Realizability of Real-Time Logics*

L. Doyen, G. Geeraerts J.-F. Raskifh, and J. Reichett

! Département d’Informatique, Université Libre de Brugsl(U.L.B.)
] {l doyen, gi geer ae, j raski n}@l b. ac. be
2 Ecole Normale Supérieure de Cacharei cher @ipt i nf 0. ens- cachan. fr

Abstract. We study the realizability problem for specifications ofatbze sys-
tems expressed in real-time linear temporal logics. Thectoge consider are
subsets oMITL (Metric Interval Temporal Logic), a logic for which the ssftt
ability and validity problems are decidable, a necessangitimn for the realiz-
ability problem to be decidable. On the positive side, wenstiat the realizabil-
ity of LTL extended with past real-time formulas is decidable in 2EXH, with

a matching lower bound. On the negative side, we show thahplsiextension
of this decidable fragment with future real-time formulaads to undecidability.
In particular, our results imply that the realizability ptem is undecidable for
ECL (Event Clock Logic), and therefore also flgi TL.

1 Introduction

Thesatisfiabilityandmodel-checking problenisr real-time temporal logics have been
widely studied since the nineties [4, 13]. The main appitaof these problems is the
verification of reactive systems: given a model of the systathof its environment, one
can check whether the parallel composition of the two mosiafisfies a specification
given by a real-time logic formula. This well-establishedgedure applies tolosed
modelsobtained when both the system and the environment are fodlgiied.

However, in the design of real-time reactive systems, sugteaise model of the
reactive system is usually difficult to construct manuadlgd on the other hand, the
environment may be only partially known, especially in thdystages of development.
Therefore, it is natural to consider the problem of the awattiersynthesis of a behavior
policy for the reactive system that would be correct by camdion with respect to
the specification. This problem is usually formalized as a-players game, in which
Player 1 controls the execution of the system, and PlayemPas the execution of
environment. The specification is encoded as the winninglition for Player 1 in the
game. Roughly speaking, the behaviors of Player 1 repredigrassible models for the
system, and computing a winning strategy for Player 1 ansoiargelecting one model
which is guaranteed to be correct whatever the environnued.d

In the setting of timed systems, most of the previous wohieve considered games
played ondeterministic timed automatavhose set of edges is partitioned into those

* Work supported by the projectsiz) Quasimodo: “Quantitative System Properties in
Model-Driven-Design of Embeddedhtt p: // ww. quasi nodo. aau. dk/, (i) Ga-
sics: “Games for Analysis and Synthesis of Interactive Catamional Systems”,
http://ww. ul b. ac. be/ di / gasi cs/, and (i) Moves: “Fundamental Issues in
Modelling, Verification and Evolution of Softwareht t p: // noves. ul b. ac. be, a PAI
program funded by the Federal Belgian Gouvernment.

% with the notable exception of [18] see the ‘related works'agmaph.

controlled by Player 1 and those controlled by Player 2. Thening condition is a
simple safety objective (some set of locations should bédady no matter what the
environment does), or more generallymegular objective defined as a parity condi-
tion over the locations of the automaton.

In this paper, we consider an abstract definition of two-pfaytimed games with
a winning condition expressed by a real-time temporal légimula. Consider a finite
set X, of actions controlled by Playdr, and a finite set’; of actions controlled by
Player2. Let ¢ be a real-time temporal logic formula defining a set of timeurds
overY = Y, U X,. The timed game is played for infinitely many rounds as folow
In each round, the players announce (simultaneously arepemiently of each other)
a pair(4, o) consisting of a delayl! € R=? and an actionx from their set of con-
trollable actions. The player who has announced the shatédgy is allowed to play
its action after the corresponding delay, and then the raxtd starts. The outcome
of the game is an infinite timed word. Playewins the game if the outcome satisfies
the formulap. Note that no game graph needs to be provided in this absteéioition.
The problem to decide whether Playiehas a strategy to win the game regardless of
the choices of Playet is called therealizability problem borrowing the terminology
introduced fol.TL (Linear Temporal Logic) [24]. In a variant of this probleni,[Bne
asks that Player wins without announcing a converging sequence of delays (tth-
out blocking time), i.e., the outcome has to be either tirverging and then belong to
©, or time-converging and then Playehas announced the shortest delay only finitely
often. All results in this paper hold for both variants of tiealizability problem.

As it is easy to show that the realizability problem for a o at least as hard as
both the satisfiability problem and the validity problem foat logic, we need to con-
sider specifications that are expressible in real-timeclofgr which these two problems
are decidable. One of the most natural way to obtain a rewd-togic is to equip the
modalities ofLTL [23] with real-time constraints. For instanc®,, ;¢ holds in some
positionp iff there is a future positiop’ in which holds, and the time elapsed between
p andp’ is betweerz andb time units. This extension dfTL is the Metric Temporal
Logic (MTL) introduced by Koymans [14]. Unfortunately, it has beenvaldhat the
satisfiability problem is undecidable fMTL [5] when interpreted over infinite timed
words. However, when prohibiting singular time intervalshe form[a, o], this logic
becomes decidable (and is then called Metric Interval Teaidagic, or MITL) [2].
Another way of obtaining a decidable real-time logic is toéeexILTL with new real-
time operators, as in the Event Clock LogtedL) [26, 25, 13]. Note that here punctual
intervals are allowed. ECL, the operators>; and <1 are introduced, allowing to
speak about theext(resp last) time a formula will be (was) true. For instancey, 1) ¢
holds in a position if there exists a future positionl wherep holds, the time elapsed
betweerp andp’ is in [a, b], andy has been false in all positions betweeandp’. This
is to be contrasted with the intuitive meaning of &L formula ¢, ;) which does
not constrain the truth value gfin the interval[0, a). It is known that the expressivity
of ECL is subsumed by that ®lITL and therefore the satisfiability problem 6€L is
decidable [26, 25]. Thus, botITL andECL are good candidates for the realizability
problem. Itis a long-standing open question whether rahliity is decidable foMITL.
Surprisingly however, a consequence of our results is teatdalizability problem for
bothECL andMITL is undecidable.

Contributions This paper provides two main theoretical results about éladizability
problem forECL. First, we show that the realizability problem fBCL is undecid-
able. This result is surprising as this logic can be trapdldb recursive event-clock
automata [26, 25, 3], a determinizable class of timed autanunfortunately, those au-
tomata are only deterministic in a weak sense, as alreaddrint[17]: while every
infinite word has indeed a unique run in an event-clock automat may be that two
timed words with a common prefix (say up to positigriave runs with different pre-
fixes (up to position). This is due to the fact that runs in event-clock automatestrain
their future by using prophecy clocks. While weak detersrimis sufficient to ensure
closure under complement for example, our undecidabiiguit formally shows that
this notion of determinism is not sufficient to obtain an aithon for the realizability
problem. AsECL is a subset oMITL, this result immediately entails the undecidabil-
ity of the realizability problem foMITL. Second, we show thaT L extended with the
past fragments dECL (called henceforthTL), has a decidable realizability problem.
We provide a translation of this real-time extensiol 8k to classical Alur-Dill deter-
ministic timed automata [1]. Using this translation, weaibta 2EXPTIME algorithm
for the realizability problem, and a matching lower bourtsithe problem is already
2EXPTIME-hard forLTL.

Related WorksAs already mentioned, there have been several previoussvadr&ut
timed games, see for instance [20, 7]. In those works, thectibgs are specified by
deterministic timed automata. We focus here on related sverikere real-time log-
ics have been used to define the objective of the timed gan{&8lna decidability
result is obtained for the realizability problem of boundedponse properties which
are expressible a fragment MTL with future operators. The result holds under the
a bounded-variability semantics, i.e., the number of ev@etr time unit is bounded
by a constant. In our case, we do not need this hypothesig. that under bounded-
variability semantics, the fuMITL can be translated to deterministic timed automata.
In [17], the past fragment d¥lITL is translated into deterministic timed automata. The
logics there are interpreted over finite signals for the paepof monitoring while our
logics are interpreted over infinite timed words for the magof realizability. The past
fragment ofMITL is incomparable with the logitTL for which we have the decid-
ability result. Note that over finite words, the satisfiailproblem forMTL is decid-
able [21]. Unfortunately, the synthesis problem is in gahendecidable even on finite
words, but becomes decidable when the resources of theotlentire bounded [6].

RemarkDue to lack of space, the proofs are omitted but can be foutigkifull version
of the paper [11].

2 Preliminaries

An interval is a nonempty convex subset of the Bet’ of nonnegative real numbers.
Intervals may be left-open or left-closed; right-open ghticlosed; bounded or un-
bounded. An interval has one of the following forms:b], [a,), [a, >0), (a, Y], (a, b),
(a, 00), with endpoints:, b € N anda < b. A word over a finite alphabeX is a (finite
or infinite) sequence = wow; ... of symbolsw; € X. We denote byw| thelength
of w, i.e., the number of symbols im. A timed wordover X' is a paird = (w,7)

wherew is a word overY, andr = 77y ... is a sequence of length| of time values
7; € RZ% such that; < 7,44 forall 0 <4 < |w|. We often denote a timed wota, 7)
as a sequendevg, 7o) (w1, 71) . .. 0f symbols paired with their time stamp. An infinite
timed wordd = (w, 7) is divergingif for all t € R=9, there exists a positionc N such
thatn > t.

Automata formalismsWe first define automata on (untimed) words. A (nondetermin-
istic) finite automatomver a finite alphabe¥ is a tupleA = (Q, ¢in, E, «) whereQ is

a finite set of states;,, € Q is the initial state ' C Q x X x Q is a set of transitions,
anda is an acceptance condition on transitions. We consider ingskof acceptance
conditions: thegeneralized Bchi conditiorwhena C 2F is a set of sets of transitions,
and theparity conditionwith d priorities whem : E — {0, 1,...,d}.* The automaton

A is deterministidf for all statesq and all symbolsr € X, there existgq,0,q¢') € E

for exactly ongy’ € Q.

A run of a finite automatom over a wordw is a sequenceywyqiwigs - .. such
thatgo = ¢, and(q;, w;, ¢;+1) € E forall 0 < i < |w|. For finite runs-, we denote
by Last(r) the last state inr, and for infinite runs-, we denote byinf(r) the set of
transitions occurring infinitely often in. An infinite runr is acceptingaccording to
the generalized Buchi conditianif for all sets of edged” € «, Inf(r) N F # @. An
infinite runr is acceptingaccording to the parity conditionif min{«(e) | e € Inf(r)}
is even. Théanguagedefined by a finite automato, notedL(A), is the set of infinite
words on which4 has an accepting run.

We next define timed automata over infinite timed words [1}. Kebe a finite set
{1, x2,...,2,} Of variables callealocks An atomic clock constrains a formula of
the forma € I wherel is an interval with integer endpoints (and possibly unbad)d
A guardis a boolean combination of atomic clock constraint. We debgGuards(X)
the set of all guards o . A valuationfor the clocks inX is a functionv : X — R=2Y.
We writev = g whenever the valuation satisfies the guarg. For R C X, we write
v[R := 0] for the valuation that assigristo all clocksz € R, andwv(z) to all clocks
x ¢ R.Fort € R=Y, we writev + ¢ for the valuation that assigns the valuer) + ¢
to each clockr € X. A timed automatorover alphabet’ and clocksX is a tuple
A = (Q, ¢in, E, o) where@ is a finite set of stateg,,, € @ is theinitial state, £ C
Q x ¥ x Guards(X) x 2% x @ is a set otransitions anda is an acceptance condition,
either ageneralized Bchi conditionif o C 27, or aparity conditionwith d priorities if
a:FE—{0,1,...,d}. The timed automatoA is deterministiaf for every state; and
valuationv, for all o € X, there exists at most one transition o, g, R, ¢') € E such
thatv = g.

A timed runr of a timed automato over a timed wordw, 7) is an infinite
sequencéqo, vo)(wo, T0)eo(q1, v1) (w1, T1)er - .. such thal(i) qo = qin, (47) vo(x) =
0 for all z € X, and(i:¢) for all positionsi > 0, e; = (g;, w;, 9, R, gi+1) € Eis such
thatv; + 7, — -1 E gandv; 11 = (v; + 7, — 7—1)[R := 0] (assuming—_; = 0). The
definition ofacceptingimed run is adapted from the untimed case. filmed language
of a timed automatont, is the setl.(A) of timed words on whictd has an accepting
timed run.

4 Acceptance conditions on transitions can be easily tram&fd into acceptance conditions
over states by doubling the state space of the automatohdageneralized Biichi condition
and by takingd copies of the state space for the parity condition.

Real-time logics.We consider the logi&CL (Event Clock Logic) and some of its
fragments [25, 26, 13ECL is an extension oETL with two real-time operators: the
history operatoki; ¢ expressing thap was true for the last timetime units ago for
somet € I, and the prediction operatos; o expressing that the next timewill be
true is int time units for some € I. Given a finite alphabeXl, the syntax oECL is
the following:

peECLu=a|-p|lpVo|lpSe|pUp|<ip| D1y

wherea € Y and] is an interval. The models of d@aCL formula are infinite timed
words. A timed word) = (w, 7) satisfiesa formulap € ECL at position; € N, written
0,1 = ¢, according to the following rules:

— if ¢ = a, thenw; = q;

—if o = ¢/, thenb, i [£ ¢';

—if o = @1 Vo, thend,i |= 1 0r6,i |= o;

—if ¢ = 1S o, then there exist®d < j < ¢ such thatd,j = ¢2 and for all
j<l€<i,9,]€’:§01;

— if ¢ = 1 U 2, then there existg > ¢ such thaV, j = ¢2 and for alli < k& < 7,
0,k = o1,

— if ¢ = <1 ¢/, then there exist8 < j < i such tha¥,j = ¢', 7, — 7; € I, and for
allj <k <i, 0k,

— if ¢ = >1 ¢/, then there existg > ¢ such tha¥, j = ¢, ; — 7, € I, and for all
1<k<j,0,kEe,;

Whend,0 | ¢, we simply writed |= ¢ and we say thad satisfiesp. We denote
by [¢] the se{# | 8 = ¢} of models ofp. Finally, we define the following shortcuts:
true = a V —a with a € X, false = —true, o1 A 2 = (=1 V —2), o1 — P2 =
=1 V e, Op = trueld o, Op = o A =0(—p), O = falseld p, © p = false S ¢,
andép = true S . We also freely use notations likez to denote the intervak, o),
or <z for [0,), etc. in the< andr> operators.

Then, we define two fragments &CL. PastECL is the fragment oECL where
the temporal operators speak aboutplastonly. A formulay of ECL is in PastECL
if there is no occurrence af; p; andp; U 5 in the subformulas op. LTL, is an
extension ofLTL [23] with the <11 operator fromECL, with the restriction that only
formulas ofPastECL appear under the scope ofa. A formulay of ECLisinLTL
if (1) when< ¢, is a subformula of), theny; € PastECL, and(i7) there is na>1 ¢
in the subformulas of. Formally,

pePastECL=a|—@| Ve |eSp| <1
YELTLgu=a| W |V [YSY [pUY | <y

The truth value of a formula of PastECL at a position in a timed word) depends
only on the events of at positionsj, with 0 < j < 4. On the other hand, a formula of
LTL, may speak about the future of a word, but notin an timed fashie., only using
the (untimed}/ operators.

Example 1.

— @1 =0(c — >(2,3) a) isaformula oECL (but neither oL TL, nor ofPastECL),
saying that every is followed by ana, between 2 and 3 time units.

— w2 =0(c — <3 (anob))isaformulaof TL, (but not ofPastECL) saying
that everyc has to be preceded, between 2 and 3 time units before, bylaactly
precede by &.

— ¢3 = a A <(2,3) c is aPastECL formula that holds in all positions where an
occurs preceded, between 2 and 3 time units before,dy a

Timed games and realizabilityA timed games a tupleG = (X, X», W) whereX; is
the finite alphabet of Player(j = 1, 2), Xy N Xy = @, andW is a set of timed words
over Xy U X5, called the winning condition for Player 1. Timed games dag¢d as
in [9] but with a trivial game structure.

A timed game is played for infinitely many rounds as followsréundi (: > 0),
Player 1 chooses a time delay, € R=° and an actiom € X1, while independently
and simultaneously, Player 2 chooses a time delay= R=° and an action, € X.
Then, aplay in G is a timed word(wq, 70)(w1,71) ... over X U X5 such that for
alli > 0 (assumingr_; = 0), 7, = 7;_1 + min{ A}, Ay} and eitherw; = of and
Al < AL orw; = ob and AL < Ai. Note that there can be several plays produced
by a given sequence of choices of the players, namedy; it= A for somei. We say
that Playerj plays firstin roundi if o’ = o?, and we denote bylameless, the set of
timed words ovel’; U X5 that contain only finitely many letters frorg; .

A timed word# is winningfor Player 1 if0 € W. Let td be the set of diverging
timed words on¥; U X5, A timed wordd is td-winningfor Player 1 ifd € WCy (W) =
(W N td) U (Blamelessy \ td), i.e., Player 1 wins because the word is diverging and
belongs tdV’, or because Player 2 is responsible for the convergenceef ti

A strategy for player;j is a functionw that maps every finite timed worél =
(wo, 70) (w1, 71) -+ - (W, 7,) tO @ pair(4;,a;), whered; € R2% anda; € X;.
A play (wo, 0)(w1,71) ... is consistentwith 7 (for playerj) if for all : > 0, ei-
therﬂ((wo, To)(wl, 7'1) s (wi, 7'7)) = (’LU7;+1,7'7;+1 — 7'7;), orw;41 € Eg_j andAj >
Tit1 — Ti Where(Aj,) = W((wo, 7'0)(11)1,’7’1) cee (wi, Tl))

We denote byOutcome; (G,) the set of all plays irG that are consistent with.

A strategyr for playerl is winning (resp.td-winning for player1 if Outcome; (G,)
contains only winning (resp. td-winning) plays. Finallijven a strategyr; for Player 1
and a strategyr, for Player 2, letOutcome (G, 71, m2) denote the set of all possible
plays inG that are consistent with; and . Note thatOutcome (G, 11, m2) IS not
necessarily a singleton since there is nondeterminisnmeigédme when the same delay
is proposed by the two players.

Therealizability problem(resp.td-realizability problenm for a logicL is to decide,
given two finite sets;, Y» and a formulap € L overX; U Y5, whether Player 1 has
a winning (resp. td-winning) strategy in the timed gafhg, X5, [¢]).

Example 2.Consider the gamé&. = (X1, X9, [¢.]), whereX; = {a,b}, Xy =
{c,d} andyp. = vg — ¢c Wherepy = 0O (c — (O@-c) v (ﬁc)ua)) and

oo =0 ((c — Qa) A (a — (mdcV <3 c))). In this game, Player 2 makes re-
quests by playing’s, and Player 1 has to acknowledge the request by outputiéng
The assumptiop; prevents Player 2 to issue a second request before the fir$tamn
been acknowledged. On the other hand, the conditieriorces Player 1 to acknowl-
edge every request within 2 to 3 time units. Moreover, Playeaan playb’s and Player 2
can playd’s freely.

In this game, Player 1 has a td-winning strategy but no wigistrategy: every time
ac is played at time., Player 1 proposes to play,2.5 — (¢t — t.)) at every time
stampt until ana has been played. More precisely, for a prefix (w, 7) of length
0:m(0) = (a,2.5 — (7(¢ — 1) — 7(4))) if there existsi < ¢ — 1 such thatw(i) = ¢
andw(j) # aforalli < j < ¢ — 1. Otherwisesr(¢) = (b,1). Thus, either Player 1
eventually plays first and aais played2.5 time units after thec. Or Player 1 never
plays first again, and Player 2 is blocking the time. In botbe¢dhis is a td-winning
play for Player 1. However, this is not a winning play, and-éheannot be any winning
play for Player 1, since she cannot prevent Player 2 fromidiodhe time after & has
been played.

Lossy 3—counter machineA deterministic lossy 3—counter maching@QM) [16] is
atupleM = (c1,co,c3,Q,qin,0) Wherecey, co, andes are three nonnegative coun-
ters, @ is a finite set of statesy,, € @ is the initial state, and : @ — I is the
transition function wherd is a finite set of instructions of the form+-+; goto ¢ or
if ¢;# 0 then ¢;——; goto q else goto ¢’ or halt, fori € {1,2,3} andq, ¢’ € Q.

A configuration of a3CM M is a tupley = (q,v',v2,v3) whereq € Q and
v, 12,13 € Nare the valuations of the counters. ket (v) = v +v2+v3. A configu-
rationy, = (g2, v4,v2,v3) is alossy successor of a configuratign= (¢, vi,vZ,v3),
writteny; — s 72, if: either (i) 5(q1) = c;++; goto g2, 0 < vi < vi + 1 and for all
J€{1,2,3}\ {i}: v <wvj:or(ii) 6(q1) = if ¢;# 0 then ¢;——; goto g2 else goto g,
vi #£ 0,0 < v <wvi-1landforallj € {1,2,3}\ {i}: 0 < vj < vf;or
(iii) 8(q1) = if ¢;# 0 then ¢;——; goto q else goto ¢, i = vi = 0 and for all
J € {1,2,3}\ {i}: 0 < v < vi. In particular, for§(q) = halt, the configurations
with locationq have no successor. An infinite run 0BEM M is an infinite sequence
P =",71,---,%,- .. Of configurations of\/ such thatyy = (¢;»,0, 0, 0) is the initial
configuration andy; — s ;41 for all i > 0. We say thap is space-boundei there
existsk € N such that for allj > 0, size (y;) < k. For a bounded rup, we denote
the smallest such by bound (p). We denote byuns%¥ (M) the set of infinite space-
bounded runs oM . Therepeated reachability probleis to decide ifruns (M) = @
for a given3CM M, and it is undecidable.

Theorem 1 ([16]).The repeated reachability problem fBEM is undecidable.

3 ECL realizability is undecidable

We present a reduction of the repeated reachability prold&®CM to ECL real-
izability, showing that the realizability problem f&CL is undecidable. To present
our reduction, consider 83CM M = (c1, ¢a,¢3, @, qin,), and a configuration =

(g, v',v?, %) of M. We encode runs and configurations as timed words over the al-
phabetXe,. = {a,b1,bs, b3, tick} U Q. The configurationy is encoded as a word

of the formtick ¢ a”’ by a* tick a”’ by a* tick a”’ b3 a* (time stamps omitted).
The number ok’s occurring between aick and theb; encodes the value of thih
counter (note that the's after b; have no influence on the value of the counters). An
infinite bounded rum of M is encoded as an infinite sequence of such words, one for
each configuration of the run. We require that the total nurobe’s in each encoding

of a configuratiordoes not increasalong the rurp. This requirement is sound since

we consider onlypounded runsFor instance, if we encode the initial configuration by
havingbound (p) a’s after eachb;, then we are sure to be able to encode the whole
run. Moreover, decreasing the total numbeasfcan only decrease the counter values
which corresponds to the lossy semantics of the machinallithe operations on the
counters can be implemented as follows: decrementing.(iresfgmenting) counter;
can be done by switching; with the firsta on its left (resp. right). If there is no such
a, then the counter cannot be decremented (resp. incremented

We give the conditions that an infinite timéd= (w,) word has to satisfy to
encode a rung, 71, - - -,%i, - - - of M. In the sequel, we denote; by w(i) andr; by
7(%). The first condition constrains, the untimed part of:

Cl w e (tick-Q-a*-b;-a*-tick-a*-by-a*-tick-a* bz a*)”

Forg = (w,7) satisfyingC1, for k > 0 andi € {1,2,3}, letp;' be the position of
the3k + ith tick in w andpzi is the position of thé: + 1stb, in w. Thus,p;* is the
first position in the encoding of;,. Then,C2 andC3 constrain the time stamps of the
letters:

C2 The firsttick appears as the first evepf = 0, and atick corresponds to one
time unit: for everyk > 0, fori € {1,2,3}: 7(p;’) = 7(0) + 3k + (i — 1).

C3 The states of\/ appear O time units after the preceditigck: for anyj; > 0:
w(j) € Q implies thatr(j) = 7(j — 1).

Then, for allk > 0, the subword ofl with time stamps in the intervid(0) + 3k, 7(0) +
3k + 3) is of the formtick @ a* by a* tick a* by a* tick a* bz a* and encodes
e = (ar, vh, v, Vi) With g = w(py! + 1), v} = ppt = pi = 2,07 = 2 —pj* — 1
andv] = p* — p;® — 1. Thus,f encodes the infinite sequengg 1, .. .,7;,. .. Of
configurations, yet this sequence is not necessarilynaf M, as we need to enforce
the semantics of\/. This is the purpose of conditior®4 throughC7 given below.
ConditionC4 ensures that the first encoding corresponds to the initidigoration of
M. ConditionsC5, C6 andC7 encode the lossy semantics of the machine. In particular,
it is important to observe how the relation between two ssgive values of a given
counter, say;, andvj ,, can be encoded as a relation betweentiine stamp®f the
b;'s that appear in the encodings of and~; 1. More precisely, condition€6 and
C7 ensure that for every > 1, everya or b; in the encoding ofy, is matched by
onea or b; exactly three time units before in the encodingygf ;. As a consequence,
the total number oé’s does not increase along the run, and the valjesndv; , , of
counter; in two successive configurations can be related by compé#ratme stamps
of theb,’s. For instance, if we want; , , < v/, then thep; in thek + 1st configuration
must appear at most three time units later thantthe the kth configuration, i.e.,
T(pz’jrl) < 7(py) + 3, and so forth.

C4 The first portion of the word corresponds to the encodingeftitial configuration
of M: w(0) = tick, w(1) = gin, andvi = 1 = 1§ = 0.

C5 The time stamps df; are chosen according to the semantics of the machine. For all
k> 0:6(qr) # halt and:(i) 6(qx) = c;++; goto ¢ implies thatr (py', ; — 1) <
7(p2) + 3 andgr41 = ¢'; (i1) d(q) = if ¢;# 0 then ¢;——; goto ¢’ else goto ¢’
andvj = 0 implies thatg,, = ¢” and7(p} ;) < 7(p}) + 3; and (iii) §(q) =
if ¢;# 0 then ¢;——; goto ¢’ else goto ¢ andv}, # 0 implies thatgy1 = ¢’ and
T(pZﬁrl) < T(pzi) + 3.

C6 All a’s andb’s are separated by a strictly positive time delay: forjalt 1, w(j) €
{a, b1, b2, b3} implies thatr(j — 1) < 7(j).

C7 Everya orb; that appears ifl after time stamp(0) + 3, i.e., in the encoding ofy.
with £ > 1, is matched by an or b; exactly three time units before, i.e.,4p_.
Forallj > 1,if w(j) € {a,b1,ba, b3} andr(j) > 7(0)+ 3, then there exists< j
such thatw(i) € {a,b1,ba, b3} andr (i) = 7(j) — 3.

It is straightforward to see that a woficsatisfying condition€1-C7 encodes a run
po € runsy (M).

Lemma l. Let M be a3CM and @ be an infinite timed word that satisfi€x1-C7.
Then,f encodes arung, 1, ..., %, - - - € runsy (M).

On the other hand, a rumof M can be encoded by a timed woEgcComp (p)
that satisfiesC1-C7. Let k = bound (p). Fort € R=% andv € N with v < &, let
EncVal (v, k,t) = (a,t1) - - (a, ty) (b, tus1) (2, tpr2) - - - (2, tﬁ,+1) where, for anyl <
i < k+1:t; = i/(k+2). Foraconfiguration = (q,v',v%,1?), letEncConf (v,b,t) =
(tick,t)(q,t)-EncVal (v!, k,t) - (tick,t + 1) - EncVal (1/ Kk,t+1) - (tick,t+2)-
EncVal (v, k,t + 2). Finally, forp = v9,71,...,7j,- - . € runs¥ (M), letEncComp (p)
be the infinite concatenation of tl@cConf (v;, bound (p) , 35) for j > 0.

Lemma 2. Let M be a3CM. For all p € runs$ (M), the timed wordEncComp (p)
satisfiesC1-C7.

Corollary 1. Let M be a3CM. There exists a timed wod satisfyingC1-C7 if and
only if runs¥ (M) # .

We have thus reduced the repeated reachability problerBGM to the satisfia-
bility of conditionsC1-C7. Since the satisfiability problem f&CL is decidable, it is
not possible to construct &CL formula whose semantics is equivalent to conditions
C1-C7. In fact, onlyC7 cannot be expresseditCL. For the other conditions, we pro-
pose theEncoding formula given below, whergl3 denotega vV by V by V bs), andQ

denotes(\/qu q).

Encoding = tickAD>_g (qo A le) (1)
A (tick A Oby) (2
A >—3 (tick A Obs) (3)
AO(tick — >_; tick) 4
/\D(Q—>(@t1ck/\<1 otick A>—3Q)) (5)

O ((b1 V bz Vbg) — (=by A =by A =bs) U tick) (6)
O (b1 — (b1 A —bg) U by) (7)
O (bz — (=b1 A =ba) U bs) (8)
A O (bsg — (—bgy A —b3)Uby) 9)
O((ABV QV tick) — > (ABV tick)) (10)
A /\ Oinstr (¢) (11)

q€Q

where, forg € @, the formulainstr (¢) is defined as follows:

1. If 6(q) = i++; goto ¢, then:

instr (q) = q¢— >—=3q¢ A inc; A /\ keep; | V /\keepj 12)
J#i J

2. If §(q) = if i# 0 then i——; goto ¢’ else goto ¢”, then:

instr(¢q) = (gAisnull;) = [>=5¢" A /\ keep, (13)
J

A (g A=isnull;) — | >_3¢' Adec; A /\ keep; (14)
Jj#i

3. If 6(q) = halt, then:

instr(q) = O /\ —q (15)
q€Q

The formulasdec;, inc; andkeep, are defined as follows. Far e {1,2,3}: dec;, =
>3 (bi AD <3 bi); inc; = >3 (bi ANOaAD><s(an Ob7)), andkeep; = >3 (bi A
><3 b7) Finally, isnull; = (-a)U by and fori = 2,3:isnull; = >_;4 ((ﬂa)L{bi). It
is easy to see th&incoding corresponds to conditior31-C6:

Lemma 3. For all timed words), 6 € [Encoding] if and only if¢ satisfiesC1-C6.

Corollary 2. Let M be a3CM. There exists a timed worl € [Encoding] satisfying
C7 if and only ifruns® (M) # @.

To conclude the proof th&CL realizability is undecidable, we show how timed
games can be exploited to check whether there exists a tinoed vthat satisfies
Encoding and C7, and hence whetheunsy (M) # @. The game we consider is
Gy = (Zkne, {c}, [em]), and we show that Player 1 has a winning strategé in
iff runsy (M) # . Before we formally define,,, we give some intuition. In this
game, we use the winning conditign, to force Playen to faithfully simulateM by
satisfying condition€1-C7. Note that Player 1 controls the full alphabet of the config-
uration’s encoding. However, by Lemma 3 defining, = Encoding is not sufficient:
Player 1 coulctcheatby inserting extra’s in the play, in order to increase the values of
the counters. We use the game interaction with Player 2 tefoonditionC7. Using
actionc, Player 2 will be given the possibility to check that Playatdes not increase
the counters as follows. First, Player 2 is allowed to plagnast onec, and only ex-
actly 0 time unit after ama or ab;. In this case, we say that Player 2 perfornthack
and the meaning of this is to pinpoint a particulaa or b; in the word that should
correspond to a previousor b; three time units before, as statedd. If it is not the
case, then we say that Player 2 ll@¢ected an errgrand thusC7 is violated. Hence,

the second ingredient is to let Player 1 loose wheneveranm is detectedi.e. when a
c appears right after amor ab; that is not preceded exactly three time units before by
a corresponding or b;.

These constraints on the number and positions o thand on the detection of the
errors turn out to be expressiblelCL. By combining these constraints wilncoding,
we obtaingyy; = Hyp — Goal where:

Hyp = O (C — (QZOAB)) A ((—\c AD>>3 c) V Dﬂc) AO (c — D(ﬂc))

ensures that Player 2 performs the checks right after@rab,; has been produced, not

in the first configuration, and at most once. Moreover w&tetl = Encoding A Check,

with Check = Oc — O (AB A >3 c). Goal ensures that Player 1 generates a word that
satisfies condition€1-C6, and that she loses whenever she cheats: whenever she plays
ana or ab; that is not preceded by a correspondingr b; exactly three time units
before, Player 2 can play @ (provided that she hasn’t playedcabefore) that will
falsify Check, and thusp,,.

Let us show there is a winning strategy@, = (Xenc, {c}, [Hyp — Goal]) for
Player 1 iff runs (M) # @. The ‘if’ direction is easy, since Player 1 can play ac-
cording toEncComp (p), for anyp € runs¥ (M). Indeed, sinc&ncComp (p) satisfies
conditionC7, Player 2 will never detect an error.

Proposition 1. Let A be a3CM. If runsy (M) # @, then Player 1 has a winning
strategy in the timed gam@,; = (Xenc, {c}, [Hyp — Goal]).

Let us finally show that, if Player 1 has a winning strateggnttuns$y (M) # .
The idea of the proof is as follows. We first observe that, tindt®n of ¢,,, Player 1
can win the game if Player 2 does not satibfyp or if she decides to check anor a
b; which is preceded by amor ab; three time units before (then Player 2 cannot make
further checks, which leaves to Player 1 the ability to clwedbe rest of the play). In
this case Player 1 wins without having to faithfully simeldt/. Of course, Player 2
has a better strategy to choose the actiaxactly0 time unit after the first wrong
or b; has been issued. Since Player 1 has to win when Player 2 piahssiway, a
winning strategy for Player 1 has to ensure tGasl holds, i.e. thaEncoding andC7
are satisfied, thus faithfully simulating an infinite run/af.

In other words, we consider a strate§jyat Enc for Player 2 that forces Player 1 to
play according td&Encoding andC7. Given a strategyt; for Playerl, defineStratEnc
as follows: for every finite prefi¥ = (w,) of length?, let StratEnc(0) = (c,0)
(i.e., Player s detecting an errorif and only if (i) w(¢ — 1) € {a,b1,ba, b3}, (i7)

T(¢ — 1) > 3, (it3) thereis nok < ¢ — 1 such that-(¢ — 1) — 7(k) = 3 andw(k) €
{a,b1,b2,b2}, and (iv) there is nok’ < ¢ such thatw(k’) = c; otherwise, we let
StratEnc(0) = (c, A+ 1) whereA is the time delay proposed by Player 1 when she
plays according tary, i.e., 71 (0) = (a, A) for somea € Xg,.. The next lemma says
that, against strategytratEnc for Player2, a winning strategy of Playdr produces a
play satisfyingGoal andC7.

Lemma 4. Let; be a winning strategy for Player 1 i&;;. Then, for all play®) <
Outcome (G s, 71, StratEnc): 0 = Goal andf satisfiesC7.

Proposition 2. Let M be a3CM. If Player 1 has a winning strategy ir,,;, then
runsy (M) # @.

By Theorem 1 and Proposition 1 and 2 we obtain the followirsgiite
Theorem 2. The realizability problem foECL is undecidable.

Itis easy to extend this undecidability result to the tdkeedility problem forECL,
since the winning strategy presented in the proof of Prdjposl is also winning for
WC; ([¢a]), and against stratedtrat Enc for Player2, a winning strategy of Playér
for WC, ([éas]) also produces plays that satisty.

Theorem 3. The td-realizability problem foECL is undecidable.

4 Positive result onLTL

In this section we show that the realizability problem isidable for the syntactic
fragmentLTL. More precisely, we present an algorithm to solve the rehllity and
td-realizability problems fokTL .

Given a timed gamé& = (X4, Xy, [¢]) for ¢ € LTLg, the main idea of the al-
gorithm consists in building deterministic timed automaton with parity conditién,
that accepts exactly the winning words for Player 1, iléD,) = WC; ([¢]). This
automaton can then be used to build a winning strategy fomelPlh (if it exists), using
the techniques of [9].

First observe that we do not need to remember the exact tamgpstof every event
in a timed word to evaluate the truth value of a formulaf LTL,. Indeed, there are
only finitely many subformulas of the forri; ¢ in ¢, and these are the only real-time
formulas. Intuitively, we can thus consideras anLTL formula over the augmented
alphabet? x 2 whereP is a set of proposition that tracks the truth values ofthe
subformulas. Such untimed words are callgditikka sequencesf v, and we first
show that we can build a nondeterministic finite automadgnwith generalized Biichi
condition that accepts those Hintikka sequences. Aftegrdenization ofA, (giving
By), we translateB,, into a deterministic timed automatdry, with parity condition,
by relating the truth value of the propositions that traak sabformulasa; ¢ with the
value of clocks of the automaton. We detC'y,) = [¢]. For td-realizability, we use the
construction of [9] to construct a deterministic timed ao&tonD,, that accounts the
time-diverging condition on timed words. Thus(D,,) = WC; ([¢]). The automaton
D, can be used to extract a td-winning strategy for Player 1 taa@dutomatoid’, to
extract a winning strategy for Player 1 [9]. The automaf®y of the formulay, of
Example 2 is given in Fig. 1.

An Hintikka sequencef a formulay is an (untimed) wordh over the alphabet
X x 2 whereP = {p, | ¢ = <11 1 is a subformula ofs}. The semantics of is the
set[h] of timed words(w, 7) over X' such thath(i) = (w(i), £2;) wheref2; = {p,, €
P | (w,7),i | ¢}, foralli > 0. Note that for all Hintikka sequencés=# h’, we have
[r] N [W'] = @. Therefore, given a timed wor#l = (w, 7), we denote byHs(9) the
unigue Hintikka sequendesuch that € [h], and given a language of timed words,
we denote byHs(L) the set{Hs(9) | 6 € L}.

Lemma 5. For all LTL, formulat, we haveHs([¢])] = [¢]-

Given anLTL formula«, we denote bysub(v)) the set containing the formulas
v and 9 for all subformulasy of ¢». Fromt), we construct the following nondeter-
ministic (untimed) finite automaton with generalized Bilobndition on edgesd,, =
(Q, qin, E, o) over the alphabe¥ x 27 (P = {p,, | ¢ = <11 is a subformula of)}).

b,d a,r € (2,3)

Fig. 1. A deterministic parity timed automaton far.. Statesl, 3,4 have priority0, and states
2, 5 have priority1.

— @ containsg;,, and all theg C Sub(v)) that areconsistentA subsetl; is consistent
iff: (¢) there exists a unique € X such that: € ¢; (i¢) for all subformulase;, ¢
of ¥, if o = —p1, thenp; € qiff v2 & ¢; and(iii) for all subformulasy; V o
of 9, 1 Vo € qiff o1 € qgoryps € q.

- ECQ x (¥ x2F) x Q contains all edgefy, o, ¢’) such thatr = (a, {p, € P |
v € ¢'} where{a} = ¥ N ¢’ and, eitheli) g = ¢in, ¥ € ¢’ andp; S p2 & ¢ for
all formulasyp: S 2 € Sub(w), or (ii) ¢ # g, for all subformulap; U ¢4 of 1,
we havep; U @2 € q iff either (a) w2 € ¢/, or (b) v1 € ¢’ andp1 U ¢2 € ¢'; and
for all subformulap; S ¢, of ¢, we havep; S ¢, € ¢’ iff either (a) 2 € ¢, or (b)
1 €gandpr Sps € q.

— «is a set of accepting sets of edges, containing for each subfay; U o of ¥
the set{(q,0,q') € E | p1U w2 € qOrp2 € ¢'}.

Lemma 6. For all LTL, formula, we have[L(Ay)] = [¢].

The next lemma is crucial to translai&;, (the deterministic version afl,;) into
a timed automatol’,. Indeed, in the time automatari,, we use one clock for each
formula of the form<i; ¢ to remember the last timg has been true. Lemma 7 shows
that only the information about the past of the word is retéva know when these
clocks have to be reset.

Lemma 7. For all nonempty (untimed) finite words over the set of propositions,
for all runs ry, 7o of Ay, overw, the stated ast(r;) and Last(r2) contain exactly the
samePastECL formulas.

From Ay, we obtain a deterministic (untimed) automa®gp with parity condition
such thatL(B,) = L(Ay) by Piterman’s determinization procedure [22]. The states
of By, are Safra trees, whose rootroot(s) tracks the standard subset construction.
Therefore, by Lemma 7, for every transition o, s') of By, all states; € roots’ agree
on thePastECL subformulas of). So, we can define a (deterministic) timed automaton
C,, over alphabef’ and clocks{z,, | < ¢ is a subformula ofy} as follows: the state
space ofCy, is a copy of the state space Bf,, and for each transitiofs, (a, £2), s") in
By, ifforall p, € 2 with p = <1 1, we havedp; € root(s), then there is a transition
(s,9,a,R,s") in Cy such thatR = {z, | p, € 2} andg is the conjunction of:)
all constraintse,,, € I s.t.p, € £2 andy = <t ¢; is a subformula ofp, and (i) all
constraintse, & I s.t.p, € 2, ¢ = <1 ¢ is a subformula ofy, anddy € root(s).

Proposition 3. For all PastECL formulai, the timed automato@’y, with parity con-
dition is deterministic and.(Cy,) = [¢].

Using the results of [9], a deterministic timed automai®gn with parity condition
can be constructed fro,, such thatL(D,,) = WC, ([¢]). The number of locations
of D is O(|C|-d) whered is the number of priorities if,,, and the number of priorities
in D is d + 2. To decide if Playei has a winning strategy faWC, ([+]), we evaluate
a p-calculus fixpoint formula [10] that computes the set of vingnstates of Player
1 for the winning conditionWC, ([¢]). The u-calculus formula uses eontrollable
predecessor operatatPre(Z) that computes the set of states in which Playean
force the game t& in one move. The controllable predecessor operator preséine
regions of the timed automatan,, i.e., if Z is a union of regionsCPre(Z) is also
a union of regions. Therefore, the winning states of Pldyesin be computed in time
O((|Dy| - m! - 2™ - (2¢ + 1)™)4) where|D,,| is the number of locations b, m is
the number of clocks; is the largest constant, adds the maximal priority inD,; [9].

If we letn = |Ay|, we getd = 2+ 2-n- O(]9|), ¢ = ¢y Is the largest constant
that occurs as an integer endpoint of an intedvéth a subformula<; ¢ of ¢, m is
the number of subformula; ¢ of ¢, and|Dy| = 2d - n™ - n! [9, 22]. This is at most

20220 (2¢, 4+ 1)2°""" where|y)| is the length of.

Theorem 4. For ¢y € LTL over alphabet™; w X, deciding whether Playet is
td-winning the gaméX;, X, [1/]) can be done in time?° ") . (2¢,, + 1)2°"*".

The realizability problem fokTL , can be solved by the same technique as in The-
orem 4, using the automatdry, instead ofD,,.

Theorem 5. For ¢ € LTL, over alphabety; @ X5, deciding whether Playet is
winning the gaméx;, 5, []) can be done in tima®”"*") . (2¢,, 4 1)271*".

Since the realizability problem fdiTL is 2EXPTIME-hard, we get the following
corollary.

Corollary 3. The realizability and td-realizability problems faff L, are 2EXPTIME-
complete.

5 Discussion

We close the paper by mentioning several open problemsfiordfuworks. First, several
semantical models have been proposed for real-time beisgvip We conjecture that
our proofs of (un)decidability extend to the case where ga-time models are timed
state sequences, i.e. finite variable functions fiRa? to X, and that our decidability
result extends taTL with the past formulas o¥ITL (the intuition is that the formu-
las of pastMITL can be translated to deterministic timed automata [17o8é, the
realizability problem folECL remains open in the case of finite words (the reachabil-
ity problem is decidable faBCM). It is our belief that techniques based on well-quasi
orderings [21] should be investigated. Then, one could idengestricted classes of
strategies (such as strategies with imperfect informd8gror with bounded resources
[6]) to recover decidability. Finally, our positive resudtlies on the Safra construction
for determinization. A Safraless procedure [15, 12] shdnddhvestigated.

References

N =

10.
11.
12.
13.
14.
15.

16.
17.

18.

19.
20.

21.
22.

23.
. A. Pnueli and R. Rosner. On the synthesis of a reactiveuraod®roc. POPL'89 1989,

25.
26.

27.

R. Alur and D.L. Dill. A Theory of Timed AutomatalCS 126(2), 1994.

. R. Alur, T. Feder, and T. Henzinger. The benefits of relgopanctuality. J. ACM 43(1),

1996.

. R. Alur, L. Fix, and T. Henzinger. Event-clock automatadesterminizable class of timed

automataTCS 211(1-2), 1999.

. R. Alur and T. Henzinger. Logics and models of real timeufvey. Proc. REX Workshagp

1992. Springer.

. R. Alur and T. Henzinger. A really temporal logi¢. ACM 41(1), 1994.
. P. Bouyer, L. Bozzelli, and F. Chevalier. Controller $yedis for MTL specificationsProc

CONCUR’06 LNCS 4137, 2006, Springer.

. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Limdfickeht on-the-fly algorithms

for the analysis of timed gameBroc CONCUR’'05LNCS 3653, 2005, Springer.

. F. Cassez, A. David, E. Fleury, K. G. Larsen, D. Lime andRdskin Timed Control with

Observation Based and Stuttering Invariant Strategitec ATVA’'07 LNCS 4762, 2005,
Springer.

. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and Mod&inga. The element of

surprise in timed game®roc CONCUR’'03LNCS 2761, 2003, Springer.

L. de Alfaro, T. Henzinger, and R. Majumdar. From vertiica to control: Dynamic pro-
grams for omega-regular objectivd®roc. LICS’0] IEEE Computer Society Press, 2001.
L. Doyen, G. Geeraerts, J.F. Rasking and J. ReicheriZaedity of real-time logics. Tech-
nical report CFV 2009.120. http://www.ulb.ac/be/di/s$d/

E. Filliot, N. Jin and J.F. Raskin An Antichain Algorithfar LTL Realizability. Proc.
CAV'09 to appear.

T. Henzinger,J.-F. Raskin and P.-Y. Schobbens. The|ReBeal-Time Language®roc.
ICALP’98, LNCS 1443, 1998, Springer.

R. Koymans. Specifying real-time properties with ntetémporal logic. RT Syst.2(4),
1990.

O. Kupferman and M. Vardi. Safraless decision procexiuRFoc. FOCS’'05 2005, IEEE
Computer Society.

R. Mayr. Undecidable problems in unreliable computegid CS 297(1-3), 2003.

O. Maler, D. Nickovic, and A. Pnueli. Real time temporit: Past, present, futur@roc.
FORMATS'0O5LNCS 3829, 2005, Springer.

O. Maler, D. Nickovic, and A. Pnueli. On synthesizing ttotlers from bounded-response
properties.Proc. CAV'07 LNCS 4590, 2007, Springer.

Z. Manna and A. Pnuelitemporal verification of reactive systems: safdt§95, Springer.
O. Maler, A. Pnueli, and J. Sifakis. On the synthesis e€iite controllers for timed systems.
Proc STACS'9pLNCS 900, 1995, Springer.

J. Ouaknine and J. Worrell. On the decidability of metgimporal logic. InProc LICS '05
IEEE Computer Society Press, 2005.

N. Piterman. From nondeterministic Biichi and Streatib@ata to deterministic parity au-
tomata.LMCS 3(3), 2007.

A. Pnueli. The temporal logic of progranf¥toc. SFCS'771977, IEEE Computer Society.

ACM.

J.-F. RaskinLogics, Automata and Classical Theories for Deciding Réalel PhD thesis,
FUNDP (Belgium), 1999.

J.-F. Raskin and P.-Y. Schobbens. The logic of evenksladecidability, complexity and
expressivenesAutomatica 34(3), 1998.

P. Wolper. The tableau method for temporal logic: An @iesv. Logique et Analysg110—

111), 1985.

