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Abstract

Weighted automata are nondeterministic automata with
numerical weights on transitions. They can define quanti-
tative languages L that assign to each word w a real num-
ber L(w). In the case of infinite words, the value of a
run is naturally computed as the maximum, limsup, liminf,
limit average, or discounted sum of the transition weights.
We study expressiveness and closure questions about these
quantitative languages.

We first show that the set of words with value greater
than a threshold can be non-ω-regular for deterministic
limit-average and discounted-sum automata, while this set is
always ω-regular when the threshold is isolated (i.e., some
neighborhood around the threshold contains no word). In
the latter case, we prove that the ω-regular language is ro-
bust against small perturbations of the transition weights.

We next consider automata with transition weights 0 or 1
and show that they are as expressive as general weighted au-
tomata in the limit-average case, but not in the discounted-
sum case.

Third, for quantitative languages L1 and L2, we consider

the operations max(L1, L2), min(L1, L2), and 1−L1, which

generalize the boolean operations on languages, as well as

the sum L1 + L2. We establish the closure properties of all

classes of quantitative languages with respect to these four

operations.

1 Introduction

A boolean language L can be viewed as a function
that assigns to each word w a boolean value, namely,
L(w) = 1 if the word w belongs to the language, and
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L(w) = 0 otherwise. Boolean languages model the
computations of reactive programs. The verification
problem “does the program A satisfy the specification
B?” then reduces to the language-inclusion problem
“is LA ⊆ LB?”, or equivalently, “is LA(w) ≤ LB(w)
for all words w?”, where LA represents all behaviors
of the program, and LB contains all behaviors allowed
by the specification. When boolean languages are de-
fined by finite automata, this framework is called the
automata-theoretic approach to model checking [24].

In a natural generalization of this framework, a cost
function assigns to each word a real number instead of
a boolean value. For instance, the value of a word (or
behavior) can be interpreted as the amount of some re-
source (e.g., memory consumption, or power consump-
tion) that the program needs to produce it, and a spec-
ification may assign a maximal amount of available re-
source to each behavior, or bound the long-run average
available use of the resource.

Weighted automata over semirings (i.e., finite au-
tomata with transition weights in a semiring structure)
have been used to define cost functions, called formal
power series for finite words [22, 19] and ω-series for in-
finite words [9, 13, 16]. In [5], we study new classes of
cost functions using operations over rational numbers
that do not form a semiring. We call them quantitative
languages. We set the value of a (finite or infinite) word
w as the maximal value of all runs over w (if the au-
tomaton is nondeterministic, then there may be many
runs over w), and the value of a run r is a function of
the (finite or infinite) sequence of weights that appear
along r. We consider several functions, such as Max

and Sum of weights for finite runs, and Sup, LimSup,
LimInf, limit average, and discounted sum of weights
for infinite runs. For example, peak power consump-
tion can be modeled as the maximum of a sequence
of weights representing power usage; energy use can be
modeled as the sum; average response time as the limit
average [1, 2]. Quantitative languages can also be used
to specify and verify reliability requirements: if a spe-
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cial symbol ⊥ is used to denote failure and has weight 1,
while the other symbols have weight 0, one can use a
limit-average automaton to specify a bound on the rate
of failure in the long run [6]. The discounted sum can
be used to specify that failures happening later are less
important than those happening soon [10].

The quantitative language-inclusion problem “given
two automata A and B, is LA(w) ≤ LB(w) for all
words w?” can then be used to check, say, if for each
behavior, the peak power used by the system lies be-
low the bound given by the specification; or if for each
behavior, the long-run average response time of the
system lies below the specified average response re-
quirements. In [5], we showed that the quantitative
language-inclusion problem is PSPACE-complete for
Sup-, LimSup-, and LimInf-automata, while the decid-
ability is unknown for (nondeterministic) limit-average
and discounted-sum automata. We also compared the
expressive power of the different classes of quantita-
tive languages and showed that nondeterministic au-
tomata are strictly more expressive than determinis-
tic automata in the limit-average and discounted-sum
cases.

In this paper, we investigate alternative ways of
comparing the expressive power of weighted automata.
First, we consider the cut-point languages of weighted
automata, a notion borrowed from the theory of prob-
abilistic automata [21]. Given a threshold η ∈ R, the
cut-point language of a quantitative language L is the
set of all words w with value L(w) ≥ η, thus a boolean
language. We show that deterministic limit-average
and discounted-sum automata can define cut-point lan-
guages that are not ω-regular. Note that there exist
ω-regular languages that cannot be expressed as a cut-
point language of a limit-average or discounted-sum au-
tomaton [5]. Then, we consider the special case where
the threshold η is isolated, meaning that there is no
word with a value in the neighborhood of η. We argue
that isolated cut-point languages are robust, by show-
ing that they remain unchanged under small perturba-
tions of the transition weights. Furthermore, we show
that every discounted-sum automaton with isolated
cut-point defines an ω-regular language, and the same
holds for deterministic limit-average automata. This
question is open for nondeterministic limit-average au-
tomata. Finally, we consider a boolean counterpart of
limit-average and discounted-sum automata in which
all transitions have weight 0 or 1. Of special interest
is a proof that for every limit-average automaton with
rational weights in the interval [0, 1] there is an equiv-
alent limit-average automaton with boolean weights.
Therefore, the restriction to boolean weights does not
change the class of quantitative languages definable by
limit-average automata; on the other hand, we show

that it reduces the expressive power of discounted-sum
automata.

In the second part of this paper, we study the clo-
sure properties of quantitative languages. It is natu-
ral and convenient to decompose a specification or a
design into several components, and to apply composi-
tion operators to obtain a complete specification. We
consider a natural generalization of the classical opera-
tions of union, intersection, and complement of boolean
languages. We define the maximum, minimum, and
sum of two quantitative languages L1 and L2 as the
quantitative language that assigns max(L1(w), L2(w)),
min(L1(w), L2(w)), and L1(w) + L2(w) to each word
w. The complement Lc of a quantitative language L

is defined by Lc(w) = 1 − L(w) for all words w.1 The
sum is a natural way of composing two automata if
the weights represent costs (e.g., energy consumption).
We give other examples in Section 2 to illustrate the
composition operators and the use of quantitative lan-
guages as a specification framework.

We give a complete picture of the closure proper-
ties of the various classes of quantitative languages
(over finite and infinite words) under maximum, min-
imum, complement and sum (see Table 1). For in-
stance, (non)deterministic limit-average automata are
not closed under sum and complement, while nonde-
terministic discounted-sum automata are closed under
sum but not under complement. All other classes of
weighted automata are closed under sum. For infi-
nite words, the closure properties of Sup-, LimSup-,
and LimInf-automata are obtained as a direct exten-
sion of the results for boolean finite automata, while
for LimAvg- and Disc-automata, the proofs require the
analysis of the structure of the automata cycles and
properties of the solutions of polynomials with ratio-
nal coefficients. Note that the quantitative language-
inclusion problem “is LA(w) ≤ LB(w) for all words w?”
reduces to closure under sum and complement, because
it is equivalent to the question of the non-existence of
a word w such that LA(w) + Lc

B(w) > 1, an emptiness
question which is decidable for all classes of quantita-
tive languages [5]. Also note that deterministic limit-
average and discounted-sum automata are not closed
under maximum, which implies that nondeterministic
automata are strictly more expressive in these cases
(because the maximum can be obtained by an initial
nondeterministic choice). Due to lack of space, we omit
the details of some proofs that can be found in [4].

Related work. Functions such as limit average (or
mean payoff) and discounted sum have been studied
extensively in the branching-time context of game the-
ory [23, 15, 7, 25, 2]. It is therefore natural to use the

1One can define Lc(w) = k−L(w) for any constant k without
changing the results of this paper.
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same functions in the linear-time context of languages
and automata.

Weighted automata with discounted sum have been
considered in [14], with multiple discount factors and a
boolean acceptance condition (Muller or Büchi); they
are shown to be equivalent to a weighted monadic
second-order logic with discounting. Several other
works have considered quantitative generalizations of
languages, over finite words [11], over trees [12], or us-
ing finite lattices [17], but none of these works has ad-
dressed the expressiveness questions and closure prop-
erties for quantitative languages that are studied here.

The lattice automata of [20] map finite words to val-
ues from a finite lattice. The lattice automata with
Büchi condition are analogous to our LimSup automata,
and their closure properties are established there. How-
ever, the other classes of quantitative automata (Sum,
limit-average, discounted-sum) are not studied there
as they cannot be defined using lattice operations and
finite lattices.

2 Quantitative Languages

A quantitative language L over a finite alphabet Σ is
either a mapping L : Σ+ → R or a mapping L : Σω →
R, where R is the set of real numbers.

Weighted automata. A weighted automaton is a
tuple A = 〈Q, qI , Σ, δ, γ〉, where

• Q is a finite set of states, qI ∈ Q is the initial state,
and Σ is a finite alphabet;

• δ ⊆ Q×Σ×Q is a finite set of labelled transitions.
We assume that δ is total, i.e., for all q ∈ Q and
σ ∈ Σ, there exists q′ such that (q, σ, q′) ∈ δ;

• γ : δ → Q is a weight function, where Q is the
set of rational numbers. We assume that rational
numbers are encoded as pairs of integers in binary.

We say that A is deterministic if for all q ∈ Q and
σ ∈ Σ, there exists (q, σ, q′) ∈ δ for exactly one q′ ∈
Q. We sometimes call automata nondeterministic to
emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) word
w = σ1σ2 . . . is a finite (resp. infinite) sequence
r = q0σ1q1σ2 . . . of states and letters such that (i)
q0 = qI , and (ii) (qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|.
We denote by γ(r) = v0v1 . . . the sequence of weights
that occur in r where vi = γ(qi, σi+1, qi+1) for all
0 ≤ i < |w|.

Given a value function Val : Q+ → R (resp.
Val : Qω → R), we say that the Val-automaton A de-
fines the quantitative language LA such that for all

w ∈ Σ+ (resp. w ∈ Σω): LA(w) = sup{Val(γ(r)) |
r is a run of A over w}.

We consider the following value functions to define
quantitative languages. Given a finite sequence v =
v1 . . . vn of rational numbers, define

• Last(v) = vn;

• Sum(v) =

n∑

i=1

vi;

• Max(v) = sup{vi | 1 ≤ i ≤ n};

Given an infinite sequence v = v0v1 . . . of rational num-
bers, define

• Sup(v) = sup{vn | n ≥ 0};

• LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

• LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

• LimAvg(v) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi;

• for 0 < λ < 1, Discλ(v) =
∞∑

i=0

λi · vi;

Note that the classical finite-word acceptance condi-
tion of finite automata (defining regular languages) can
be encoded by Last-automata with weights in {0, 1},
while Büchi and coBüchi automata are special cases
of respectively LimSup- and LimInf-automata, with
weights in {0, 1}. The class of languages defined by
nondeterministic Büchi automata is called ω-regular.

Notation. Classes of weighted automata over infi-
nite words are denoted with acronyms of the form xy

where x is either N(ondeterministic), D(eterministic),
or D

N (when deterministic and nondeterministic au-
tomata have the same expressiveness), and y is one
of the following: Sup, Lsup(LimSup), Linf(LimInf),
Lavg(LimAvg), or Disc. For Büchi and coBüchi au-
tomata, we use the classical acronyms BW and CW

respectively.

Reducibility. A class C of weighted automata is re-
ducible to a class C′ of weighted automata if for every
A ∈ C there exists A′ ∈ C′ such that LA = LA′ , i.e.
LA(w) = LA′(w) for all (finite or infinite) words w. In
particular, a class of weighted automata can be deter-
minized if it is reducible to its deterministic counter-
part. Reducibility relationships for (non)deterministic
weighted automata are given in [5].
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(a) Limit-average automaton A.
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(b) Limit-average automaton B.

Figure 1. Specifications for the power consumption of a motor : A refines B, i.e., LA ≤ LB.

Composition. Given two quantitative languages L

and L′ over Σ, and a rational number c, we denote by
max(L, L′) (resp. min(L, L′), L+L′, c+L, and cL) the
quantitative language that assigns max{L(w), L′(w)}
(resp. min{L(w), L′(w)}, L(w) + L′(w), c + L(w), and
c · L(w)) to each word w ∈ Σ+ (or w ∈ Σω). We say
that c + L is the shift by c of L and that cL is the
scale by c of L. The language 1 − L is called the com-
plement of L. The max, min and complement opera-
tors for quantitative languages generalize respectively
the union, intersection and complement operator for
boolean languages. For instance, De Morgan’s laws
hold (the complement of the max of two languages is
the min of their complement, etc.) and complementing
twice leave languages unchanged.

Example 1. We consider a simple illustration of the
use of limit-average automata to model the power con-
sumption of a motor. The automaton B in Figure 1(b)
specifies the maximal power consumption to maintain
the motor on or off, and the maximal consumption for
a mode change. The specification abstracts away that
a mode change can occur smoothly with the slow com-
mand. A refined specification A is given in Figure 1(a)
where the effect of slowing down is captured by a third
state. One can check that LA(w) ≤ LB(w) for all
words w ∈ {on, off , slow}ω. Given two limit-average
automata that model the power consumption of two
different motors, the maximal, minimal, and the sum
of average power consumption are obtained by compos-
ing the automata under max, min and sum operations,
respectively.

Example 2. Consider an investment of 100 dollars
that can be made in two banks A1 and A2 as follows:
(a) 100 dollars to bank A1, (b) 100 dollars to bank A2,
or (c) 50 dollars to bank A1 and 50 dollars to bank A2.
The banks can be either in a good state (denoted G1,

G2) or in a bad state (denoted B1, B2). If it is in
a good state, then A1 offers 8% reward while A2 of-
fers 6% reward. If it is in a bad state, then A1 offers
2% reward while A2 offers 4% reward. The change of
state is triggered by the input symbols b1, b2 (from a
good to a bad state) and g1, g2 (from a bad to a good
state). The rewards received earlier weight more than
rewards received later due to inflation represented by
the discount factor. The automata A1 and A2 in Fig-
ure 2 specify the behavior of the two banks for an in-
vestment of 100 dollars, where the input alphabet is
{g1, b1}×{g2, b2} (where the notation (g1, ·) represents
the two letters (g1, g2) and (g1, b2), and similarly for the
other symbols). If 50 dollars are invested in each bank,
then we obtain automata C1 and C2 from A1 and A2

where each reward is halved. The combined automa-
ton is obtained as the composition of C1 and C2 under
the sum operation.

3 Expressiveness Results

The expressive power of weighted automata can be
compared by mean of the reducibility relation, saying
that a class C of weighted automata is at least as ex-
pressive as a class C′ if every quantitative language
definable by some automaton in C is also definable
by some automaton in C′. The comparison includes
boolean languages, considering them as a special case
of quantitative languages of the form L : Σω → {0, 1}.
It was shown in [5] that a wide variety of classes of
quantitative languages can be defined by the different
types of weighted automata, depending on the value
function and whether they are deterministic or not.
This contrasts with the situation for boolean languages
where most of the classes of automata define ω-regular
languages. In this section, we investigate alternative
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(a) 100 dollars invested in bank A1.
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(·, g2), 6

(b) 100 dollars invested in bank A2.

Figure 2. The discounted-sum automaton models of two banks.

ways of comparing the expressive power of weighted au-
tomata and of classical finite automata. First, we use
the cut-point languages of weighted automata to com-
pare with the class of ω-regular languages, and then we
use weighted automata with boolean weights, i.e. all
transitions have weight 0 or 1, to compare with general
weighted automata.

3.1 Cut-point languages

Let L be a quantitative language over infinite words
and let η ∈ R be a threshold. The cut-point language
defined by (L, η) is the (boolean) language

L≥η = {w ∈ Σω | L(w) ≥ η}.

Cut-point languages for finite words are defined anal-
ogously. They have been first defined for probabilis-
tic automata [21], then generalized to inverse image
recognition for semiring automata over finite words (see
e.g. [19, 8]). It is easy to see that the cut-point lan-
guages of Max- and Last-automata are regular, those
of Sum-automata are context-free, and those of Sup-,
LimSup-, and LimInf-automata are ω-regular.

We show that the classes of cut-point languages
definable by (non)deterministic limit-average and
discounted-sum automata are incomparable with the
ω-regular languages. The result follows from Theo-
rem 1, and from [5, Theorems 13 and 14].

Theorem 1 There exist deterministic limit-average
and discounted-sum automata whose cut-point lan-
guage is not ω-regular.

Proof sketch. Consider the alphabet Σ = {a, b}, and
consider the languages L1 that assigns to each word its
long-run average number of a’s, and L2 that assigns the
discounted sum of a’s. Note that L1 is definable by a
deterministic limit-average automaton, and L2 by a de-
terministic discounted-sum automaton. It was shown
in [3] that the cut-point language L

≥1
1 is complete for

the third level of the Borel hierarchy, and therefore is
not ω-regular. We show that L

≥1
2 is not ω-regular.

Given a finite word w ∈ Σ∗, let ra(w) =
∑

i|wi=a λi

be the discounted sum of a’s in w. We say that w is

ambiguous if 1− λ|w|

1−λ
≤ ra(w) < 1. The ambiguity lies

in that some continuations of w (namely w.aω) are in

L
≥1
2 and some are not (namely w.bω). It is easy to show

that for all λ > 1
2 , if w is ambiguous, then either w.a

or w.b is ambiguous. Therefore, there exists an infinite
word w� all of whose finite prefixes are ambiguous (and
L2(w

�) = 1).

The proof proceeds by showing that if there exists
a nondeterministic Büchi automaton A for L

≥1
2 , then

the set of states Sn reached in A after the first n letters
of w� must be different for each n, i.e. n 6= m implies
Sn 6= Sm, and therefore the automaton A cannot have
finitely many states. �

We note that cut-point languages are not stable un-
der arbitrarily small perturbations of the transition
weights, nor of the value of the cut-point. Consider
the quantitative languages L1, L2 from the proof of
Theorem 1. If for instance a limit-average automaton
A assigns weight 1 + ǫ to the a’s and 0 to the b’s, its
cut-point language L

≥1
A is clearly different from L

≥1
1 ,

no matter the value of ǫ > 0. The same holds with
respect to L2 if A is interpreted as a discounted-sum
automaton.

In the theory of probabilistic automata, where finite
words are assigned a probability of acceptance, the cut-
point languages may also be non-regular. Therefore,
one considers the special case where the cut-point is
isolated, and shows that the cut-point languages are
then regular [21].

A number η is an isolated cut-point of a quantitative
language L if there exists ǫ > 0 such that

|L(w) − η| > ǫ for all w ∈ Σω.

We argue that isolated cut-point languages have sta-
bility properties, in that they remain unchanged under
small perturbations of the transition weights. This fol-
lows from a more general result about the robustness
of weighted automata.
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A class of weighted automata is robust if a small
(syntactical) perturbation in the weights of an automa-
ton induces only a small (semantical) perturbation in
the values of the words in the quantitative language of
the automaton, and the semantical perturbation tends
to 0 when the syntactical perturbation tends to 0. To
formally define robustness, we need ǫ-approximations
of automata, and distance between quantitative lan-
guages.

Let A = 〈Q, qI , Σ, δ, γ〉 be a (nondeterministic)
weighted automaton, and let ǫ ∈ R≥0. We say that
a weighted automaton B = 〈Q′, q′I , Σ, δ′, γ′〉 is an ǫ-
approximation of A if

• Q′ = Q, q′I = qI , δ′ = δ, and

• |γ′(q, σ, q′) − γ(q, σ, q′)| ≤ ǫ for all (q, σ, q′) ∈ δ.

The sup-distance between two quantitative languages
L1, L2 : Σω → R is defined by

Dsup(L1, L2) = sup
w∈Σω

|L1(w) − L2(w)|.

We say that a class C of weighted automata is uni-
formly robust if for all η ∈ R>0, there exists ǫ ∈ R>0

such that for all automata A, B ∈ C such that B is an ǫ-
approximation of A, we have Dsup(LA, LB) ≤ η. Note
that uniform robustness implies a weaker notion of ro-
bustness where a class C of weighted automata is called
robust if for all automata A ∈ C and for all η ∈ R>0,
there exists ǫ ∈ R>0 such that for all ǫ-approximation
B of A (with B ∈ C), we have Dsup(LA, LB) ≤ η (here
the value of ǫ can depend for instance on the weights
of the automaton A).

Theorem 2 The classes of (non)deterministic Sup-,
LimSup-, LimInf-, LimAvg- and Disc-automata are uni-
formly robust.

As a corollary of Theorem 2, for an isolated cut-
point η, the cut-point language L≥η remains un-
changed under small perturbations of the weights.

Corollary 1 Let LA be the quantitative language de-
fined by a weighted automaton A, and let η be an iso-
lated cut-point of LA. There exists a rational ǫ > 0
such that for all ǫ-approximations B of A, we have
L
≥η
A = L

≥η
B (where LB is the quantitative language de-

fined by B).

Now, we show that the isolated cut-point languages
of deterministic discounted-sum and limit-average au-
tomata are ω-regular. For nondeterministic automata,
the same property holds in the discounted-sum case,
but the question is open for limit average.

Theorem 3 Let L be the quantitative language defined
by a Disc-automaton. If η is an isolated cut-point of L,
then the cut-point language L≥η is ω-regular.

Proof. Let λ be the discount factor of the Disc-
automaton that defines L. Since, η is an isolated cut-
point of L, let ǫ > 0 such that |L(w) − η| > ǫ for all
w ∈ Σω. Let n ∈ N such that un = V ·λn

1−λ
< ǫ where

V = max(q,σ,q′)|δ(q, σ, q′)| is largest weight in A. Con-
sider any run r in A of length n, and let γ(r) be the λ-
discounted sum of the weights along r. Then, it should
be clear that γ(r) 6∈ [η − ǫ + un, η + ǫ − un], because
otherwise, the value of any (infinite) continuation of r

would lie in the interval [η − ǫ, η + ǫ], which would be
a contradiction. Moreover, if γ(r) ≤ η − ǫ + un, then
any (infinite) continuation of r has value less than η,
while if γ(r) ≥ η + ǫ − un, then any (infinite) contin-
uation of r has value greater than η. Therefore, the
cut-point language L≥η can be defined by the unfold-
ing up to length n of the Disc-automaton that defines
L, in which the states that are reached via a path with
value at least η + ǫ − un are declared to be accepting,
and have a self-loop on Σ. �

Theorem 4 Let L be the quantitative language defined
by a deterministic LimAvg-automaton. If η is an iso-
lated cut-point of L, then the cut-point language L≥η

is ω-regular.

Proof. Let A be a deterministic LimAvg-automaton,
defining the language L. Consider the SCC-
decomposition C1, C2, . . . , Ck of the underlying graph
of A. For each 1 ≤ i ≤ k, let mi and Mi be the mini-
mal and maximal average weight of a cycle in Ci (those
values can be computed with Karp’s algorithm [18]).
It is easy to see that for every 1 ≤ i ≤ k, for every
v ∈ [mi, Mi], there exists a word w ∈ Σω such that
L(w) = v. Therefore, since η is an isolated cut-point of
L, we have η 6∈ [mi, Mi] for all 1 ≤ i ≤ k. A DBW for
L≥η is obtained from A by declaring to be accepting
all states q of A such that q ∈ Ci and mi > η. �

3.2 Boolean weights

We consider weighted automata with boolean set of
weights, i.e. all transitions have weight 0 or 1. The aim
is to have a boolean counterpart to limit-average and
discounted-sum automata, and check if this changes
their expressive power. We show that the restriction
does not change the class of quantitative languages de-
finable by limit-average automata, but does reduce that
of discounted-sum automata.
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Given a set R ⊆ R, and a class C of nondeterministic
weighted automata, we denote by CR the class of au-
tomata in C whose weights are rational numbers in R.

Theorem 5 The class of nondeterministic (resp., de-
terministic) LimAvg-automata with rational weights in
[0, 1] is reducible to the class of nondeterministic (resp.,
deterministic) LimAvg-automata with weights 0 and 1
only.

Proof. Given a NLavg[0,1]-automaton A =
〈Q, qI , Σ, δ, γ〉, we construct a NLavg{0,1}-automaton
B such that LA = LB.

First, let W = {γ(q, σ, q′) | (q, σ, q′) ∈ δ} be the
set of weights that occur in A, and let nA be the
smallest integer n such that for all v ∈ W , there ex-
ists e ∈ N such that v = e

n
(i.e., 1

nA
is the great-

est common divisor of the weights of A). We define
B = 〈Q′, q′I , Σ, δ′, γ′〉 as follows:

• Q′ = Q × [nA] (where [nA] denotes the set
{0, 1, . . . , nA − 1}). Intuitively, when we reach a
state (q, i) in B, it means that the state q was
reachable in A and that the sum of the weights to
reach q is of the form k+ i

nA
for some integer k. In

B however, the sum of the weights to reach (q, i)
will then be k, and we store in the discrete state
the information that the remainder weight is i

nA
.

Whenever this remainder exceeds 1, we introduce
a weight 1 and decrement the remainder.

• q′I = (qI , 0);

• for each transition (q, σ, q′) ∈ δ and each value
i ∈ [nA], the following transitions are in δ′ (where
v = γ(q, σ, q′)):

– ((q, i), σ, (q′, j)) for j = i+v ·nA if i
nA

+v < 1;
the weight of such a transition is 0 in γ′,

– ((q, i), σ, (q′, j)) for j = i + (v − 1) · nA if
i

nA
+ v ≥ 1; the weight of such a transition is

1 in γ′.

Note that in the above, v · nA is an integer and
j ∈ [nA].

There is a straightforward correspondence between
the runs in A and the runs in B. Moreover, if the
average weight of a prefix of length n of a run in A is S

n
,

then the average weight of the prefix of length n of the
corresponding run in B is between S

n
and S+1

n
. Hence

the difference tends to 0 when n → ∞. Therefore, the
value of a run in A is the same as the value of the
corresponding run in B, and therefore LA = LB.

Finally, note that if A is deterministic, then B is
deterministic. �

Theorem 6 The class of deterministic Disc-automata
with rational weights in [0, 1] is not reducible to the
class of (even nondeterministic) Disc-automata with
weights 0 and 1 only.

Proof. Given a discount factor 0 < λ < 1, consider
the NDisc[0,1] over Σ = {a, b} that consists of a single

state with a self-loop over a with weight 1+λ
2 and a

self-loop over b with weight 0. Let Lλ be the quanti-
tative language defined by this automaton. Towards a
contradiction, assume that this language is defined by
a NDisc{0,1} A. First, consider the word abω whose

value in Lλ is 1+λ
2 < 1. This entails that A cannot have

a transition from the initial state over a with weight 1
(as this would imply that LA(abω) ≥ 1). Now, the
maximal value that LA can assign to the word aω is
λ + λ2 + λ3 + · · · = λ

1−λ
which is strictly smaller than

Lλ(aω) = 1+λ
2(1−λ) . This shows that A cannot exist.

�

4 Closure Properties

We study the closure properties of weighted au-
tomata with respect to max, min, complement and
sum. We say that a class C of weighted automata
is closed under a binary operator op(·, ·) (resp. a
unary operator op′(·)) if for all A1, A2 ∈ C, there ex-
ists A12 ∈ C such that LA12

= op(LA1
, LA2

) (resp.
LA12

= op′(LA1
)). All closure properties that we

present in this paper are constructive: when C is closed
under an operator, we can always construct the au-
tomaton A12 ∈ C given A1, A2 ∈ C. We say that the
cost of the closure property of C under a binary oper-
ator op is at most O(f(n1, m1, n2, m2)) if for all au-
tomata A1, A2 ∈ C with ni states and mi transitions
(for i = 1, 2 respectively), the constructed automa-
ton A12 ∈ C such that LA12

= op(LA1
, LA2

) has at
most O(f(n1, m1, n2, m2)) many states. Analogously,
the cost of the closure property of C under a unary
operator op′ is at most O(f(n, m)) if for all automata
A1 ∈ C with n states and m transitions, the constructed
automaton A12 ∈ C such that LA12

= op′(LA1
) has at

most O(f(n, m)) many states. For all reductions pre-
sented, the size of the largest weight in A12 is linear
in the size p of the largest weight in A1, A2 (however,
the time needed to compute the weights is quadratic in
p, as we need addition, multiplication, or comparison,
which are quadratic operations over rationals).

Notice that every class of weighted automata is
closed under shift by c and under scale by |c| for
all c ∈ Q. For Sum-automata and discounted-sum au-
tomata, we can define the shift by c by making a copy

7



of the initial states and adding c to the weights of all
its outgoing transitions. For the other automata, it
suffices to add c to (resp. multiply by |c|) all weights
of an automaton to obtain the automaton for the shift
by c (resp. scale by |c|) of its language. Therefore,
all closure properties also hold if the complement of a
quantitative language L was defined as k − L for any
constant k.

Our purpose is the study of quantitative languages
over infinite words. For the sake of completeness we
first give an overview of the closure properties for finite
words.

4.1 Closure properties for finite words

Table 1(a) summarizes the closure properties of
Max-, Last- and Sum-automata under max, min, com-
plement, and sum. Detailed proofs are given in [4].

Since Max- and Last-automata can be determinized,
they have the same closure properties as their deter-
ministic counterpart. They are closed under all opera-
tions except complementation for Max-automata, as a
direct consequence of the same result in the boolean
case (consider the language L over {a, b} such that
L(ai) = 0 for all i ≥ 1, and L(w) = 1 for all words
containing b).

The cost of every positive closure property in Ta-
ble 1(a) is polynomial except the complementation of
nondeterministic Last-automata which is exponential.

Finally, Sum-automata are not closed under min as
the language Lm = min{La, Lb} where Lσ(w) is the
number of occurrences of σ in w (for σ ∈ {a, b}) is de-
finable as the minimum of two deterministic-Sum lan-
guages, but not by a nondeterministic Sum-automaton.
Being closed under max but not under min, nondeter-
ministic Sum-automata are not closed under comple-
ment. We now proceed with quantitative languages
over infinite words, for which the closure properties are
summarized in Table 1(b).

4.2 Closure under max for infinite words

The maximum of two quantitative languages de-
fined by nondeterministic weighted automata can be
obtained by an initial nondeterministic choice between
the two automata. This observation was also made
in [14] for discounted-sum automata. For determinis-
tic weighted automata, a synchronized product can be
used for Sup and LimSup, while for LimInf we use the
fact that NLinf can be determinized with an exponen-
tial blow-up [5].

Theorem 7 The nondeterministic Sup-, LimSup-,
LimInf-, LimAvg-, and Disc-automata are closed un-
der max, with cost O(n1 + n2); the deterministic Sup-

max min comp. sum
Max X X × X

Last X X X X

Det. Sum × × X X

Nondet. Sum X × × X

(a) Finite words

max min comp. sum
D
N Sup X X × X
D
N Linf X X × X

DLsup X X × X

NLsup X X X X

DLavg × × × ×
NLavg X × × ×
DDisc × × X X

NDisc X × × X

(b) Infinite words

Table 1. Closure properties. A class C of
weighted automata is closed under an opera-
tor op iff the entry (C, op) is X.

and LimSup-automata with cost O(n1 ·n2); and the de-
terministic LimInf-automata with cost O((m1 + m2) ·
2n1+n2).

For limit average and discounted sum, determinis-
tic automata are not closed under max. The result for
discounted sum directly follows from the proof of The-
orem 16 in [5] (showing that discounted sum automata
cannot be determinized), while for limit-average, we
show that there is no DLavg that defines the language
Lm = max(L′

a, L′
b) where L′

a (resp. L′
b) is the language

defined by the DLavg that assigns weight 1 (resp. 0)
to a’s and weight 0 (resp. 1) to b’s. Roughly, the ar-
gument is based on the analysis of the cycles of any
DLavg A that would define Lm, and on the fact that
the word a|Q|+k ·b2|Q| has value 2

3 in Lm, for all k ≤ |Q|
where Q is the set of states of A.

Theorem 8 The deterministic LimAvg- and Disc-
automata are not closed under max.

4.3 Closure under min for infinite words

Theorem 9 generalizes the closure properties under
intersection of the boolean languages. The construc-
tion of the automaton for the min is a direct extension
of the well-known constructions in the boolean case.

Theorem 9 The (non)deterministic Sup-automata
are closed under min, with cost O(n1 ·m1 ·n2 ·m2); the
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(non)deterministic LimInf-automata with cost O(n1 ·
n2); the LimSup-automata with cost O(n1 ·n2 ·2

m1+m2)
for deterministic, and cost O(n1 · n2 · (m1 + m2)) for
nondeterministic automata.

On the negative side, the (deterministic or not)
limit-average and discounted-sum automata are not
closed under min. The following lemma establishes the
result for limit average.

Lemma 1 Consider the alphabet Σ = {a, b}, and con-
sider the languages La and Lb that assign the long-
run average number of a’s and b’s, respectively. There
is no nondeterministic LimAvg-automaton that defines
the language min(La, Lb).

Proof. To obtain a contradiction, assume that there
exists a NLavg A with set of states Q for Lmin =
min(La, Lb). We first claim that there must be either
an a-cycle or a b-cycle C reachable in A such that the
sum of the weights in C is positive. Otherwise, if the
sum of the weights of all a-cycles and b-cycles is zero
or negative, then we fool the automaton as follows.
Let β be the maximum of the absolute values of the
weights in A, and let α = ⌈β⌉. Consider the word
w = (a3·α·|Q| · b3·α·|Q|)ω. For all runs r of A over w, the
long-run average of the weights in r is bounded by

2 · β · |Q|

6 · α · |Q|
≤

1

3
.

The above bound is as follows: a run over a3·α·|Q| can
be decomposed into a-cycles (with sum of weight at
most 0) and a path of length at most |Q| with sum of
weights at most |Q| · β. A similar argument holds for
the segment of b3·α·|Q|. Hence LA(w) ≤ 1

3 which con-
tradicts that Lmin(w) = 1

2 . Without loss of generality,
we can thus assume that there is an a-cycle C in A with
positive sum of weights. Then, consider a word w with
finite prefix wC to reach C, followed by aω. The value
of w in the automaton A is positive, i.e., LA(w) > 0,
while Lmin(w) = 0. Hence the result follows. �

As a direct consequence of Lemma 1 and the fact
that there exist DLavg for the languages La and Lb in
that lemma, we get the first part of Theorem 10.

Theorem 10 The (non)deterministic LimAvg- and
Disc-automata are not closed under min.

The proof of the second part of Theorem 10 uses
the quantitative languages Lλ

a and Lλ
b that assign the

λ-discounted sum of a’s and b’s, respectively. The lan-
guages La and Lb are definable by DDisc with discount
factor λ, but Lm = min(Lλ

a , Lλ
b ) is not definable by a

NDisc (when λ is either rational or non-algebraic). To
see this, we show that the maximal value of a word in
Lm is 1

2(1−λ) (essentially because Lλ
a(w)+Lλ

b (w) = 1
1−λ

for all words w) and that it is actually the value of
some word, while there is no lasso-word of the form
w1 · (w2)

ω (for finite words w1, w2) that has the max-
imal value. Therefore, an NDisc for Lm cannot exist
since the maximal value in such an automaton would be
obtained by a lasso-word, as pure memoryless strate-
gies exist in games over finite graphs with the objective
to maximize the discounted sum of payoffs [25].

4.4 Closure under complement for infinite
words

Most of the weighted automata are not closed under
complement. The next result is a direct extension of
the boolean case.

Theorem 11 The (non)deterministic Sup- and
LimInf-automata, and the deterministic LimSup-
automata are not closed under complement.

We give examples of quantitative languages over
Σ = {a, b} that witness Theorem 11. For DSup and
NSup, consider the language L1 such that L1(a

ω) = 0
and L1(w) = 1 for all w 6= aω. For DLinf and NLinf,
consider the language L2 such that L2(Σ

∗.aω) = 1 and
L(w) = 0 for all words w containing infinitely many
b’s, and for DLsup, consider L3 the complement of L2.

The next theorem is a positive result of closure under
complementation for NLsup. It reduces to the comple-
mentation of nondeterministic Büchi automata.

Theorem 12 The nondeterministic LimSup-automata
are closed under complement, with cost O(m · 2n log n).

Nondeterministic limit-average and discounted-sum
automata are not closed under complement because
they are closed under max, but not under min. The
fact that DLavg is not closed under complement can
be proved as follows. Consider the language La over
alphabet Σ = {a, b} that assigns the long-run average
number of a’s. Clearly, La is definable by a DLavg.
Notice that La(w.aω) = 1 and La(w.bω) = 0 for all
w ∈ Σ∗. Towards contradiction, assume that there ex-
ists a DLavg B whose language is LB = 1−La. For all
finite words w ∈ Σ∗, let L

Avg
B (w) be the average weight

of the unique (finite) run of B over w.
Fix 0 < ǫ < 1

2 . For all finite words w, there exists
a number nw such that the average number of a’s in
w.bnw is at most ǫ, and there exists a number mw such
that L

Avg
B (w.amw ) ≤ ǫ (since LB(w.aω) = 0). Hence,

we can construct a word w = bn1am1bn2am2 . . . such
that La(w) ≤ ǫ and LB(w) ≤ ǫ. Since LB = 1 − La,
this implies that 1 ≤ 2ǫ, a contradiction.
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Theorem 13 The (non)deterministic LimAvg-
automata and the nondeterministic Disc-automata are
not closed under complement.

Finally, the fact that Discλ(−v) = −Discλ(v) for
all infinite sequences v = v0v1 . . . of rational numbers
establishes the next result.

Theorem 14 The deterministic Disc-automata are
closed under complement, with cost O(n).

4.5 Closure under sum for infinite words

All weighted automata are closed under sum, ex-
cept DLavg and NLavg. The result for NDisc is also
presented in [13].

Theorem 15 The (non)deterministic Sup-automata
are closed under sum, with cost O(n1 · m1 · n2 · m2);
the nondeterministic LimSup-automata with cost O(n1 ·
m1 · n2 · m2); the deterministic LimSup-automata and
(non)deterministic LimInf-automata with cost O(n1 ·
n2 ·2

m1·m2); and the (non)deterministic Disc-automata
with cost O(n1 · n2). The (non)deterministic LimAvg-
automata are not closed under sum.

For discounted-sum, it suffices to take the synchro-
nized product of the two automata and assign to each
joint transition the sum of the weights of the corre-
sponding transitions in the corresponding automata.
The construction for the other classes of automata
are relatively straightforward. It gives an exponential
blow-up in the case of DLinf, NLinf and DLsup.

Acknowledgment. We thank Wolfgang Thomas for
pointing out the isolated cut-point problem.
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