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Abstract. We consider two-player zero-sum games on graphs. These games can
be classified on the basis of the information of the players and on the mode of
interaction between them. On the basis of information the classification is as fol-
lows: (a) partial-observation (both players have partial view of the game); (b)
one-sided complete-observation (one player has complete observation); and (c)
complete-observation (both players have complete view of the game). On the ba-
sis of mode of interaction we have the following classification: (a) concurrent
(players interact simultaneously); and (b) turn-based (players interact in turn).
The two sources of randomness in these games are randomness in transition func-
tion and randomness in strategies. In general, randomized strategies are more
powerful than deterministic strategies, and randomness intransitions gives more
general classes of games. We present a complete characterization for the classes
of games where randomness is not helpful in: (a) the transition function (proba-
bilistic transition can be simulated by deterministic transition); and (b) strategies
(pure strategies are as powerful as randomized strategies). As consequence of our
characterization we obtain new undecidability results forthese games.

1 Introduction

Games on graphs.Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In par-
ticular, when the vertices and edges of a graph represent thestates and transitions of a
reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [4, 16, 15, 13]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [10], and com-
patibility checking [7] of reactive systems. Games played on graphs are dynamic games
that proceed for an infinite number of rounds. In each round, the players choose moves;
the moves, together with the current state, determine the successor state. An outcome
of the game, called aplay, consists of the infinite sequence of states that are visited.

Strategies and objectives.A strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can be classified as follows:pure
strategies, which always deterministically choose a move to extend the play, vs.ran-
domizedstrategies, which may choose at a state a probability distribution over the avail-
able moves. Objectives are generally Borel measurable functions [12]: the objective for
a player is a Borel setB in the Cantor topology onSω (whereS is the set of states), and

⋆ This research was supported by the European Union project COMBEST and the European
Network of Excellence ArtistDesign.



the player satisfies the objective iff the outcome of the gameis a member ofB. In verifi-
cation, objectives are usuallyω-regular languages. Theω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of the
Borel hierarchy (they lie inΣ3 ∩ Π3) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game, and the way of choosing moves.
Accordingly, there are (a)partial-observationgames, where each player only has a
partial or incomplete view about the state and the moves of the other player; (b)one-
sided complete-observationgames, where one player has partial knowledge and the
other player has complete knowledge about the state and moves of the other player;
and (c)complete-observationgames, where each player has complete knowledge of the
game. According to the way of choosing moves, the games on graphs can be classi-
fied into turn-basedandconcurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effectively, the set of states can be
partitioned into the states where it is player 1’s turn to play, and the states where it is
player 2’s turn. In concurrent games, both players may have multiple moves available
at each state, and the players choose their moves simultaneously and independently.

Sources of randomness.There are two sources of randomness in these games. First is
the randomness in the transition function: given a current state and moves of the players,
the transition function defines a probability distributionover the successor states. The
second source of randomness is the randomness in strategies(when the players play
randomized strategies). In this work we study when randomness can be obtained for
free; i.e., we study in which classes of games the probabilistic transition function can
be simulated by deterministic transition function, and theclasses of games where pure
strategies are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if fora class of
games it can be shown that randomness is free for transitions, then all future works
related to analysis of computational complexity, strategycomplexity, and algorithmic
solutions can focus on the simpler class with deterministictransitions (the randomness
in transition may be essential for modeling appropriate stochastic reactive systems, but
the analysis can focus on the deterministic subclass); (b) if for a class of games it can be
shown that randomness is free for strategies, then all future works related to correctness
results can focus on the simpler class of deterministic strategies, and the results would
follow for the more general class of randomized strategies;and (c) the characterization
of randomness for free will allow hardness results obtainedfor the more general class
of games (such as games with randomness in transitions) to becarried over to simpler
class of games (such as games with deterministic transitions).

Our contribution. Our contributions are as follows:
1. Randomness for free in transitions.We show that randomness in the transition func-

tion can be obtained for free for complete-observation concurrent games (and any
class that subsumes complete-observation concurrent games) and for one-sided
complete-observation turn-based games (and any class thatsubsumes this class).
The reduction is polynomial for complete-observation concurrent games, and ex-
ponential for one-sided complete-observation turn-basedgames. It is known that for



complete-observation turn-based games, a probabilistic transition function cannot
be simulated by deterministic transition function (see discussion at end of Section 3
for details), and thus we present a complete characterization when randomness can
be obtained for free for the transition function.

2. Randomness for free in strategies.We show that randomness in strategies is free
for complete-observation turn-based games, and for one-player partial-observation
games (POMDPs). For all other classes of games randomized strategies are more
powerful than pure strategies. It follows from a result of Martin [12] that for
one-player complete-observation games with probabilistic transitions (MDPs) pure
strategies are as powerful as randomized strategies. We present a generalization of
this result to the case of one-player partial-observation games with probabilistic
transitions (POMDPs). Our proof is totally different from Martin’s proof and based
on a new derandomization technique of randomized strategies.

3. New undecidability results.As a consequence of our characterization of random-
ness for free, we obtain new undecidability results. In particular, using our results
and results of Baier et al. [2] we show for one-sided complete-observation deter-
ministic games, the problem of almost-sure winning for coB¨uchi objectives and
positive winning for Büchi objectives are undecidable. Thus we obtain the first
undecidability result for qualitative analysis (almost-sure and positive winning) of
one-sided complete-observation deterministic games withω-regular objectives.

2 Definitions
In this section we present the definition of concurrent gamesof partial information
and their subclasses, and notions of strategies and objectives. Our model of game is
the same as in [9] and equivalent to the model of stochastic games with signals [14,
3]. A probability distributionon a finite setA is a functionκ : A → [0, 1] such that∑

a∈A κ(a) = 1. We denote byD(A) the set of probability distributions onA.

Games of partial observation.A concurrent game of partial observation(or simply a
game) is a tupleG = 〈S, A1, A2, δ,O1,O2〉 with the following components: (1)(State
space).S is a finite set of states; (2)(Actions).Ai (i = 1, 2) is a finite set of actions
for Playeri; (3) (Probabilistic transition function).δ : S × A1 × A2 → D(S) is a
concurrent probabilistic transition function that given acurrent states, actionsa1 anda2

for both players gives the transition probabilityδ(s, a1, a2)(s
′) to the next states′; and

(4) (Observations).Oi ⊆ 2S (i = 1, 2) is a finite set of observations for Playeri that
partition the state spaceS. These partitions uniquely define functionsobsi : S → Oi

(i = 1, 2) that map each state to its observation such thats ∈ obsi(s) for all s ∈ S.

Special cases.We consider the following special cases of partial observation concurrent
games, obtained either by restrictions in the observations, the mode of selection of
moves, the type of transition function, or the number of players:

– (Observation restriction).The games withone-sided complete-observationare the
special case of games whereO1 = {{s} | s ∈ S} (i.e., Player 1 has com-
plete observation) orO2 = {{s} | s ∈ S} (Player 2 has complete observa-
tion). The games of complete-observationare the special case of games where
O1 = O2 = {{s} | s ∈ S}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has completeobservation we omit
the corresponding observation sets from the description ofthe game.



– (Mode of interaction restriction).A turn-based stateis a states such that either(i)
δ(s, a, b) = δ(s, a, b′) for all a ∈ A1 and allb, b′ ∈ A2 (i.e, the action of Player 1
determines the transition function and hence it can be interpreted as Player 1’s turn
to play), we refer tos as a Player-1 state, and we use the notationδ(s, a,−); or
(ii) δ(s, a, b) = δ(s, a′, b) for all a, a′ ∈ A1 and allb ∈ A2. We refer tos as a
Player-2 state, and we use the notationδ(s,−, b). A states which is both a Player-1
state and a Player-2 state is called aprobabilistic state(i.e., the transition function
is independent of the actions of the players). We write theδ(s,−,−) to denote the
transition function ins. Theturn-based gamesare the special case of games where
all states are turn-based.

– (Transition function restriction).The deterministic gamesare the special case of
games where for all statess ∈ S and actionsa ∈ A1 andb ∈ A2, there exists a state
s′ ∈ S such thatδ(s, a, b)(s′) = 1. We refer to such statess as deterministic states.
For deterministic games, it is often convenient to assume thatδ : S×A1×A2 → S.

– (Player restriction). The 11/2-player games, also calledpartially observable
Markov decision processes(or POMDP), are the special case of games whereA1

or A2 is a singleton. Note that 11/2-player games are turn-based. Games without
player restriction are sometimes called 21/2-player games.
The 11/2-player games of complete-observation are Markov decisionprocesses (or

MDP), and 11/2-player deterministic games can be viewed as graphs (and areoften
called one-player games).

Classes of game graphs.We will use the following abbreviations: we will usePa
for partial observation,Os for one-sided complete-observation,Co for complete-
observation,C for concurrent, andT for turn-based. For example,CoC will denote
complete-observation concurrent games, andOsT will denote one-sided complete-
observation turn-based games. ForC ∈ {Pa, Os, Co} × {C, T}, we denote byGC the
set of allC games. Note that the following strict inclusion: partial observation (Pa) is
more general than one-sided complete-observation (Os) andOs is more general than
complete-observation (Co), and concurrent (C) is more general than turn-based (T). We
will denote byGD the set of all games with deterministic transition function.

Plays.In a game structure, in each turn, Player1 chooses an actiona ∈ A1, Player2
chooses an action inb ∈ A2, and the successor of the current states is chosen according
to the probabilistic transition functionδ(s, a, b). A play in G is an infinite sequence of
statesρ = s0s1 . . . such that for alli ≥ 0, there existsai ∈ A1 andbi ∈ A2 with
δ(si, ai, bi, si+1) > 0. Theprefix up tosn of the playρ is denoted byρ(n), its length
is |ρ(n)| = n + 1 and its last elementis Last(ρ(n)) = sn. The set of plays inG
is denotedPlays(G), and the set of corresponding finite prefixes is denotedPrefs(G).
The observation sequenceof ρ for playeri (i = 1, 2) is the unique infinite sequence
obsi(ρ) = o0o1 . . . ∈ Oω

i such thatsj ∈ oj for all j ≥ 0.

Strategies.A pure strategyin G for Player1 is a functionσ : Prefs(G) → A1. A
randomized strategyin G for Player1 is a functionσ : Prefs(G) → D(A1). A (pure
or randomized) strategyσ for Player1 is observation-basedif for all prefixesρ, ρ′ ∈
Prefs(G), if obs1(ρ) = obs1(ρ

′), thenσ(ρ) = σ(ρ′). We omit analogous definitions
of strategies for Player2. We denote byΣG, ΣO

G , ΣP
G , ΠG, ΠO

G andΠP
G the set of

all Player-1 strategies, the set of all observation-based Player-1 strategies, the set of all
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Fig. 1.A game with one-sided complete observation.

pure Player-1 strategies, the set of all Player-2 strategies inG, the set of all observation-
based Player-2 strategies, and the set of all pure Player-2 strategies, respectively. Note
that if Player1 has complete observation, thenΣO

G = ΣG.

Objectives.An objectivefor Player1 in G is a setφ ⊆ Sω of infinite sequences of states.
A play ρ ∈ Plays(G) satisfiesthe objectiveφ, denotedρ |= φ, if ρ ∈ φ. Objectives are
generally Borel measurable: a Borel objective is a Borel setin the Cantor topology on
Sω [11]. We specifically considerω-regular objectives specified as parity objectives
(a canonical form to express allω-regular objectives [17]). For a playρ = s0s1 . . .
we denote byInf(ρ) the set of states that occur infinitely often inρ, that is,Inf(ρ) =
{s | sj = s for infinitely manyj’s}. For d ∈ N, let p : S → {0, 1, . . . , d} be a
priority function, which maps each state to a nonnegative integer priority. The parity
objectiveParity(p) requires that the minimum priority that occurs infinitely often be
even. Formally,Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. The Büchi and
coBüchi objectives are the special cases of parity objectives with two priorities,p : S →
{0, 1} andp : S → {1, 2} respectively. We say that an objectiveφ is visiblefor Playeri
if for all ρ, ρ′ ∈ Sω, if ρ |= φ andobsi(ρ) = obsi(ρ

′), thenρ′ |= φ. For example if the
priority function maps observations to priorities (i.e.,p : Oi → {0, 1, . . . , d}), then the
parity objective is visible for Playeri.

Almost-sure winning, positive winning and value function.An eventis a measurable set
of plays, and given strategiesσ andπ for the two players, the probabilities of events
are uniquely defined [18]. For a Borel objectiveφ, we denote byPrσ,π

s (φ) the proba-
bility that φ is satisfied by the play obtained from the starting states when the strate-
giesσ andπ are used. Given a game structureG and a states, an observation-based
strategyσ for Player1 is almost-sure winning (almost winning in short)(resp.posi-
tive winning) for the objectiveφ from s if for all observation-based randomized strate-
giesπ for Player2, we havePrσ,π

s (φ) = 1 (resp.Prσ,π
s (φ) > 0). Thevalue function

〈〈1〉〉G
val

: S → R for Player 1 and objectiveφ assigns to every state the maximal
probability with which Player 1 can guarantee the satisfaction ofφ with an observation-
based strategy, against all observation-based strategiesfor Player 2. Formally we have
〈〈1〉〉G

val
(φ)(s) = supσ∈ΣO

G

infπ∈ΠO

G

Prσ,π
s (φ). For ε ≥ 0, an observation-based strat-

egy isε-optimal for φ from s if we haveinfπ∈ΠO

G

Prσ,π
s (φ) ≥ 〈〈1〉〉G

val
(φ)(s) − ε. An

optimalstrategy is a0-optimal strategy.



Pa - partial observation

Os - one-sided complete observation

Co - complete observation

C - concurrent

T - turn-based

Th. 2
Th. 3

Fig. 2. The various classes of game graphs. The curves materialize the classes for which ran-
domness is for free in transition relation (Theorem 2 and Theorem 3). For21/2-player games,
randomness is not free only in complete-observation turn-based games.

Example 1.Consider the game with one-sided complete observation (Player2 has com-
plete information) shown in Fig. 1. Consider the Büchi objective defined by the state
s4 (i.e., states4 has priority0 and other states have priority1). Because Player1 has
partial observation (given by the partitionOi = {{s1}, {s2, s

′
2}, {s3, s

′
3}, {s4}}), she

cannot distinguish betweens2 ands′2 and therefore has to play the same actions with
same probabilities ins2 ands′2 (while it would be easy to win by playinga2 in s2 anda1

in s′2, this is not possible). In fact, Player1 cannot win using a pure observation-based
strategy. However, playinga1 anda2 uniformly at random in all states is almost-sure
winning. Every time the game visits observationo2, for any strategy of Player2, the
game visitss3 ands′3 with probability 1

2 , and hence also reachess4 with probability
1
2 . It follows that against all Player2 strategies the play eventually reachess4 with
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization of theclasses of games where the
randomness in transition function can be obtained forfree: in other words, we present
the precise characterization of classes of games with probabilistic transition function
that can be reduced to the corresponding class with deterministic transition function.
We present our results as three reductions: (a) the first reduction allows us to separate
probability from the mode of interaction; (b) the second reduction shows how to simu-
late probability in transition function withCoC (complete-observation concurrent) de-
terministic transition; and (c) the final reduction shows how to simulate probability in
transition withOsT(one-sided complete-observation turn-based) deterministic transi-
tion. All our reductions arelocal: they consist of a gadget construction and replacement
locally at every state. Our reductions preserve values, existence ofε-optimal strategies
for ε ≥ 0, and also existence of almost-sure and positive winning strategies. A visual
overview is given in Fig. 2.

3.1 Separation of probability and interaction

A concurrent probabilistic game of partial observationG satisfies theinteraction sep-
aration condition if the following restrictions are satisfied: the state spaceS can



be partitioned into(SA, SP ) such that (1)δ : SA × A1 × A2 → SP , and (2)
δ : SP × A1 × A2 → D(SA) such that for alls ∈ SP and all s′ ∈ SA, and for
all a1, a2, a

′
1, a

′
2 we haveδ(s, a1, a2)(s

′) = δ(s, a′
1, a

′
2)(s

′) = δ(s,−,−)(s′). In other
words, the choice of actions (or the interaction) of the players takes place at states inSA

and actions determine a unique successor state inSP , and the transition function atSP

is probabilistic and independent of the choice of the players. In this section, we reduce
a class of games to the corresponding class satisfying interaction separation.

Reduction to interaction separation.Let G = 〈S, A1, A2, δ,O1,O2〉 be a concurrent
game of partial observation with an objectiveφ. We obtain a concurrent game of partial
observationG = 〈SA ∪ SP , A1, A2, δ,O1,O2〉 whereSA = S, SP = S × A1 × A2,
and:

– Observation.For i ∈ {1, 2}, if Oi = {{s} | s ∈ S}, thenOi = {{s′} | s′ ∈
SA ∪SP }; otherwiseOi contains the observationo∪{(s, a1, a2) | s ∈ o} for each
o ∈ Oi.

– Transition function.The transition function is as follows:
1. We have the following three cases: (a) ifs is a Player 1 turn-based state, then

pick an actiona∗
2 and for all a2 let δ(s, a1, a2) = (s, a1, a

∗
2); (b) if s is a

Player 2 turn-based state, then pick an actiona∗
1 and for alla1 let δ(s, a1, a2) =

(s, a∗
1, a2); and (c) otherwise,δ(s, a1, a2) = (s, a1, a2);

2. for all (s, a1, a2) ∈ SP we haveδ((s, a1, a2),−,−)(s′) = δ(s, a1, a2)(s
′).

– Objective mapping.Given the objectiveφ in G we obtain the objectiveφ =
{〈s0s

′
0s1s

′
1 . . .〉 | 〈s0s1 . . .〉 ∈ φ} in G.

It is easy to map observation-based strategies of the gameG to observation-based strate-
gies inG and vice-versa that preserves satisfaction ofφ andφ in G andG, respectively.
Let us refer to the above reduction asReduction: i.e.,Reduction(G, φ) = (G, φ). Then
we have the following theorem.

Theorem 1. Let G be a concurrent game of partial observation with an objective φ,
and let(G, φ) = Reduction(G, φ). Then the following assertions hold:
1. The reductionReduction is restriction preserving: if G is one-sided complete-

observation, then so isG; if G is complete-observation, then so isG; if G is turn-
based, then so isG.

2. For all s ∈ S, there is an observation-based almost-sure (resp. positive) winning
strategy forφ froms in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy forφ from s in G.

3. The reduction is objective preserving: ifφ is a parity objective, then so inφ; if φ is
an objective in thek-the level of the Borel hierarchy, then so isφ.

4. For all s ∈ S we have〈〈1〉〉G
val

(φ)(s) = 〈〈1〉〉G
val

(φ)(s). For all s ∈ S there is an
observation-based optimal strategy forφ from s in G iff there is an observation-
based optimal strategy forφ froms in G.

Since the reduction is restriction preserving, we have a reduction that separates the
interaction and probabilistic transition maintaining therestriction of observation and
mode of interaction.

Uniform- n-ary concurrent probabilistic games.The class ofuniform-n-ary proba-
bilistic gamesare the special class of probabilistic games such that everystates ∈ SP



hasn successors and the transition probability to each successor is 1
n

. It follows from
the results of [19] that everyCoC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent polynomial size uniform-binary
(i.e.,n = 2) CoC probabilistic game for all parity objectives. The reduction is achieved
by adding dummy states to simulate the probability, and the reduction extends to all
objectives (in the reduced game we need to consider the objective whose projection in
the original game gives the original objective).

In the case of partial information, the reduction to uniform-binary probabilistic
games of [19] is not valid (see [5] for an example). We reduce aprobabilistic game
G to a uniform-n-ary probabilistic game withn = 1/r wherer is the greatest common
divisor of all probabilities in the original gameG (a rationalr is a divisor of a rationalp
if p = q · r for some integerq). Note that the numbern = 1/r is an integer. We denote
by [n] the set{0, 1, . . . , n − 1}. For a probabilistic states ∈ SP , we define then-tuple
Succ(s) = 〈s′0, . . . , s

′
n−1〉 in which each states′ ∈ S occursn · δ(s,−,−)(s′) times.

Then, we can view the transition relationδ(s,−,−) as a function assigning the same
probabilityr = 1/n to each element ofSucc(s) (and then adding up the probabilities
of identical elements). Note that the above reduction is worst-case exponential (because
so can be the least common multiple of all probability denominators). This is necessary
to have the property that all probabilistic states in the game have the same number of
successors. This property is crucial because it determinesthe number of actions avail-
able to Player 1 in the reductions presented in Section 3.2 and 3.3, and the number of
available actions should not differ in states that have the same observation.

3.2 Simulating probability by complete-observation concurrent determinism

In this section, we show that probabilistic states can be simulated byCoC deterministic
gadgets (and hence also byOsC andPaC deterministic gadgets). By Theorem 1, we
focus on games that satisfy interaction separation. A probabilistic state with uniform
probability over the successors is simulated by a complete-observation concurrent de-
terministic state where the optimal strategy for both players is to play uniformly over
the set of available actions (more details are given in [5]).This gives us Theorem 2.

Theorem 2. Let a ∈ {Pa, Os, Co} andb ∈ {C, T}, and letC = ab andC′ = aC. Let
G be a game inGC with probabilistic transition function with rational probabilities and
an objectiveφ. A gameG ∈ GC′ ∩ GD (in the class that subsumesGC with concurrent
interaction) with deterministic transition function can be constructed in (a) polynomial
time if a = Co, and (b) in exponential time ifa = Pa or Os, with an objectiveφ such
that the state space ofG is a subset of the state space ofG and we have:
1. For all s ∈ S there is an observation-based almost-sure (resp. positive) winning

strategy froms for φ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy forφ from s in G.

2. For all s ∈ S we have〈〈1〉〉G
val

(φ)(s) = 〈〈1〉〉G
val

(φ)(s). For all s ∈ S there is an
observation-based optimal strategy forφ from s in G iff there is an observation-
based optimal strategy forφ froms in G.



3.3 Simulating probability by one-sided complete-observation turn-based
determinism

We show that probabilistic states can be simulated byOsT (one-sided complete-
observation turn-based) states, and by Theorem 1 we consider games that satisfy inter-
action separation. The reduction is as follows: each probabilistic states is transformed
into a Player-2 state withn successor Player-1 states (wheren is chosen such that the
probabilities ins are integer multiples of1/n). Because all successors ofs have the
same observation, Player1 has no advantage in playing after Player 2, and because by
playing all actions uniformly at random each player can unilaterally decide to simulate
the probabilistic state, the value and properties of strategies of the game are preserved.
Due to lack of space, the proof of Theorem 3 is given in [5].

Theorem 3. Let a ∈ {Pa, Os, Co} and b ∈ {C, T}, and leta′ = a if a 6= Co, and
a′ = Os otherwise. LetC = ab andC′ = a′b. LetG be a game inGC with probabilistic
transition function with rational transition probabilities and an objectiveφ. A game
G′ ∈ GC′ ∩ GD (in the class that subsumes one-sided complete-observation turn-based
games and the classGC) with deterministic transition function can be constructed in
exponential time with an objectiveφ′ such that the state space ofG is a subset of the
state space ofG′ and we have:
1. For all s ∈ S there is an observation-based almost-sure (resp. positive) winning

strategy froms for φ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy forφ′ froms in G′.

2. For all s ∈ S we have〈〈1〉〉G
val

(φ)(s) = 〈〈1〉〉G
′

val
(φ′)(s). For all s ∈ S there is an

observation-based optimal strategy forφ from s in G iff there is an observation-
based optimal strategy forφ′ from s in G′.

Role of probabilistic transition in CoT games andPOMDPs. We have shown that
for CoC games andOsT games, randomness in transition can be obtained for free. We
complete the picture by showing that forCoT (complete-observation turn-based) games
randomness in transition cannot be obtained for free. It follows from the result of Mar-
tin [12] that for allCoT deterministic games and all objectives, the values are either 1
or 0; however,MDPs with reachability objectives can have values in the interval [0, 1]
(not value 0 and 1 only). Thus the result follows forCoT games. It also follows that
“randomness in transitions” can be replaced by “randomnessin strategies” is not true:
in CoT deterministic games even with randomized strategies the values are either 1
or 0 [12]; whereasMDPs can have values in the interval[0, 1]. ForPOMDPs, we show
in Theorem 5 that pure strategies are sufficient, and it follows that forPOMDPs with
deterministic transition function the values are 0 or 1, andsinceMDPs with reachability
objectives can have values other than 0 and 1 it follows that randomness in transition
cannot be obtained for free forPOMDPs. The probabilistic transition also plays an im-
portant role in the complexity of solving games in case ofCoT games: for example,
CoT deterministic games with reachability objectives can be solved in linear time, but
for probabilistic transition the problem is in NP∩ coNP and no polynomial time algo-
rithm is known. In contrast, forCoC games we present a polynomial time reduction
from probabilistic transition to deterministic transition. Table 1 summarizes our results



21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based not free free not not

concurrent free free free (NA) (NA)

Table 1. When randomness is for free in the transition function. In particular, probabilities can
be eliminated in all classes of 2-player games except complete-observation turn-based games.

characterizing the classes of games where randomness in transition can be obtained for
free.

4 Randomness for Free in Strategies

It is known from the results of [8] that inCoC games randomized strategies are more
powerful than pure strategies; for example, values achieved by pure strategies are lower
than values achieved by randomized strategies and randomized almost-sure winning
strategies may exist whereas no pure almost-sure winning strategy exists. Similar results
also hold in the case ofOsT games (see [6] for an example). By contrast we show that
in one-player games, restricting the set of strategies to pure strategies does not decrease
the value nor affect the existence of almost-sure and positive winning strategies. We
first start with a lemma, then present a result that can be derived from Martin’s theorem
for Blackwell games [12], and finally present our results precisely in a theorem.

Lemma 1. LetG be aPOMDP with initial states∗ and an objectiveφ ⊆ Sω. Then for
every randomized observation-based strategyσ ∈ ΣO there exists apureobservation-
based strategyσP ∈ ΣP ∩ ΣO such thatPrσ

s∗
(φ) ≤ PrσP

s∗
(φ).

The main argument in the proof of Lemma 1 relies on showing that the valuePrσ
s (φ)

of any randomized observation-based strategyσ is equal to the average of the values
Prσi

s (φ) of (uncountably many) pure observation-based strategiesσi. Therefore, one of
the pure strategiesσi has to achieve at least the value of the randomized strategyσ.
The theory of integration and Fubini’s theorem make this argument precise (see [5] for
details).

Theorem 4 ([12]).Let G be aCoT stochastic game with initial states∗ and an ob-
jectiveφ ⊆ Sω. Then the following equalities hold:infπ∈ΠO

supσ∈ΣO
Prσ,π

s∗
(φ) =

supσ∈ΣO
infπ∈ΠO

Prσ,π
s∗

(φ) = supσ∈ΣO∩ΣP
infπ∈ΠO

Prσ,π
s∗

(φ).

We obtain the following result as a consequence of Lemma 1.

Theorem 5. Let G be aPOMDP with initial states∗ and an objectiveφ ⊆ Sω. Then
the following assertions hold:
1. supσ∈ΣO

Prσ
s∗

(φ) = supσ∈ΣO∩ΣP
Prσ

s∗
(φ).

2. If there is a randomized optimal (resp. almost-sure winning, positive winning) strat-
egy forφ from s∗, then there is a pure optimal (resp. almost-sure winning, positive
winning) strategy forφ from s∗.



21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based ǫ > 0 not not ǫ ≥ 0 ǫ ≥ 0

concurrent not not not (NA) (NA)

Table 2.When deterministic (ǫ-optimal) strategies are as powerful as randomized strategies. The
caseǫ = 0 in complete-observation turn-based games is open.

Theorem 4 can be derived as a consequence of Martin’s proof ofdeterminacy of
Blackwell games [12]: the result states that forCoT stochastic games pure strategies
can achieve the same value as randomized strategies, and as aspecial case the result
also holds forMDPs. Theorem 5 shows that the result can be generalized toPOMDPs,
and a stronger result (item (2) of Theorem 5) can be proved forPOMDPs (andMDPs
as a special case). It remains open whether result similar toitem (2) of Theorem 5 can
be proved forCoT stochastic games. The results summarizing when randomnesscan
be obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs.The results of [2] shows that the emptiness prob-
lem for probabilistic coBüchi (resp. Büchi) automata under the almost-sure (resp. pos-
itive) semantics [2] is undecidable. As a consequence it follows that forPOMDPs the
problem of deciding if there is a pure observation-based almost-sure (resp. positive)
winning strategy for coBüchi (resp. Büchi) objectives isundecidable, and as a conse-
quence of Theorem 5 we obtain the same undecidability resultfor randomized strate-
gies. This result closes an open question discussed in [9]. The undecidability result
holds even if the coBüchi (resp. Büchi) objectives are visible.

Corollary 1. Let G be aPOMDP with initial states∗ and letT ⊆ S be a subset of
states (or subset of observations). Whether there exists a pure or randomized almost-
sure winning strategy for Player 1 froms in G for the objectivecoBuchi(T ) is unde-
cidable; and whether there exists a pure or randomized positive winning strategy for
Player 1 froms in G for the objectiveBuchi(T ) is undecidable.

Undecidability result for one-sided complete-observation turn-based games.The
undecidability results of Corollary 1 also holds forOsT stochastic games (as they sub-
sumePOMDPs as a special case). It follows from Theorem 3 thatOsT stochastic games
can be reduced toOsT deterministic games. Thus we obtain the first undecidability re-
sult forOsT deterministic games (Corollary 2), solving the open question of [6].

Corollary 2. LetG be anOsT deterministic game with initial states∗ and letT ⊆ S
be a subset of states (or subset of observations). Whether there exists a pure or random-
ized almost-sure winning strategy for Player 1 froms in G for the objectivecoBuchi(T )
is undecidable; and whether there exists a pure or randomized positive winning strategy
for Player 1 froms in G for the objectiveBuchi(T ) is undecidable.



5 Conclusion

In this work we have presented a precise characterization for classes of games where
randomization can be obtained for free in transitions and instrategies. As a conse-
quence of our characterization we obtain new undecidability results. The other impact
of our characterization is as follows: for the class of gameswhere randomization is
free in transition, future algorithmic and complexity analysis can focus on the simpler
class of deterministic games; and for the class of games where randomization is free in
strategies, future analysis of such games can focus on the simpler class of deterministic
strategies. Thus our results will be useful tools for simpler analysis techniques in the
study of games.
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