a union of regions. Therefore, the winning states of Player1 can be computed in time
O((|Dψ| ·m! · 2m · (2c + 1)m)d) where|Dψ| is the number of locations inDψ, m is
the number of clocks,c is the largest constant, andd is the maximal priority inDψ [9].
If we let n = |Aψ|, we getd = 2 + 2 · n · O(|ψ|), c = cψ is the largest constant
that occurs as an integer endpoint of an intervalI in a subformula⊳I ϕ of ψ, m is
the number of subformula⊳I ϕ of ψ, and|Dψ| = 2d · nn · n! [9, 22]. This is at most

2O(2O(|ψ|)) · (2cψ + 1)2
O(|ψ|)

where|ψ| is the length ofψ.

Theorem 4. For ψ ∈ LTL⊳ over alphabetΣ1 ⊎ Σ2, deciding whether Player1 is
td-winning the game〈Σ1, Σ2, [[ψ]]〉 can be done in time2O(2O(|ψ|)) · (2cψ + 1)2

O(|ψ|)

.

The realizability problem forLTL⊳ can be solved by the same technique as in The-
orem 4, using the automatonCψ instead ofDψ.

Theorem 5. For ψ ∈ LTL⊳ over alphabetΣ1 ⊎ Σ2, deciding whether Player1 is
winning the game〈Σ1, Σ2, [[ψ]]〉 can be done in time2O(2O(|ψ|)) · (2cψ + 1)2

O(|ψ|)

.

Since the realizability problem forLTL is 2EXPTIME-hard, we get the following
corollary.

Corollary 3. The realizability and td-realizability problems forLTL⊳ are 2EXPTIME-
complete.

5 Discussion

We close the paper by mentioning several open problems for future works. First, several
semantical models have been proposed for real-time behaviors [4]. We conjecture that
our proofs of (un)decidability extend to the case where the real-time models are timed
state sequences, i.e. finite variable functions fromR

≥0 to Σ, and that our decidability
result extends toLTL with the past formulas ofMITL (the intuition is that the formu-
las of pastMITL can be translated to deterministic timed automata [17]). Second, the
realizability problem forECL remains open in the case of finite words (the reachabil-
ity problem is decidable for3CM). It is our belief that techniques based on well-quasi
orderings [21] should be investigated. Then, one could consider restricted classes of
strategies (such as strategies with imperfect information[8], or with bounded resources
[6]) to recover decidability. Finally, our positive resultrelies on the Safra construction
for determinization. A Safraless procedure [15, 12] shouldbe investigated.

References

1. R. Alur and D.L. Dill. A Theory of Timed Automata.TCS, 126(2), 1994.
2. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. J. ACM, 43(1),

1996.
3. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: adeterminizable class of timed

automata.TCS, 211(1-2), 1999.
4. R. Alur and T. Henzinger. Logics and models of real time: A survey. Proc. REX Workshop,

1992. Springer.
5. R. Alur and T. Henzinger. A really temporal logic.J. ACM, 41(1), 1994.
6. P. Bouyer, L. Bozzelli, and F. Chevalier. Controller synthesis for MTL specifications.Proc

CONCUR’06, LNCS 4137, 2006, Springer.
7. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly algorithms

for the analysis of timed games.Proc CONCUR’05, LNCS 3653, 2005, Springer.
8. F. Cassez, A. David, E. Fleury, K. G. Larsen, D. Lime and J.F. Raskin Timed Control with

Observation Based and Stuttering Invariant Strategies.Proc ATVA’07, LNCS 4762, 2005,
Springer.

9. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games.Proc CONCUR’03, LNCS 2761, 2003, Springer.

10. L. de Alfaro, T. Henzinger, and R. Majumdar. From verification to control: Dynamic pro-
grams for omega-regular objectives.Proc. LICS’01, IEEE Computer Society Press, 2001.

11. L. Doyen, G. Geeraerts, J.F. Rasking and J. Reichert Realizability of real-time logics. Tech-
nical report CFV 2009.120. http://www.ulb.ac/be/di/ssd/cfv

12. E. Filliot, N. Jin and J.F. Raskin An Antichain Algorithmfor LTL Realizability. Proc.
CAV’09, to appear.

13. T. Henzinger,J.-F. Raskin and P.-Y. Schobbens. The Regular Real-Time LanguagesProc.
ICALP’98, LNCS 1443, 1998, Springer.

14. R. Koymans. Specifying real-time properties with metric temporal logic. RT Syst., 2(4),
1990.

15. O. Kupferman and M. Vardi. Safraless decision procedures. Proc. FOCS’05, 2005, IEEE
Computer Society.

16. R. Mayr. Undecidable problems in unreliable computations. TCS, 297(1-3), 2003.
17. O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Past, present, future.Proc.

FORMATS’05, LNCS 3829, 2005, Springer.
18. O. Maler, D. Nickovic, and A. Pnueli. On synthesizing controllers from bounded-response

properties.Proc. CAV’07, LNCS 4590, 2007, Springer.
19. Z. Manna and A. Pnueli.Temporal verification of reactive systems: safety. 1995, Springer.
20. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.

Proc STACS’95, LNCS 900, 1995, Springer.
21. J. Ouaknine and J. Worrell. On the decidability of metrictemporal logic. InProc LICS ’05

IEEE Computer Society Press, 2005.
22. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-

tomata.LMCS, 3(3), 2007.
23. A. Pnueli. The temporal logic of programs.Proc. SFCS’77, 1977, IEEE Computer Society.
24. A. Pnueli and R. Rosner. On the synthesis of a reactive module. Proc. POPL’89, 1989,

ACM.
25. J.-F. Raskin.Logics, Automata and Classical Theories for Deciding Real Time. PhD thesis,

FUNDP (Belgium), 1999.
26. J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks: decidability, complexity and

expressiveness.Automatica, 34(3), 1998.
27. P. Wolper. The tableau method for temporal logic: An overview. Logique et Analyse, (110–

111), 1985.

