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Abstract. We study observation-based strategies forpartially-observable
Markov decision processes(POMDPs) with parity objectives. An observation-
based strategy relies on partial information about the history of a play, namely,
on the past sequence of observations. We consider qualitative analysis prob-
lems: given aPOMDP with a parity objective, decide whether there exists an
observation-based strategy to achieve the objective with probability 1 (almost-
sure winning), or with positive probability (positive winning). Our main results
are twofold. First, we present a complete picture of the computational complex-
ity of the qualitative analysis problem forPOMDPs with parity objectives and
its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish
several upper and lower bounds that were not known in the literature. Second, we
give optimal bounds (matching upper and lower bounds) for the memory required
by pure and randomized observation-based strategies for each class of objectives.

1 Introduction

Markov decision processes.A Markov decision process (MDP)is a model for systems
that exhibit both probabilistic and nondeterministic behavior. MDPs have been used to
model and solve control problems for stochastic systems: there, nondeterminism rep-
resents the freedom of the controller to choose a control action, while the probabilistic
component of the behavior describes the system response to control actions. MDPs have
also been adopted as models for concurrent probabilistic systems, probabilistic systems
operating in open environments [21], and under-specified probabilistic systems [5].

System specifications.Thespecificationdescribes the set of desired behaviors of the
system, and is typically anω-regular set of paths. Parity objectives are a canonical
way to define such specifications in MDPs. They include reachability, safety, Büchi
and coBüchi objectives as special cases. Thus MDPs with parity objectives provide
the theoretical framework to study problems such as the verification and the control of
stochastic systems.

Perfect vs. partial observations.Most results about MDPs make the hypothesis of
perfect observation. In this setting, the controller always knows, while interacting with
the system (or MDP), the exact state of the MDP. In practice, this hypothesis is often
unrealistic. For example, in the control of multiple processes, each process has only
access to the public variables of the other processes, but not to their private variables. In
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control of hybrid systems [13], or automated planning [17],the controller usually has
noisy information about the state of the systems due to finite-precision sensors. In such
applications, MDPs withpartial observation(POMDPs) provide a more appropriate
model.

Qualitative and quantitative analysis.Given an MDP with parity objective, thequal-
itative analysisasks for the computation of the set ofalmost-sure winningstates (resp.,
positive winningstates) in which the controller can achieve the parity objective with
probability 1 (resp., positive probability); the more general quantitative analysisasks
for the computation at each state of the maximal probabilitywith which the controller
can satisfy the parity objective. The analysis of POMDPs is considerably more com-
plicated than the analysis of MDPs. First, the decision problems for POMDPs usu-
ally lie in higher complexity classes than their perfect-observation counterparts: for
example, the quantitative analysis of POMDPs with reachability and safety objectives
is undecidable [19], whereas for MDPs with perfect observation, this question can be
solved in polynomial time [11, 10]. Second, in the context ofPOMDPs, witness winning
strategies for the controller need memory even for the simple objectives of safety and
reachability. This is again in contrast to the perfect-observation case, where memoryless
strategies suffice for all parity objectives. Since the quantitative analysis of POMDPs
is undecidable (even for computing approximations of the maximal probabilities [17]),
we study the qualitative analysis of POMDPs with parity objective and its subclasses.

Contribution. For the qualitative analysis of POMDPs, the following results are
known: (a) the problems of deciding if a state is almost-surewinning for reachability
and Büchi objectives can be solved in EXPTIME [1]; (b) the problems for almost-sure
winning for coBüchi objectives and positive winning for B¨uchi objectives are unde-
cidable [1, 7]; and (c) the EXPTIME-completeness of almost-sure winning for safety
objectives follows from the results on games with partial observation [8, 4]. Our new
contributions are as follows:

1. First, we show that (a) positive winning for reachabilityobjectives is
NLOGSPACE-complete; and (b) almost-sure winning for reachability and Büchi
objectives, and positive winning for safety and coBüchi objectives are EXPTIME-
hard. We also present a new proof that positive winning for safety and coBüchi ob-
jectives can be solved in EXPTIME3. It follows that almost-sure winning for reach-
ability and Büchi, and positive winning for safety and coB¨uchi, are EXPTIME-
complete. This completes the picture for the complexity of the qualitative analysis
for POMDPs with parity objectives. Moreover our new proofs of EXPTIME upper-
bound proofs yield efficient and symbolic algorithms to solve positive winning for
safety and coBüchi objectives in POMDPs.

2. Second, we present a complete characterization of the amount of memory required
by pure (deterministic) and randomized strategies for the qualitative analysis of
POMDPs. For the first time, we present optimal memory bounds (matching upper
and lower bounds) for pure and randomized strategies: we show that (a) for posi-
tive winning of reachability objectives, randomized memoryless strategies suffice,

3 A different proof that positive safety can be solved in EXPTIME is given in [14] (see the
discussion after Theorem 2 for a comparison).



while for pure strategies linear memory is necessary and sufficient; (b) for almost-
sure winning of safety, reachability, and Büchi objectives, and for positive winning
of safety and coBüchi objectives, exponential memory is necessary and sufficient
for both pure and randomized strategies.

Related work. Though MDPs have been widely studied under the hypothesis ofper-
fect observations, there are a few works that consider POMDPs, e.g., [18, 16] for sev-
eral finite-horizon quantitative objectives. The results of [1] shows the upper bounds for
almost-sure winning for reachability and Büchi objectives, and the work of [6] consid-
ers a subclass ofPOMDPs with Büchi objectives and presents a PSPACE upper bound
for the subclass. The undecidability of almost-sure winning for coBüchi and positive
winning for Büchi objectives is established by [1, 7]. We present a solution to the re-
maining problems related to the qualitative analysis of POMDPs with parity objectives,
and complete the picture. Partial information has been studied in the context of two-
player games [20, 8], a model that is incomparable to MDPs, though some techniques
(like the subset construction) can be adapted in the contextof POMDPs. More general
models of stochastic games with partial information have been studied in [2, 14], and lie
in higher complexity classes. For example, a result of [2] shows that the decision prob-
lem for positive winning of safety objectives is 2EXPTIME-complete in the general
model, while for POMDPs, we show that the same problem is EXPTIME-complete.

2 Definitions

A probability distributionon a finite setA is a functionκ : A → [0, 1] such that∑
a∈A κ(a) = 1. Thesupportof κ is the setSupp(κ) = {a ∈ A | κ(a) > 0}. We

denote byD(A) the set of probability distributions onA.

Games and MDPs.A two-player game structureor aMarkov decision process (MDP)
(of partial observation) is a tupleG = 〈L, Σ, δ,O〉, whereL is a finite set of states,Σ
is a finite set of actions,O ⊆ 2L is a set of observations that partition4 the state spaceL.
We denote byobs(ℓ) the unique observationo ∈ O such thatℓ ∈ o. In the case of games,
δ ⊆ L×Σ ×L is a set of labeled transitions; in the case of MDPs,δ : L×Σ → D(L)
is a probabilistic transition function. For games, we require that for allℓ ∈ L and all
σ ∈ Σ, there existsℓ′ ∈ L such that(ℓ, σ, ℓ′) ∈ δ. We refer to an MDP of partial
observation as aPOMDP. We say thatG is a game or MDP ofperfect observationif
O = {{ℓ} | ℓ ∈ L}. For σ ∈ Σ ands ⊆ L, definePostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s :
(ℓ, σ, ℓ′) ∈ δ} whenG is a game, andPostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : δ(ℓ, σ)(ℓ′) > 0}
whenG is an MDP.

Plays.Games are played in rounds in which Player1 chooses an action inΣ, and
Player2 resolves nondeterminism by choosing the successor state; in MDPs the suc-
cessor state is chosen according to the probabilistic transition function. Aplay in G is
an infinite sequenceπ = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . such thatℓi+1 ∈ PostGσi

({ℓi}) for all
i ≥ 0. The infinite sequenceobs(π) = obs(ℓ0)σ0obs(ℓ1) . . . σn−1obs(ℓn)σn . . . is the
observationof π.

4 A slightly more general model with overlapping observations can be reduced in polynomial
time to partitioning observations [8].



The set of infinite plays inG is denotedPlays(G), and the set of finite prefixes
ℓ0σ0 . . . σn−1ℓn of plays is denotedPrefs(G). A stateℓ ∈ L is reachablein G if there
exists a prefixρ ∈ Prefs(G) such thatLast(ρ) = ℓ whereLast(ρ) is the last state ofρ.

Strategies.A pure strategyin G for Player1 is a functionα : Prefs(G) → Σ. A
randomized strategyin G for Player1 is a functionα : Prefs(G) → D(Σ). A (pure
or randomized) strategyα for Player1 is observation-basedif for all prefixesρ, ρ′ ∈
Prefs(G), if obs(ρ) = obs(ρ′), thenα(ρ) = α(ρ′). In the sequel, we are interested
in the existence of observation-based strategies for Player 1. A pure strategyin G for
Player2 is a functionβ : Prefs(G) × Σ → L such that for allρ ∈ Prefs(G) and all
σ ∈ Σ, we have(Last(ρ), σ, β(ρ, σ)) ∈ δ. A randomized strategyin G for Player2 is
a functionβ : Prefs(G) × Σ → D(L) such that for allρ ∈ Prefs(G), all σ ∈ Σ, and
all ℓ ∈ Supp(β(ρ, σ)), we have(Last(ρ), σ, ℓ) ∈ δ. We denote byAG, AO

G, andBG the
set of all Player-1 strategies, the set of all observation-based Player-1 strategies, and the
set of all Player-2 strategies inG, respectively.

Memory requirement of strategies.An equivalent definition of strategies is as follows.
Let Mem be a set calledmemory. An observation-based strategy with memory can be
described by two functions, amemory-updatefunctionαu: Mem×O×Σ → Mem that
given the current memory, observation and the action updates the memory, and anext-
action function αn: Mem × O → D(Σ) that given the current memory and current
observation specifies the probability distribution5 of the next action, respectively. A
strategy isfinite-memoryif the memoryMem is finite and the size of a finite-memory
strategyα is the size|Mem| of its memory. A strategy ismemorylessif |Mem| = 1. The
memoryless strategies do not depend on the history of a play,but only on the current
state. Memoryless strategies for player 1 can be viewed as functionsα: O → D(Σ).

Objectives.An objectivefor G is a setφ of infinite sequences of states and actions,
that is,φ ⊆ (L × Σ)ω. We consider objectives that are Borel measurable, i.e., sets in
the Cantor topology on(L × Σ)ω [15]. We specifically consider reachability, safety,
Büchi, coBüchi, and parity objectives, all of them being Borel measurable. The parity
objectives are a canonical form to express allω-regular objectives [22]. For a playπ =
ℓ0σ0ℓ1 . . . , we denote byInf(π) = {ℓ ∈ L | ℓ = ℓi for infinitely manyi’s} the set of
states that appear infinitely often inπ.

– Reachability and safety objectives.Given a setT ⊆ L of target states, thereach-
ability objectiveReach(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 : ℓk ∈ T }
requires that a target state inT be visited at least once. Dually, thesafetyobjective
Safe(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 : ℓk ∈ T } requires that only
states inT be visited; the objectiveUntil(T1, T2) = {ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) |
∃k ≥ 0 : ℓk ∈ T2 ∧ ∀j ≤ k : ℓj ∈ T1} requires that only states inT1 be visited
before a state inT2 is visited.

– Büchi and coB̈uchi objectives.TheBüchiobjectiveBüchi(T ) = {π | Inf(π)∩T 6=
∅} requires that a state inT be visited infinitely often. Dually, thecoBüchiobjective
coBüchi(T ) = {π | Inf(π) ⊆ T } requires that only states inT be visited infinitely
often.

5 For a pure strategy, the next-action function specifies a single action rather than a probability
distribution.



– Parity objectives.Ford ∈ N, let p : L → { 0, 1, . . . , d } be apriority functionthat
maps each state to a nonnegative integer priority. Theparity objectiveParity(p) =
{ π | min{ p(ℓ) | ℓ ∈ Inf(π) } is even} requires that the smallest priority that
appears infinitely often be even.

Note that the objectivesBüchi(T ) andcoBüchi(T ) are special cases of parity objec-
tives defined by respective priority functionsp1, p2 such thatp1(ℓ) = 0 andp2(ℓ) = 2
if ℓ ∈ T , andp1(ℓ) = p2(ℓ) = 1 otherwise. An objectiveφ is visible if it depends only
on the observations; formally,φ is visible if, wheneverπ ∈ φ andobs(π) = obs(π′),
thenπ′ ∈ φ. In this work, all our upper bound results are for the generalparity objec-
tives (not necessarily visible), and all the lower bound results for POMDPs are for the
special case of visible objectives.

Almost-sure and positive winning.An eventis a measurable set of plays, and given
strategiesα andβ for the two players (resp., a strategyα for Player 1 in MDPs), the
probabilities of events are uniquely defined [23]. For a Borel objectiveφ, we denote by
Prα,β

ℓ (φ) (resp.,Prα
ℓ (φ) for MDPs) the probability thatφ is satisfied from the starting

stateℓ given the strategiesα andβ (resp., given the strategyα). Given a gameG and
a stateℓ, a strategyα for Player1 is almost-sure winning(resp.,positive winning)
for the objectiveφ from ℓ if for all randomized strategiesβ for Player2, we have
Prα,β

ℓ (φ) = 1 (resp.,Prα,β
ℓ (φ) > 0). Given an MDPG and a stateℓ, a strategyα for

Player1 is almost-sure winning (resp. positive winning) for the objectiveφ from ℓ if we
havePrα

ℓ (φ) = 1 (resp.,Prα
ℓ (φ) > 0). We also say that stateℓ is almost-sure winning,

or positive winning forφ respectively. We are interested in the problems of deciding
the existence of an observation-based strategy for Player 1that is almost-sure winning
(resp., positive winning) from a given stateℓ.

3 Upper Bounds for the Qualitative Analysis ofPOMDPs

In this section, we present upper bounds for the qualitativeanalysis ofPOMDPs. We
first describe the known results. For qualitative analysis of MDPs, polynomial time up-
per bounds are known for all parity objectives [11, 10]. It follows from the results of [8,
1] that the decision problems for almost-sure winning forPOMDPs with reachability,
safety, and Büchi objectives can be solved in EXPTIME. It also follows from the results
of [1] that the decision problem for almost-sure winning with coBüchi objectives and
for positive winning with Büchi objectives is undecidableif the strategies are restricted
to be pure, and the results of [7] shows that the problem remains undecidable even if
randomized strategies are considered. In this section, we complete the results on upper
bounds for the qualitative analysis ofPOMDPs: we present complexity upper bounds
for the decision problems of positive winning with reachability, safety and coBüchi ob-
jectives. The following result for reachability objectives is simple, and follows from
equivalence to the graph reachability problem.

Theorem 1. Given aPOMDP G with a reachability objective and a starting stateℓ,
the problem of deciding whether there is a positive winning strategy fromℓ in G is
NLOGSPACE-complete.



Positive winning for safety and coBüchi objectives.We now show that the decision
problem for positive winning with safety and coBüchi objectives forPOMDPs can be
solved in EXPTIME. Our result for positive safety and coBüchi objectives is based on
the computation of almost-sure winning states for safety objectives, and on the follow-
ing lemma (proof in [9]).

Lemma 1. Let G = 〈L, Σ, δ,O〉 be aPOMDP and letT ⊆ L be the set of target
states. If Player1 has an observation-based strategy inG to satisfySafe(T ) with posi-
tive probability from some stateℓ, then there exists a stateℓ′ such that (a) Player1 has
an observation-based strategy inG to satisfyUntil(T , {ℓ′}) with positive probability
from ℓ, and (b) Player1 has an observation-based almost-sure winning strategy inG
for Safe(T ) from ℓ′.

By Lemma 1, positive winning states can be computed as the setof states from which
Player1 can force with positive probability to reach an almost-surewinning state while
visiting only safe states. Almost-sure winning states can be computed using the follow-
ing subset construction.

Given aPOMDP G = 〈L, Σ, δ,O〉 and a setT ⊆ L of states, theknowledge-
based subset constructionfor G is the game of perfect observationGK = 〈L, Σ, δK〉,
whereL = 2L\{∅}, and for alls1, s2 ∈ L (in particulars2 6= ∅) andσ ∈ Σ, we
have(s1, σ, s2) ∈ δK iff there exists an observationo ∈ O such that eithers2 =
PostGσ (s1) ∩ o ∩ T , or s2 = (PostGσ (s1) ∩ o) \ T . We refer to states inGK ascells.
The following result is established using standard techniques (see e.g., Lemma 3.2 and
Lemma 3.3 in [8]).

Lemma 2. Let G = 〈L, Σ, δ,O〉 be aPOMDP andT ⊆ L a set of target states. Let
GK be the knowledge-based subset construction forG andFT = {s ⊆ T } be the set
of safe cells. Player1 has an almost-sure winning observation-based strategy inG for
Safe(T ) from ℓ if and only if Player1 has an almost-sure winning strategy inGK for
Safe(F ) from the cell{ℓ}.

Theorem 2. Given aPOMDP G with a safety objective and a starting stateℓ, the
problem of deciding whether there exists a positive winningobservation-based strategy
from ℓ can be solved in EXPTIME.

Algorithms. The complexity bound of Theorem 2 has been established previously
in [14], using an extension of the knowledge-based subset construction which is not
necessary (where the state space isL × 2L). Our proof (of Theorem 2, details in [9])
is simpler and also yield efficient and symbolic algorithms that an be obtained from
the antichain algorithm of [8] for almost-sure winning of safety objectives, and simple
graph reachability for positive winning of reachability objectives.

The positive winning states for a coBüchi objective are computed as the set of
almost-sure winning states for safety that can be reached with positive probability (for
details see [9]).

Theorem 3. Given aPOMDP G with a coB̈uchi objective and a starting stateℓ, the
problem of deciding whether there exists a positive winningobservation-based strategy
from ℓ can be solved in EXPTIME.



4 Lower Bounds for the Qualitative Analysis ofPOMDPs

In this section we present lower bounds for the qualitative analysis ofPOMDPs. We
first present the lower bounds for MDPs with perfect observation (proofs in [9]).

Theorem 4. Given an MDPG of perfect observation, the following assertions hold:
(a) the positive winning problem for reachability objectives is NLOGSPACE-complete,
and the positive winning problem for safety, Büchi, coB̈uchi and parity objectives is
PTIME-complete; and (b) the almost-sure winning problem for reachability, safety,
Büchi, coB̈uchi and parity objectives is PTIME-complete.

Lower bounds for POMDPs.We have already shown that positive winning with reach-
ability objectives inPOMDPs is NLOGSPACE-complete. As in the case of MDPs with
perfect observation, for safety objectives and almost-sure winning, aPOMDP can be
equivalently considered as a game of partial observation where Player 2 makes choices
of the successors from the support of the probability distribution of the transition func-
tion, and the almost-sure winning set is the same in thePOMDP and the game. Since
the problem of almost-sure winning in games of partial observation with safety objec-
tive is EXPTIME-complete [4], the EXPTIME-completeness result follows. We now
show that almost-sure winning with reachability objectives and positive winning with
safety objectives is EXPTIME-complete. Before the result we first present a discussion
on polynomial-space alternating Turing machines (ATM).
Discussion.Let M be a polynomial-space ATM and letw be an input word. Then,
there is an exponential bound on the number of configurationsof the machine. Hence
if M can accept the wordw, then it can do so within somek|w| steps, where|w| is the
length of the wordw, andk|w| is bounded by an exponential in|w|. We construct an
equivalent polynomial-space ATMM ′ that behaves asM but keeps track (in polyno-
mial space) of the number of steps executed byM , and given a word|w|, if the number
of steps reachesk|w| without accepting, then the word is rejected. The machineM ′

is equivalent toM and reaches the accepting or rejecting states in a number of steps
bounded by an exponential in the length of the input word. Theproblem of deciding,
given a polynomial-space ATMM and a wordw, whetherM acceptsw is EXPTIME-
complete.

Reduction from Alternating PSPACE Turing machine. Let M be a polynomial-
space ATM such that for every input wordw, the accepting or the rejecting state
is reached within exponential steps in|w|. A polynomial-time reductionRG of a
polynomial-space ATMM and an input wordw to a gameG = RG(M, w) of par-
tial observation is given in [8] such that (a) there is a special accepting state inG, and
(b) M acceptsw iff there is an observation-based strategy for Player 1 inG to reach the
accepting state with probability 1. If the above reduction is applied toM , then the game
structure satisfies the following additional properties: there is a special rejecting state
that is absorbing, and for every observation-basedstrategy for Player 1, either (a) against
all Player 2 strategies the accepting state is reached with probability 1; or (b) there is a
pure Player 2 strategy that reaches the rejecting state withpositive probabilityη > 0 in
2|L| steps and the accepting or the rejecting state is reached with probability 1 in2|L|

steps. We now present the reduction toPOMDPs:



1. Almost-sure winning for reachability.Given a polynomial-space ATMM andw an
input word, letG = RG(M, w). We construct aPOMDP G′ fromG as follows: we
only modify the transition function inG′ by uniformly choosing over the successor
choices. Formally, for a stateℓ ∈ L and an actionσ ∈ Σ the probabilistic transition
functionδ′ in G′ is as follows:δ′(ℓ, σ)(ℓ′) = 0 if (ℓ, σ, ℓ′) 6∈ δ; andδ′(ℓ, σ)(ℓ′) =
1/|{ ℓ1 | (ℓ, σ, ℓ1) ∈ δ }| if (ℓ, σ, ℓ′) ∈ δ. Given an observation-based strategy
for Player 1 inG, we consider the same strategy inG′: (1) if the strategy reaches
the accepting state with probability 1 against all Player 2 strategies inG, then the
strategy ensures that inG′ the accepting state is reached with probability 1; and
(2) otherwise there is a pure Player 2 strategyβ in G that ensures the rejecting
state is reached in2|L| steps with probabilityη > 0, and with probability at least
(1/|L|)2

|L|

the choices of the successors of strategyβ is chosen inG′, and hence the

rejecting state is reached with probability at least(1/|L|)2
|L|

·η > 0. It follows that
in G′ there is an observation-based strategy for almost-sure winning the reachability
objective with target of the accepting state iff there is such a strategy inG.

2. Positive winning for safety.The reduction is same as above. We obtain thePOMDP
G′′ from thePOMDP G′ above by making the following modification: from the
state accepting, thePOMDP goes back to the initial state with probability 1. If
there is an observation-based strategyα for Player 1 inG′ to reach the accepting
state, then repeating the strategyα each time the accepting state is visited, it can
be ensured that the rejecting state is reached with probability 0. Otherwise, against
every observation-based strategy for Player 1, the probability to reach the rejecting
state ink·(2|L|+1) steps is at least1−(1−η′)k, whereη′ = η·(1/|L|)2

|L|

> 0 (this
is because there is a probability to reach the rejecting state with probability at least
η′ in 2|L| steps, and unless the rejecting state is reached the starting state is again
reached within2|L| + 1 steps). Hence the probability to reach the rejecting state
is 1. It follows thatG′ is almost-sure winning for the reachability objective with
the target of the accepting state iff inG′′ there is an observation-based strategy for
Player 1 to ensure that the rejecting state is avoided with positive probability. This
completes the proof of correctness of the reduction.

A very brief (two line proof) sketch was presented as the proof of Theorem 1 of [12]
to show that positive winning inPOMDPs with safety objectives is EXPTIME-hard.
We were unable to reconstruct the proof: the proof suggestedto simulate a nondetermin-
istic Turing machine. The simulation of a polynomial-spacenondeterministic Turing
machine only shows PSPACE-hardness, and the simulation of anondeterministic EX-
PTIME Turing machine would have shown NEXPTIME-hardness, and an EXPTIME
upper bound is known for the problem. Our proof presents a different and detailed proof
of the result of Theorem 1 of [12]. Hence we have the followingtheorem, and the results
are summarized in Table 1.

Theorem 5. Given aPOMDP G, the following assertions hold: (a) the positive win-
ning problem for reachability objectives is NLOGSPACE-complete, the positive winning
problem for safety and coB̈uchi objectives is EXPTIME-complete, and the positive win-
ning problem for B̈uchi and parity objectives is undecidable; and (b) the almost-sure



Positive Almost-sure
Reachability NLOGSPACE-complete (up+lo)EXPTIME-complete (lo)

Safety EXPTIME-complete (up+lo) EXPTIME-complete [4]
Büchi Undecidable [1] EXPTIME-complete (lo)

coBüchi EXPTIME-complete (up+lo) Undecidable [1]
Parity Undecidable [1] Undecidable [1]

Table 1. Computational complexity ofPOMDPs with different classes of parity objectives for
positive and almost-sure winning. Our contribution of upper and lower bounds are indicated as
“up” and “lo” respectively in parenthesis.

winning problem for reachability, safety and Büchi objectives is EXPTIME-complete,
and the almost-sure winning problem for coBüchi and parity objectives is undecidable.

5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory required by pure and random-
ized strategies for positive and almost-sure winning for reachability, safety, Büchi and
coBüchi objectives.

Bounds for safety objectives.First, we consider positive and almost-sure winning with
safety objectives inPOMDPs. It follows from the correctness argument of Theorem 2
that pure strategies with exponential memory are sufficientfor positive winning with
safety objectives inPOMDPs, and the exponential upper bound on memory of pure
strategies for almost-sure winning with safety objectivesin POMDPs follows from the
reduction to games. We now present a matching exponential lower bound for random-
ized strategies.

Lemma 3. There exists a family(Pn)n∈N of POMDPs of sizeO(p(n)) for a poly-
nomialp with a safety objective such that the following assertions hold: (a) Player1
has a (pure) almost-sure (and therefore also positive) winning strategy in each of these
POMDPs; and (b) there exists a polynomialq such that every finite-memory random-
ized strategy for Player 1 that is positive (or almost-sure)winning inPn has at least
2q(n) states.

Proof sketch. The set of actions of thePOMDP Pn is Σn ∪ {#} whereΣn =
{1, . . . , n}. ThePOMDP is composed of an initial stateq0 andn sub-MDPsAi with
state spaceQi, each consisting of a loop overpi statesqi

1, . . . , q
i
pi

wherepi is thei-th
prime number. From each stateqi

j (1 ≤ j < pi), every action inΣn leads to the next
stateqi

j+1 with probability 1
2 , and to the initial stateq0 with probability 1

2 . The action#
is not allowed. Fromqi

pi
, the actioni is not allowed while the other actions inΣn lead

back the first stateqi
1 and to the initial stateq0 both with probability1

2 . Moreover, the
action# leads back to the initial state (with probability1). The disallowed actions lead
to a bad state. The states of theAi’s are indistinguishable (they have the same observa-
tion), while the initial stateq0 is visible. There are two observations, the state{q0} is
labelled by observationo1, and the other states inQ1∪· · ·∪Qn (that we call the loops)
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by observationo2. Fig. 1 shows the gameP2: the witness family of POMDPs have sim-
ilarities with analogous constructions for games [3]. However the construction of [3]
shows lower bounds only for pure strategies and in games, whereas we present lower
bound for randomized strategies and for POMDPs (the proof and formal definition of
thePOMDP family (Pn)n∈N can be found in [9]). Intuitively, exponential memory is
required to win inPn (even positively) because the action# needs to be played after
p∗n =

∏n

i=1 pi steps in the loops, and cannot be played before. Therefore, awinning
strategy has to be able to count up top∗n which requires exponential memory.

Bounds for reachability objectives.The bounds for positive winning with reachability
objectives are as follows: randomized memoryless strategies suffice, and for pure strate-
gies, memory linear in the number of states is both necessaryand sufficient (details
in [9]). It follows from the results of [1] that for almost-sure winning with reachability
objectives inPOMDPs pure strategies with exponential memory suffice, and we now
prove an exponential lower bound for randomized strategies.

Lemma 4. There exists a family(Pn)n∈N of POMDPs of sizeO(p(n)) for a polyno-
mialp with a reachability objective such that the following assertions hold: (a) Player1
has an almost-sure winning strategy in each of thesePOMDPs; and (b) there exists a
polynomialq such that every finite-memory randomized strategy for Player 1 that is
almost-sure winning inPn has at least2q(n) states.

Proof sketch. Fix the action set asΣ = {#, tick}. ThePOMDP P ′
n is composed of an

initial stateq0 andn sub-MDPsHi, each consisting of a loop overpi statesqi
1, . . . , q

i
pi

wherepi is thei-th prime number. From each state in the loops, the actiontick can be
played and leads to the next state in the loop (with probability 1). The action# can be
played in the last state of each loop and leads to theGoal state. The objective is to reach
Goal with probability 1. Actions that are not allowed lead to a sink state from which
it is impossible to reachGoal. There is a unique observation that consists of the whole
state space. Intuitively, the argument for exponential memory is analogous to the case
of Lemma 3. Fig. 2 showsP ′

2 and see [9] for a proof of Lemma 4.



Pure PositiveRandomized PositivePure AlmostRandomized Almost
Reachability Linear Memoryless Exponential Exponential

Safety Exponential Exponential Exponential Exponential
Büchi No Bound No Bound Exponential Exponential

coBüchi Exponential Exponential No Bound No Bound
Parity No Bound No Bound No Bound No Bound

Table 2.Optimal memory bounds for pure and randomized strategies.

Bounds for Büchi and coBüchi objectives.An exponential upper bound for memory
of pure strategies for almost-sure winning of Büchi objectives follows from the results
of [1], and the matching lower bound for randomized strategies follows from our result
for reachability objectives. Since positive winning is undecidable for Büchi objectives
there is no bound on memory for pure or randomized strategiesfor positive winning. An
exponential upper bound for memory of pure strategies for positive winning of coBüchi
objectives follows from the correctness proof of Theorem 3 that iteratively combines
the positive winning strategies for safety and reachability to obtain a positive winning
strategy for coBüchi objective. The matching lower bound for randomized strategies
follows from our result for safety objectives. Since almost-sure winning is undecidable
for coBüchi objectives there is no bound on memory for pure or randomized strategies
for positive winning. This gives us the following theorem (also summarized in Table 2),
which is in contrast to the results for MDPs with perfect observation where pure mem-
oryless strategies suffice for almost-sure and positive winning for all parity objectives.

Theorem 6. The optimal memory bounds for strategies inPOMDPs are as follows.

1. Reachability objectives: for positive winning randomized memoryless strategies are
sufficient, and linear memory is necessary and sufficient forpure strategies; and for
almost-sure winning exponential memory is necessary and sufficient for both pure
and randomized strategies.

2. Safety objectives: for positive winning and almost-surewinning exponential mem-
ory is necessary and sufficient for both pure and randomized strategies.

3. Büchi objectives: for almost-sure winning exponential memory is necessary and
sufficient for both pure and randomized strategies; and there is no bound on mem-
ory for pure and randomized strategies for positive winning.

4. coB̈uchi objectives: for positive winning exponential memory is necessary and suf-
ficient for both pure and randomized strategies; and there isno bound on memory
for pure and randomized strategies for almost-sure winning.
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