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Abstract. Quantitative languages are an extension of boolean laeglthgt as-
sign to each word a real number. Mean-payoff automata ate fwitomata with
numerical weights on transitions that assign to each iefipéith the long-run av-
erage of the transition weights. When the mode of branchinigeoautomaton is
deterministic, nondeterministic, or alternating, theresponding class of quan-
titative languages is nabbustas it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterniinéstd alternating
mean-payoff automata are riecidableeither, as the quantitative generalization
of the problems of universality and language inclusion idaaidable.

We introduce a new class of quantitative languages, defiyechdan-payoff
automaton expressionsvhich is robust and decidable: it is closed under the
four pointwise operations, and we show that all decisiorblamms are decidable
for this class. Mean-payoff automaton expressions subslet@ministic mean-
payoff automata, and we show that they have expressive gos@mparable to
nondeterministic and alternating mean-payoff automata.also present for the
first time an algorithm to compute distance between two dtaive languages,
and in our case the quantitative languages are given as paseaff automaton
expressions.

1 Introduction

Quantitative languagek are a natural generalization of boolean languages thajrassi
to every wordw a real numbef.(w) € R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as theuatnaf some resource
(e.g., memory consumption, or power consumption) needpdbiuce it, or bound the
long-run average available use of the resource. Thus datveilanguages can specify
properties related to resource-constrained programsaarnichplementatiorl. 4 satis-
fies (or refines) a specificatiaby if L4(w) < Lg(w) for all wordsw. This notion of
refinement is @uantitative generalization of language inclusj@md it can be used to
check for example if for each behavior, the long-run averagponse time of the sys-
tem lies below the specified average response requirementeHt is crucial to identify
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some relevant class of quantitative languages for whighghestion is decidable. The
other classical decision questions such as emptines€rgaiity, and language equiva-
lence have also a natural quantitative extension. For ebegitm@quantitative emptiness
problemasks, given a quantitative languaj@nd a threshold € Q, whether there ex-
ists some wordv such thatl(w) > v, and thequantitative universality problerasks
whetherL(w) > v for all wordsw. Note that universality is a special case of language
inclusion (wherel 4 (w) = v is constant).

Weightedmean-payoff automataresent a nice framework to express such quanti-
tative properties [4]. A weighted mean-payoff automatoa fimite automaton with nu-
merical weights on transitions. The value of a wards the maximal value of all runs
over w (if the automaton is nondeterministic, then there may beynrans overw),
and the value of a run is the long-run average of the weights that appear along
A mean-payoff extension to alternating automata has besfiest in [5]. Determinis-
tic, nondeterministic and alternating mean-payoff autianaae three classes of mean-
payoff automata with increasing expressive power. Howeawvene of these classes is
closed under the four pointwise operations of max, min (Wigeneralize union and
intersection respectively), numerical complenieahd sum (see Table 1). Determinis-
tic mean-payoff automata are not closed under max, min, amd®]; nondeterministic
mean-payoff automata are not closed under min, sum and eomepit [6]; and alter-
nating mean-payoff automata are not closed under sum [5jcéleone of the above
classes isobustwith respect to closure properties.

Moreover, while deterministic mean-payoff automata emnjegidability of all quan-
titative decision problems [4], the quantitative languagdusion problem is undecid-
able for nondeterministic and alternating mean-payofbmata [10], and thus also all
decision problems are undecidable for alternating meawofpautomata. Hence al-
though mean-payoff automata provide a nice framework toesgquantitative proper-
ties, there is no known class which is both robust and detédabe Table 1).

In this paper, we introduce a new class of quantitative laggs that are defined
by mean-payoff automaton expressioAs expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two meangfgutomaton ex-
pressions. Since deterministic mean-payoff automata lased under complement,
mean-payoff automaton expressions form a robust classstolitsed under max, min,
sum and complement. We show that (a) all decision probleman(iative empti-
ness, universality, inclusion, and equivalence) are @ddafor mean-payoff automaton
expressions; (b) mean-payoff automaton expressions aoceniparable in expressive
power with both the nondeterministic and alternating mpayeff automata (i.e., there
are quantitative languages expressible by mean-payaffheaton expressions that are
not expressible by alternating mean-payoff automata, hacktare quantitative lan-
guages expressible by nondeterministic mean-payoff aat@that are not expressible
by mean-payoff automata expressions); and (c) the pr@seofi cut-point languages
(i.e., the sets of words with value above a certain thregHotddeterministic automata
carry over to mean-payoff automaton expressions, mai@\cth-point language is-
regular when the threshold is isolated (i.e., some neididmmt around the threshold
contains no word). Moreover, mean-payoff automaton exgiwas can express all ex-

5 The numerical complement of a quantitative languafyés— L.



Closure properties Decision problems

max | min | sum | comp.| empt.| univ. | incl. | equiv.
Deterministic x | x| x VECl vl vv] v
Nondeterministic v/ X X X v X X X
Alternating v | v x VB x x | x x
Expressions vV | V|V v v v | Y v

Table 1. Closure properties and decidability of the various clasdesiean-payoff automata.
Mean-payoff automaton expressions enjoy fully positivesare and decidability properties.

amples in the literature of quantitative properties usirepmpayoff measure [1, 6, 7].
Along with the quantitative generalization of the claskibacision problems, we also
consider the notion afistancebetween two quantitative languages andL 5, defined
assup,,|La(w)—Lp(w)|. When quantitative language inclusion does not hold batwee
an implementatiorl 4 and a specificatiot. 3, the distance is a relevant information to
evaluate how far they are from each other, as we may accefanmemtations that over-
spend the resource but we would prefer the least expense® Wk present the first
algorithm to compute the distance between two quantitddimguages: we show that
the distance can be computed for mean-payoff automatoressions.

Our approach to show decidability of mean-payoff automatqressions relies on
the characterization and algorithmic computation ofibkie se{ Lz (w) | w € X¥}
of an expressioiiy, i.e. the set of all values of words accordingfoThe value set can
be viewed as an abstract representation of the quantitatigeiagel. , and we show
that all decision problems, cut-point language and digtawenputation can be solved
efficiently once we have this set.

First, we present a precise characterization of the valuéosejuantitative lan-
guages defined by mean-payoff automaton expressions. ficydar, we show that it
is not sufficient to construct the convex hadnv(Sg) of the setSy of the values of
simple cycles in the mean-payoff automata occurring’jrbut we need essentially to
apply an operatoF,,,;, (-) which given a seZ C R"™ computes the set of poingsc R
that can be obtained by taking pointwise minimum of eachaioate of points of a set
X C Z. We show that while we need to compute the Bgt= F,i,(conv(Sg)) to
obtain the value set, and while this set is always conves, it always the case that
Fiin(conv(Sg)) = conv(Fumin(SE)) (which would immediately give an algorithm to
computeVz). This may appear counter-intuitive because the equatitsishin R? but
we show that the equality does not holdRA (Example 2).

Second, we provide algorithmic solutions to complitg, (conv(S)), for a finite set
S. We first present a constructive procedure that giveonstructs a finite set of points
S’ such thatonv(S’) = Fiin(conv(S)). The explicit construction presents interesting
properties about the sét,;,, (conv(.S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric cotiatrof Fy,i, (conv(S)) as

6 Closure under complementation holds becausminfAvg-automata andLimSupAvg-
automata are dual. It would not hold if onlyimInfAvg-automata (or onlyLimSupAvg-
automata) were allowed.



a set of linear constraints. The computation/fi, (conv(S)) is a new problem in
computational geometry and the solutions we present cautaf mdependent interest.
Using the algorithm to computg,,;,,(conv(S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Duekoofaspace, most proofs
are given in the fuller version [3].

Related worksQuantitative languages have been first studied over finitedsvin
the context of probabilistic automata [17] and weightedmata [18]. Several works
have generalized the theory of weighted automata to infimiteds (see [14, 12,16, 2]
and [13] for a survey), but none of those have considered meagaff conditions. Ex-
amples where the mean-payoff measure has been used toydpegirun behaviours
of systems can be found in game theory [15, 20] and in Markaistn processes [8].
The mean-payoff automata as a specification language haveilneestigated in [4, 6,
5], and extended in [1] to construct a new class of (non-dqtaive) languages of infi-
nite words (the multi-threshold mean-payoff languagesjaimed by applying a query
to a mean-payoff language, and for which emptiness is dblgd# turns out that a
richer language of queries can be expressed using mearffpay@maton expressions
(together with decidability of the emptiness problem). Aaidled comparison with the
results of [1] is given in Section 5. Moreover, we providealthmic solutions to the
quantitative language inclusion and equivalence probkemdsto distance computation
which have no counterpart for non-quantitative languaBesated notions of metrics
have been addressed in stochastic games [9] and probialglistesses [11, 19].

2 Mean-Payoff Automaton Expressions

Quantitative languages A quantitative languagé over a finite alphabeY is a func-

tion L : X — R. Given two quantitative languagés and - over X', we denote by
max (L1, Ls) (resp.,min(Ly, L), sum(Ly, L2) and —L;) the guantitative language
that assignsnax(L;(w), La(w)) (resp.,min(Lq(w), La(w)), L1(w) + Lo(w), and
—L1(w)) to each wordw € X“. The quantitative languageL is called thecomple-
mentof L. Themax andmin operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower boundfopbintwise ordex such
thatL; < Lo if L (w) < Lo(w) forallw € X¥. Thus, they generalize respectively the
union and intersection operators for classical booleaguages.

Weighted automata.A Q-weighted automatois a tupleA = (@, q;, X, 0, wt), where

— @ is afinite set of stateg; € Q is the initial state, and’ is a finite alphabet;

— 0 C Q x X xQis afinite set of labelled transitions. We assume ghattotal, i.e.,
forall ¢ € Q ando € X, there existg’ such thafq, o,¢’) € J;

— wt : § — Qis aweightfunction, where&) is the set of rational numbers. We assume
that rational numbers are encoded as pairs of integers anpin

We say thatd is deterministidf for all ¢ € @ ando € X, there existdq, 0, ¢’) € 0 for
exactly oneg’ € Q. We sometimes call automat@ndeterministito emphasize that
they are not necessarily deterministic.

Words and runs. A word w € X is an infinite sequence of letters froh A lasso-
word w in X is an ultimately periodic word of the form; - wy, wherew; € X*



is a finite prefix, andvy, € X+ is a finite and nonempty word. Aun of A over an
infinite wordw = o109 ... is an infinite sequence = ggo1q102 ... Of states and
letters such thati) qo = qr, and ¢i) (¢:, 0i+1,4i+1) € ¢ forall i > 0. We denote by
wt(r) = vy ... the sequence of weights that occuriwherev; = wt(q;, 0511, Git1)
forallz > 0.

Quantitative language of mean-payoff automataThe mean-payoff valuéor limit-
average) of a sequence= vgv; ... of real numbers is either
1 n—1 n—1

LimInfAvg(v) = hgrg@gf e ; v;, Or  LimSupAvg(v) = hTIlILsOLip o ; v;.
Note that if we delete or insert finitely many values in an iifirsequence of num-
bers, its limit-averages do not change, and if the sequengkimately periodic, then
the LimInfAvg and LimSupAvg values coincide (and correspond to the mean of the
weights on the periodic part of the sequence). However ireggitheLimInfAvg and
LimSupAvg values do not coincide.

ForVal € {LimInfAvg, LimSupAvg}, the quantitative language, of A is defined
by L4 (w) = sup{Val(wt(r)) | ris arun ofA overw} for all w € X*. Accordingly,
the automatom and its quantitative languades are called.imInfAvg or LimSupAvg.
Note that for deterministic automata, we halg(w) = Val(wt(r)) wherer is the
unique run ofA overw.

We omit the weight functionvt when it is clear from the context, and we write
LimAvg when the value according toimInfAvg and LimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distanceWe consider the following classical decision prob-
lems for quantitative languages, assuming an effectivegmtation of quantitative lan-
guages (such as mean-payoff automata, or automaton eiqedgfined later). Given
a quantitative language and a threshold € Q, thequantitative emptiness problem
asks whether there exists a warde X* such thatL(w) > v, and theguantitative
universality problenasks whethef (w) > v for all wordsw € X«.

Given two quantitative languagds and L», the quantitative language-inclusion
problemasks whether; (w) < Ly(w) for all wordsw € X%, and thequantitative
language-equivalence probleasks whethel; (w) = Ly(w) for all wordsw € X«.
Note that universality is a special case of language inciusiherel; is constant.
Finally, thedistancebetweenL, andLs is Dsup(L1, L2) = sup,, ¢ sw|L1(w) — La(w)].

It measures how close is an implementatignas compared to a specificatida.

It is known that quantitative emptiness is decidable fordeiarministic mean-
payoff automata [4], while decidability was open for alt&ing mean-payoff automata,
and for the quantitative language-inclusion problem ofdeiarministic mean-payoff
automata. From recent undecidability results on gamesimipierfect information and
mean-payoff objective [10] we derive that these problerasiadecidable (Theorem 5).
Robust quantitative languagesA classQ of quantitative languages isbustif the
class is closed undenax, min, sum and complementation operations. The closure
properties allow quantitative languages from a robustsctasbe described composi-
tionally. While nondeterministi€imInfAvg- andLimSupAvg-automata are closed un-
der themax operation, they are not closed undeim and complement [6]. Alternating



LimInfAvg- and LimSupAvg-automaté are closed undemax and min, but are not
closed under complementation asndn [5]. We define arobustclass of quantitative
languages for mean-payoff automata which is closed unde&f, min, sum, and com-
plement, and which can express all natural examples of gaave languages defined
using the mean-payoff measure [1, 6, 7].

Mean-payoff automaton expressionsA mean-payoff automaton expressiéhs ob-
tained by the following grammar rule:

E:=A|max(E,E) | min(E, E) | sum(E, E)

whereA is adeterministid.imInfAvg- or LimSupAvg-automaton. The quantitative lan-
guagelL of a mean-payoff automaton expressighis Lp = L, if E = Ais a
deterministic automaton, anly = op(Lg,,Lg,) if E = op(Fi, Es) for op €
{max, min, sum}. By definition, the class of mean-payoff automaton expoesss
closed undemax, min andsum. Closure under complement follows from the fact that
the complement ofhax(E, F») is min(—FE7, — Es), the complement ofin(F;, E2)

is max(—FEq,—FE>), the complement ofum(FE1, E2) is sum(—F;,—E>), and the
complement of a deterministidmInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted dsraSupAvg-automaton, and vice
versa, since- lim sup(vg, v1, ... ) = liminf(—wvg, —v1, ... ). Note that arbitrary linear
combinations of deterministic mean-payoff automaton eggions (expressions such
asc E1 + coEs wherecy, co € Q are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positicéor |c| results in a
guantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expressin let A;,..., A,, be the determin-
istic weighted automata occurring ik. The vector setof E is the setVp =
{{(La,(w),...,La,(w)) € R*" | w € X¥} of tuples of values of words according
to each automator;. In this section, we characterize the vector set of meamfpay
automaton expressions, and in Section 4 we give an algddthracedure to compute
this set. This will be useful to establish the decidabilifyah decision problems, and
to compute the distance between mean-payoff automatorgsipns. Given a vector
v € R™, we denote byjv|| = max; |v;| theoco-normof v.

Thesynchronized produdif A4y, ..., A, such thatd; = (Q;, ¢%, X, §;, wt;) is the
Q"-weighted automatod g = Ay x---x A, = (Q1 %X+ xQn, (¢}, ..., q7), X, 5, wt)
such thatt = ((¢1,---,qn),0,(q},---,¢,)) € 0 if t; == (¢, 0,q¢,) € ¢, for all
1 < <n,andwt(t) = (wty(t1),...,wt,(t,)). In the sequel, we assume that All's
are deterministit.imInfAvg-automata (hencei g is deterministic) and that the under-
lying graph of the automatoA i has only one strongly connected component (scc). We
show later how to obtain the vector set without these regiris.

" See [5] for the definition of alternatirigmInfAvg- andLimSupAvg-automata that generalize
nondeterministic automata.



(1,0)

Fig. 1. The vector set off = max (A1, A2) iS Fiin(conv(SEg)) 2 conv(SEg).

For each (simple) cycle in Ag, let thevector valueof p be the mean of the tuples
labelling the edges qf, denotedAvg(p). To each simple cyclg in Ar corresponds a
(not necessarily simple) cycle in eadh, and the vector valu@s, . . . , v, ) of p contains
the mean value; of p in each4,. We denote by the (finite) set of vector values of
simple cycles in . Letconv(Sg) be the convex hull ob .

Lemma 1. Let E be a mean-payoff automaton expression. Theceet(Sg) is the
closure of the sef Lz (w) | w is a lasso-worgl.

The vector set of contains more values than the convex hkualiv(Sg), as shown
by the following example.

Example 1.Consider the expressiafi = max(A;, A2) whereA; and A, are deter-
ministic LimInfAvg-automata (see Fig. 1). The produtt = A; x A, has two sim-
ple cycles with respective vector valugs 0) (on letter @’) and (0,1) (on letter o).
The setd = conv(Sg) is the solid segment on Fig. 1 and contains the vector values
of all lasso-words. However, other vector values can beioéta consider the word
w = a™b™2q"3b™ ... wheren; = 1andn;; 1 = (ng +---+n;)? foralli > 1. Itis
easy to see that the valuewfaccordlng tad; is0 because the average numbensfln
the prefixes” 162 .. . a™ib™i+1 fori odd is smaller than F:nﬁfﬁlﬂ = 1+n1+ —
which tends ta® whem — 00. Sinced; is aLimInfAvg-automaton, the value af is 0

in A;, and by a symmetric argument the value.os also0 in A,. Therefore the vector
(0,0) is in the vector set of. Note thatz = (21, z2) = (0,0) is the pointwise mini-
mum ofz = (z1,22) = (1,0) andy = (y1,y2) = (0,1), i.e.z = fmin(z,y) Where
z1 = min(xq,y1) andze = min(yy, y2). In fact, the vector set is the whole triangular
regionin Fig. 1,i.eVg = { fmn(z,y) | 2,y € conv(Sg)}. O

We generalizef,;, to finite sets of points? C R"™ in n dimensions as fol-
lows: fmin(P) € R™ is the pointp = (p1,pe,...,p,) such thatp; is the minimum
i coordinate of the points i?, for 1 < i < n. For arbitraryS C R", define
Fnin(S) = {fmin(P) | P is afinite subset of'}. As illustrated in Example 1, the next
lemma shows that the vector 9ét is equal toF i, (conv(Sg)).

Lemma 2. Let £ be a mean-payoff automaton expression built from detestiini
LimInfAvg-automata, and such thadz has only one strongly connected component.
Then, the vector set & is Vg = Fiin(conv(Sg)).



For a general mean-payoff automaton expressior(with both deterministic
LimInfAvg- andLimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2 as follows. We replace ekdieiSupAvg automatonA;
occurring in E by the LimInfAvg automatonA; obtained fromA; by replacing ev-
ery weightwt by —wt. The duality ofliminf andlimsup yields L4, = —Ly,. In
each strongly connected componéhof the underlying graph ofiz, we compute
Ve = Fmin(conv(Sc)) (whereSc is the set of vector values of the simple cycle€)n
and apply the transformatiafy — —z; on every coordinatéwhere the automatoA;
was originally aLimSupAvg automaton. The union of the sdt§, Ve whereC ranges
over the strongly connected componentsigf gives the vector set df.

Theorem 1. Let ¥ be a mean-payoff automaton expression built from detestnini
LimInfAvg-automata, and leZ be the set of strongly connected componentd jin
For a strongly connected componehtlet Se denote the set of vector values of the
simple cycles ii€. The vector set of is Vi = e z Fnin(conv(Se)).

4 Computation of Fy,;,(conv(S)) for a Finite Set .S

It follows from Theorem 1 that the vector séf of a mean-payoff automaton expres-
sion E can be obtained as a union of sétg;,(conv(S)), whereS C R™ is a fi-
nite set. However, the sebnv(.S) being in general infinite, it is not immediate that
Fhin(conv(S)) is computable. In this section we consider the problem of mating
Fiin(conv(S)) for a finite setS. In subsection 4.1 we present an explicit construction
and in subsection 4.2 we give a geometric construction ofséteas a set of linear
constraints. We first present some properties of théggf(conv(.S)).

Lemma 3. If X is a convex set, theR,,,;, (X)) is convex.

By Lemma 3, the sef,,in (conv(S)) is convex, and sincé,;, is a monotone oper-
ator andS C conv(S), we haveF iy (S) € Fumin(conv(S)) and thussonv(Fpin(S)) C
Fhin(conv(S)). The following proposition states that in two dimensions éibove sets
coincide.

Proposition 1. Let.S C R? be a finite set. Thermonv(Fpin (S)) = Fuin(conv(S)).

We show in the following example that in three dimensionsaheve proposition
does not hold, i.e., we show th&,;,, (conv(SE)) # conv(Fuin(Sg)) in R3.

Example 2.We show that in three dimension there is a finite setsuch that
Fin(conv(S)) € conv(Fnin(S)). Let S = {q,r,s} with ¢ = (0,1,0), r =
(—=1,—-1,1), ands = (1,1,1). Then fuin(r,s) = 7, fmin(q,7,8) = fmin(g,7) =
t = (—1,-1,0), and fumin(q,s) = ¢. ThereforeF,;in(S) = {q,r, s,t}. Consider
p = (r+s)/2 = (0,0,1). We havep € conv(S) and fmin(p,q) = (0,0,0).
Hence (0,0,0) € Fuyin(conv(S)). We now show that0,0,0) does not belong to
conv(Fin(9)). Considen = aq-g+a,-r+ - s+a; -t such that in conv(Fnin (5)).
Since the third coordinate is non-negative for, s, andt, it follows that if o, > 0 or
as > 0, then the third coordinate af is positive. Ifay = 0 anda,. = 0, then we have
two cases: (a) ity, > 0, then the first coordinate af is negative; and (b) ify, = 0,
then the second coordinatewfs 1. It follows (0, 0, 0) is notinconv(Fi,in(S)). O



4.1 Explicit construction

Example 2 shows that in genet@l,i, (conv(.S)) € conv(Fnin(S)). In this section we
present an explicit construction that given a finite Setonstructs a finite sef’ such
that (a)S C S’ C conv(S) and (b)Fiyin (conv(S)) C conv(Fiin(S”)). It would follow
that Finin (conv(S)) = conv(Fnin(S")). Since convex hull of a finite set is computable
and Fiin (57) is finite, this would give us an algorithm to compuig;,, (conv(.S)). For
simplicity, for the rest of the section we writé for F,,,;, and f for fi, (i.e., we drop
the min from subscript). Recall thak'(S) = {f(P) | P finite subset of5} and let
F;(S) = {f(P) | P finite subset of5 and|P| < i}. We considelS C R".

Lemma 4. LetS C R™. Then,F(S) = F,(S) andF,(S) C Fy~1(S).

Iteration of a construction ~. We will present a construction with the following
properties: input to the construction is a finite $2f points, and the outpui(Y)
satisfies the following properties

1. (Condition C1).~(Y") is finite and subset afonv(Y").
2. (Condition C2). Fs(conv(Y)) C conv(F (y(Y))).

Before presenting the constructignwe first show how to iterate the construction to
obtain the following result: given a finite set of points we construct a finite set of
points X’ such thatF'(conv(X)) = conv(F(X")).

Iteratingy. Consider a finite set of points, and letX, = X andX; = v(Xy). Then
conv(X1) C conv(conv(Xy)) (since by ConditiorC1 we haveX; C conv(Xj))
and henceonv(X;) C conv(Xj); and
F5(conv(Xp)) C conv(F(X1)) (by ConditionC?2)
Fori > 2, let X; = v(X,;_1), and then by iteration we obtain that fat, ; we have
(1) conv(X,,—1) C conv(Xj) (2) F3~*(conv(Xp)) € conv(F(X,,_1))

From (1) and (2) above, along with the aid of Lemma 4 and Lemmae3show the
following properties:

(A) F(conv(Xy)) = F,(conv(Xy)) € F~*(conv(Xy)) € conv(F(X,_1))

(B) conv(F(X,,—1)) C conv(F(conv(X,,—1))) C F(conv(Xp))

By (A) and (B) above we havé'(conv(Xy)) = conv(F(X,_1)). Thus given the fi-
nite setX, we have the finite seX,,_; such that (a)X € X,,—; C conv(X) and
(b) F(conv(X)) = conv(F(X,_1)). We now present the constructigrto complete
the result.

The construction ~. Given a finite sel” of pointsY’ = ~(Y") is obtained by adding
points toY" in the following way:



— Forall1 < k < n, we consider alk-dimensional coordinate planés supported
by a pointinY’;

— Intersect each coordinate plaffewith conv(Y") and the resultis a convex polytope
Yo,

— We add the corners (or extreme points) of each polyigpeo Y.

The proof that the above construction satisfies cond@fibandC2 is given in the fuller
version [3], and thus we have the following result.

Theorem 2. Given a finite setS C R™ such that[S| = m, the following assertion
holds: a finite sets’ with |S’] < m?2" - 27" can be computed im©(™2") . 20(n")
time such that (ap C 5" C conv(S) and (b) Finin(conv(S)) = conv(Fpmin(S7)).

4.2 Linear constraint construction

In the previous section we presented an explicit constnabif a finite set of points
whose convex hull gives uB,,;,,(conv(S)). The explicit construction shows interest-
ing properties of the sefi,,i,(conv(S)), however, the construction is inefficient com-
putationally. In this subsection we present an efficientngetoic construction for the
computation ofF,,;, (conv(S)) for a finite setS. Instead of constructing a finite set
S’ C conv(S) such thatonv(S’) = Fyin(conv(S)), we represent,i, (conv(S)) as a
finite set of linear constraints.

Consider thepositive orthantanchored at the origin iR"”, that is, the set of points
with non-negative coordinate®’} = {(z1,22,...,2,) | z; > 0,Vi}. Similarly, the
negative orthants the set of points with non-positive coordinates, deneteR” =
—R’ . Using vector addition, we writg + R’} for the positive orthant anchored st
Similarly, we writez + R” = x — R for the negative orthant anchoredzatThe
positive and negative orthants satisfy the following sietplality relation = € y + R’}
iff y €z —R7.

Note thatR’; is ann-dimensional convex polyhedron. For each< j < n, we
consider thén — 1)-dimensional facé.; spanned by the coordinate axes excepyjthe
one, thatislL; = {(z1,22,...,2,) € R} | z; = 0}.

We say thay + R} is supporteddy X if (y +L;) N X # @ for everyl < j < n.
Assumingy + R’ is supported byX, we can construct a sét C X by collecting
one point perin — 1)-dimensional face of the orthant and get= f(Y). It is also
allowed that two faces contribute the same point¥toSimilarly, if y = f(Y") for a
subsety” C X, then the positive orthant anchoredyais supported byX. Hence, we
get the following lemma.

Lemma5 (Orthant Lemma). y € Fiin(X) iff y + R”} is supported byX.

Construction.We use the Orthant Lemma to constritgti, (X ). We begin by describ-
ing the set of pointg for which the;™ face of the positive orthant anchorediahas
a non-empty intersection witl. DefineF; = X — L;, the set of points of the form
x — z,wherez € X andz € L;.

Lemma 6 (Face Lemma)(y +L;) N X # @iff y € F.



Proof. Letz € X be a point in the intersection, that is,c y + L;. Using the duality
relation for the(n — 1)-dimensional orthant, we ggte = — IL;. By definition,z — L;
is a subset o — LL;, and hence € F). O

It is now easy to describe the set defined in our problem stxtem
Lemma 7 (Characterization). Fi,i,(X) = ﬂ;;l F;.

Proof. By the Orthant Lemmay € F,in(X) iff y + R is supported byX. Equiva-
lently, (y + L;) N X # @ forall 1 < j < n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the séfs= X — L. O

Algorithm for computation of F,,,;,,(conv(.S)). Following the construction, we get an
algorithm that computeB,,;i, (conv(.S)) for a finite setS of points inR™. Let |S| = m.
We first represenX = conv(S) as intersection of half-spaces: we require at mo'%t
half-spaces (linear constraints). It follows thgt = X — LL; can be expressed as”
linear constraints, and henéé,,(X) = (;_, F; can be expressed as m™ linear
constraints. This gives us the following result.

Theorem 3. Given a finite seb of m points inR™, we can construct i (n - m™) time
n - m™ linear constraints that represett,, (conv(S)).

5 Mean-Payoff Automaton Expressions are Decidable

Several problems on quantitative languages can be solveddalass of mean-payoff
automaton expressions using the vector set. The decisioolgons of quantitative
emptiness and universality, and quantitative languadasian and equivalence are all
decidable, as well as questions related to cut-point laggsicand computing distance
between mean-payoff languages.

Decision problems and distancErom the vector séty = {(La, (w), ..., La, (w)) €
R™ | w € X¥}, we can compute thealue setLg (YY) = {Lg(w) | w € X}
of values of words according to the quantitative languagé’ads follows. The set
Lg(Xv) is obtained by successive application rfn-, max- and sum-projections

min , ,max

P, pex, piim s RY — RA~1 wherei < j < k, defined by
P (@1, k) = (T, T, MIN(TG, T5), Tig 1, - Tj—15 T, - - - Th),
pj}“n((xl, . ,l’k)) = (561, PPN o J I €T; + :Cj 7xi+17 . ,xj_1,$j+1, . .I’k),

and analogously fqr;3**. For examplepyy™ (p3»(Vi)) gives the seL. ;(X“) of word
values of the mean-payoff automaton expresdios max(A;, min(A4s, A3)).
Assuming a representation of the polytoped/gfas a boolean combinatiang of

linear constraints, the projecti iji“(VE) is represented by the formula

P = (H.I'j tpp ANz < .I'j) \Y (3331' tYpNT; < .I'l)[l'j — .I'l]



where[z — e] is a substitution that replaces every occurrence b the expression

e. Since linear constraints over the reals admit effectiiiahbtion of existential quan-
tification, the formulayy can be transformed into an equivalent boolean combination
of linear constraints without existential quantificatidie same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projecfifmilowing the structure
of the mean-payoff automaton expressibhgives the value setx(X“) C R as a
boolean combination of linear constraints, hence it is amof intervals. From this set,
it is easy to decide the quantitative emptiness problem lamdtiantitative universality
problem: there exists a word € X such thatLz(w) > v if and only if Lgy(X*) N
[v, +o0[# @, and Lg(w) > v for all wordsw € X¢ if and only if Lg(X“)N] —

00, V= @.

In the same way, we can decide the quantitative languagasioci problem “is
Lg(w) < Lp(w) for all wordsw € X ?” by a reduction to the universality problem
for the expressio’ — E and threshold since mean-payoff automaton expressions are
closed under sum and complement. The quantitative langequjgalence problem is
then obviously also decidable.

Finally, the distance between the quantitative langua@ds and F' can be com-
puted as the largest number (in absolute value) in the veluef $" — . As a corollary,
this distance is always a rational number.

Comparison with [1]. The work in [1] considers deterministic mean-payoff auttana
with multiple payoffs. The weight function in such an autdarais of the formwt :

5 — Q. The value of a finite sequence; )1<i<n (Wherev; € QY) is the mean of the

tuplesw;, that is ad-dimensional vectoAvg,, = % . Z?:_Ol v;. The “value” associated

to an infinite run (and thus also to the corresponding wonggesithe automaton is
deterministic) is the seticc C R? of accumulation points of the sequen@eg,, ),>1.

In [1], a query language on the set of accumulation pointseduo definenulti-
threshold mean-payoff languagéor1 < i < n, letp; : R"™ — R be the usual projec-
tion along the' coordinate. A query is a boolean combination of atomic thoé&scon-
ditions of the formmin(p;(Acc)) ~ v or max(p;(Acc)) ~ v where~e {<, <, >, >}
andrv € Q. Aword is accepted if the set of accumulation points of itdue) run satis-
fies the query. Emptiness is decidable for such multi-thokesimean-payoff languages,
by an argument based on the computation of the convex huileoféctor values of the
simple cycles in the automaton [1] (see also Lemma 1). We $lagr@n that this convex
hull conv(Sg) is not sufficient to analyze quantitative languages of meaynff au-
tomaton expressions. It turns out that a richer query laggean also be defined using
our construction of,i, (conv(Sg)).

In our setting, we can view @dimensional mean-payoff automatdras a product
P4 of 2d copiesA? of A (wherel < i < d andt € {LimInfAvg, LimSupAvg}), where
Al assigns to each transition tif€ coordinate of the payoff vector id, and the au-
tomaton is interpreted asteautomaton. Intuitively, the setcc of accumulation points
of a wordw satisfiesmin(p;(Acc)) ~ v (resp.max(p;(Acc) ~ v) if and only if the
value ofw according to the automatoty, for t = LimInfAvg (resp.t = LimSupAvg) is
~ v. Therefore, atomic threshold conditions can be encoddurastiold conditions on
single variables of the vector set fBy . Therefore, the vector set computed in Section 4



allows to decide the emptiness problem for multi-threstmoédin-payoff languages, by
checking emptiness of the intersection of the vector set thié constraint correspond-
ing to the query.

Furthermore, we can solve more expressive queries in cuefrérk, namely where
atomic conditions are linear constraintslaminfAvg- andLimSupAvg-values. For ex-
ample, the constrairtimInfAvg(wt;) + LimSupAvg(wtz) ~ v is simply encoded as
), + x; ~ v wherek, [ are the indices corresponding 4§, ea.e @AY, s,0n T€-
spectively. Note that the trick of extending the dimensibthe d-payoff vector with,
saywtgy1 = wty +wto, IS not equivalent becausém {5} Avg (wty ) = Lim{%F} Avg(wts)
is not equal td_im{%#}Avg(wt; 4+ wts) in general (no matter the choice{@f} and+t).
Hence, in the context of non-quantitative languages owlt®esalso provide a richer
query language for the deterministic mean-payoff autowétamultiple payoffs.

Complexity. All problems studied in this section can be solved easilyp@tynomial
time) once the value set is constructed, which can be doneadrgple exponential
time. The quadruple exponential blow-up is caused dythe synchronized product
construction forZZ, (b) the computation of the vector values of all simple cycled jn,
(¢) the construction of the vector sél,i,(conv(SE)), and(d) the successive projec-
tions of the vector set to obtain the value set. Therefot¢halabove problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, thetfgjatve
emptiness, universality, language inclusion, and egeive¢ problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4 is in sharp contrast with the nondeterministic alternating mean-
payoff automata for which language inclusion is undeciddbee also Table 1). The
following theorem presents the undecidability result tisatlerived from the results
of [10].

Theorem 5. The quantitative universality, language inclusion, anddaage equiva-

lence problems are undecidable for nondeterministic meayoff automata; and the
quantitative emptiness, universality, language inclosiand language equivalence
problems are undecidable for alternating mean-payoff emsta.

6 Expressive Power and Cut-point Languages

We study the expressive power of mean-payoff automatoresgmmsi) according to
the class of quantitative languages that they define(@ndccording to their cut-point
languages.

Expressive power comparisoitVe compare the expressive power of mean-payoff au-
tomaton expressions with nondeterministic and altergatiean-payoff automata. The
results of [6] show that there exist deterministic meangffegutomatad; and A, such
thatmin(A;, A2) cannot be expressed by nondeterministic mean-payoff attorhe
results of [5] shows that there exists deterministic meayeff automatad; and A,



such thatsum(A;, A2) cannot be expressed by alternating mean-payoff autontata.
follows that there exist languages expressible by meawfpaytomaton expression
that cannot be expressed by nondeterministic and alteghatean-payoff automata. In
Theorem 6 we show the converse, that is, we show that thesglarguages expressible
by nondeterministic mean-payoff automata that cannot Ipeessed by mean-payoff
automaton expression. It may be noted that the subclassaf-payoff automaton ex-
pressions that only uses min and max operators (and no suatopes a strict subclass
of alternating mean-payoff automata, and when only the npexaior is used we get a
strict subclass of the nondeterministic mean-payoff aatam

Theorem 6. Mean-payoff automaton expressions are incomparable irresgjve
power with nondeterministic and alternating mean-payaffoanata: (a) there exists
a quantitative language that is expressible by mean-paydfimaton expressions, but
cannot be expressed by alternating mean-payoff automath(la) there exists a quan-
titative language that is expressible by a nondeterministean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languagesLet L be a quantitative language ovEr Given a threshold ¢
R, the cut-point languagedefined by(L, n) is the language (i.e., the set of words)
L=" = {w € ¥* | L(w) > n}. Itis known for deterministic mean-payoff automata
that the cut-point language may notbeegular, while it isv-regular if the threshold
isisolated i.e. if there exists > 0 such thatL(w) — n| > e for all wordsw € X* [6].

We present the following results about cut-point languaj@sean-payoff automa-
ton expressions. First, we note that it is decidable whethetional threshold) is
an isolated cut-point of a mean-payoff automaton exprassising the value set (it
suffices to check thap is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton egjes araobustas they re-
main unchanged under sufficiently small perturbations efttansition weights. This
result follows from a more general robustness property aflated automata [6] that
extends to mean-payoff automaton expressions: if the w&ighthe automata occur-
ring in £ are changed by at most then the value of every word changes by at most
max(k, 1) -e wherek is the number of occurrences of then operator inE. Therefore
Dgup(Lg, Lrpe) — 0 whene — 0 whereF is any mean-payoff automaton expression
obtained fromF by changing the weights by at mastAs a consequence, isolated cut-
point languages of mean-payoff automaton expressionsarest. Third, the isolated
cut-point language of mean-payoff automaton expressgnségular. To see this, note
that every strongly connected component of the productaatonA i contributes with
a closed convex set to the value setiafSince themax-, min- andsum-projections
are continuous functions, they preserve connectednessoéisd therefore each s€c
contributes with an intervdlng, Mc] to the value set oF. An isolated cut-poing
cannot belong to any of these intervals, and therefore waiohtBuichi-automaton for
the cut-point language by declaring to be accepting thestatthe product automaton
Ap that belong to an so€' such thatnc > 7. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automatoreexp
sion. Ify is an isolated cut-point of, then the cut-point language=" is w-regular.



7 Conclusion and Future Works

We have presented a new class of quantitative languages)aghe-payoff automaton
expressionsvhich are both robust and decidable (see Table 1), and fachwthie dis-
tance between quantitative languages can be computed.etigadility results come
with a high worst-case complexity, and it is a natural questor future works to either
improve the algorithmic solution, or present a matchingdotsound. Another question
of interest is to find a robust and decidable class of quanétéanguages based on the
discounted sum measure [4].
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