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Abstract. Weighted automata are nondeterministic automata with nu-
merical weights on transitions. They can define quantitative languages L

that assign to each word w a real number L(w). In the case of infinite
words, the value of a run is naturally computed as the maximum, lim-
sup, liminf, limit-average, or discounted-sum of the transition weights.
The value of a word w is the supremum of the values of the runs over w.
We study expressiveness and closure questions about these quantitative
languages.
We first show that the set of words with value greater than a threshold
can be non-ω-regular for deterministic limit-average and discounted-sum
automata, while this set is always ω-regular when the threshold is isolated
(i.e., some neighborhood around the threshold contains no word). In the
latter case, we prove that the ω-regular language is robust against small
perturbations of the transition weights.
We next consider automata with transition weights 0 or 1 and show that
they are as expressive as general weighted automata in the limit-average
case, but not in the discounted-sum case.
Third, for quantitative languages L1 and L2, we consider the operations
max(L1, L2), min(L1, L2), and 1−L1, which generalize the boolean oper-
ations on languages, as well as the sum L1 +L2. We establish the closure
properties of all classes of quantitative languages with respect to these
four operations.

1 Introduction

A boolean language L can be viewed as a function that assigns to each word
w a boolean value, namely, L(w) = 1 if the word w belongs to the language,
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and L(w) = 0 otherwise. Boolean languages model the computations of reactive
programs. The verification problem “does the program A satisfy the specifica-
tion B?” then reduces to the language-inclusion problem “is LA ⊆ LB?”, or
equivalently, “is LA(w) ≤ LB(w) for all words w?”, where LA represents the
behaviors of the program, and LB contains all behaviors allowed by the specifi-
cation. When boolean languages are defined by finite automata, this framework
is called the automata-theoretic approach to model-checking [VW86].

In a natural generalization of this framework, a cost function assigns to each
word a real number instead of a boolean value. For instance, the value of a word
(or behavior) can be interpreted as the amount of some resource (e.g., memory
consumption, or power consumption) that the program needs to produce it,
and a specification may assign a maximal amount of available resource to each
behavior, or bound the long-run average available use of the resource.

Weighted automata over semirings (i.e., finite automata with transition
weights in a semiring structure) have been used to define cost functions,
called formal power series for finite words [Sch61,KS86] and ω-series for infinite
words [CK94,DK03,ÉK04]. In [CDH08], we study new classes of cost functions
using operations over rational numbers that do not form a semiring. We call
them quantitative languages. We set the value of a (finite or infinite) word w as
the supremum value of all runs over w (if the automaton is nondeterministic,
then there may be many runs over w), and the value of a run r is a function
of the (finite or infinite) sequence of weights that appear along r. We consider
several functions, such as Max and Sum of weights for finite runs, and Sup,
LimSup, LimInf, limit-average, and discounted sum of weights for infinite runs.
For example, peak power consumption can be modeled as the maximum of a
sequence of weights representing power usage; energy use can be modeled as the
sum; average response time as the limit-average [CCH+05,CdHS03]. Quantita-
tive languages can also be used to specify and verify reliability requirements: if
a special symbol ⊥ is used to denote failure and has weight 1, while the other
symbols have weight 0, one can use a limit-average automaton to specify a bound
on the rate of failure in the long run [CGH+08]. The discounted sum can be used
to specify that failures happening later are less important than those happening
soon [dAHM03].

The quantitative language-inclusion problem “given two automata A and B,
is LA(w) ≤ LB(w) for all words w?” can then be used to check, say, if for each
behavior, the peak power used by the system lies below the bound given by the
specification; or if for each behavior, the long-run average response time of the
system lies below the specified average response requirements. In [CDH08], we
showed that the quantitative language-inclusion problem is PSPACE-complete
for Sup-, LimSup-, and LimInf-automata, while the decidability is unknown for
(nondeterministic) limit-average and discounted-sum automata. We also com-
pared the expressive power of the different classes of quantitative languages and
showed that nondeterministic automata are strictly more expressive than deter-
ministic automata in the limit-average and discounted-sum cases.
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In this paper, we investigate alternative ways of comparing the expres-
sive power of weighted automata. First, we consider the cut-point languages
of weighted automata, a notion borrowed from the theory of probabilistic au-
tomata [Rab63]. Given a threshold η ∈ R, the cut-point language of a quantita-
tive language L is the set of all words w with value L(w) ≥ η, thus a boolean lan-
guage. We show that deterministic limit-average and discounted-sum automata
can define cut-point languages that are not ω-regular. Note that there also exist
ω-regular languages that cannot be expressed as a cut-point language of a limit-
average or discounted-sum automaton [CDH08]. Then, we consider the special
case where the threshold η is isolated, meaning that there is no word with a
value in the neighborhood of η. We argue that isolated cut-point languages are
robust, by showing that they remain unchanged under small perturbations of the
transition weights. Furthermore, we show that every discounted-sum automaton
with isolated cut-point defines an ω-regular language, and the same holds for
deterministic limit-average automata. This question is open for nondeterminis-
tic limit-average automata. Finally, we consider a boolean counterpart of limit-
average and discounted-sum automata in which all transitions have weight 0 or 1.
Of special interest is a proof that for every limit-average automaton with rational
weights in the interval [0, 1] there is an equivalent limit-average automaton with
boolean weights. Therefore, the restriction to boolean weights does not change
the class of quantitative languages definable by limit-average automata; on the
other hand, we show that it reduces the expressive power of discounted-sum
automata.

In the second part of this paper, we study the closure properties of quanti-
tative languages. It is natural and convenient to decompose a specification or a
design into several components, and to apply composition operators to obtain a
complete specification. We consider a natural generalization of the classical op-
erations of union, intersection, and complement of boolean languages. We define
the maximum, minimum, and sum of two quantitative languages L1 and L2 as
the quantitative language that assigns max(L1(w), L2(w)), min(L1(w), L2(w)),
and L1(w) + L2(w) to each word w. The complement Lc of a quantitative lan-
guage L is defined by Lc(w) = 1 − L(w) for all words w.4 The sum is a natural
way of composing two automata if the weights represent costs (e.g., energy con-
sumption). We give other examples in Section 2 to illustrate the composition
operators and the use of quantitative languages as a specification framework.

We give a complete picture of the closure properties of the various classes
of quantitative languages (over finite and infinite words) under maximum, mini-
mum, complement and sum (see Table 1). For instance, (non)deterministic limit-
average automata are not closed under sum and complement, while nondetermin-
istic discounted-sum automata are closed under sum but not under complement.
All other classes of weighted automata are closed under sum. For infinite words,
the closure properties of Sup-, LimSup-, and LimInf-automata are obtained as
a direct extension of the results for boolean finite automata, while for limit-

4 One can define Lc(w) = k − L(w) for any rational constant k without changing the
results of this paper.

3



max. min. comp. sum

Max X X × X

Last X X X X

Det. Sum × X X X

Nondet. Sum X × × X

(a) Finite words

max. min. comp. sum
N/DSup X X × X

N/DLinf X X × X

DLsup X X × X

NLsup X X X X

DLavg × × × ×

NLavg X × × ×

DDisc × × X X

NDisc X × × X

(b) Infinite words

Table 1. Closure properties. The meaning of the acronyms is described on p.7.

average and discounted-sum automata, the proofs require the analysis of the
structure of the automata cycles and properties of the solutions of polynomials
with rational coefficients. Note that the quantitative language-inclusion problem
“is LA(w) ≤ LB(w) for all words w?” reduces to closure under sum and comple-
ment, because it is equivalent to the question of the non-existence of a word w

such that LA(w) + Lc
B(w) > 1, an emptiness question which is decidable for all

classes of quantitative languages [CDH08]. Also note that deterministic limit-
average and discounted-sum automata are not closed under maximum, which
implies that nondeterministic automata are strictly more expressive in these
cases (because the maximum can be obtained by an initial nondeterministic
choice).

Related work. Functions such as limit-average (or mean-payoff) and discounted
sum have been studied extensively in the branching-time context of game the-
ory [Sha53,EM79,Con92,ZP96,CdHS03]. It is therefore natural to use the same
functions in the linear-time context of languages and automata.

Weighted automata with discounted sum have been considered in [DR07],
with multiple discount factors and a boolean acceptance condition (Muller or
Büchi); they are shown to be equivalent to a weighted monadic second-order
logic with discounting. Several other works have considered quantitative gener-
alizations of languages, over finite words [DG07], over trees [DKR08], or using
finite lattices [GC03], but none of these works has addressed the expressiveness
questions and closure properties for quantitative languages that are studied here.

The lattice automata of [KL07] map finite words to values from a finite lat-
tice. The lattice automata with Büchi condition are analogous to our LimSup

automata, and their closure properties are established there. However, the other
classes of quantitative automata (Sum, limit-average, discounted-sum) are not
studied there as they cannot be defined using lattice operations and finite lat-
tices.
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2 Quantitative Languages

A quantitative language L over a finite alphabet Σ is either a mapping L : Σ+ →
R or a mapping L : Σω → R, where R is the set of real numbers.

Weighted automata. A weighted automaton is a tuple A = 〈Q, qI , Σ, δ, γ〉,
where

– Q is a finite set of states, qI ∈ Q is the initial state, and Σ is a finite alphabet;
– δ ⊆ Q × Σ × Q is a finite set of labelled transitions. We assume that δ is

total, i.e., for all q ∈ Q and σ ∈ Σ, there exists q′ such that (q, σ, q′) ∈ δ;
– γ : δ → Q is a weight function, where Q is the set of rational numbers. We

assume that rational numbers are encoded as pairs of integers in binary.

We say that A is deterministic if for all q ∈ Q and σ ∈ Σ, there exists
(q, σ, q′) ∈ δ for exactly one q′ ∈ Q. We sometimes call automata nondetermin-
istic to emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp.
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI ,
and (ii) (qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|. We denote by γ(r) = v0v1 . . . the
sequence of weights that occur in r where vi = γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

Given a value function Val : Q+ → R (resp. Val : Qω → R), we say that the
Val-automaton A defines the quantitative language LA such that for all w ∈ Σ+

(resp. w ∈ Σω):

LA(w) = sup{Val(γ(r)) | r is a run of A over w}.

We assume that Val(v) is bounded when the numbers in v are taken from a
finite set (namely, the set of weights in A), and since weighted automata are
total, every word has at least one run and thus LA(w) is not infinite.

We consider the following value functions to define quantitative languages
(they all satisfy the boundedness assumption above). Given a finite sequence
v = v1 . . . vn of rational numbers, define

– Max(v) = max{vi | 1 ≤ i ≤ n};

– Last(v) = vn;

– Sum(v) =

n∑

i=1

vi;

Given an infinite sequence v = v0v1 . . . of rational numbers, define

– Sup(v) = sup{vn | n ≥ 0};

– LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

– LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};
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– LimAvg(v) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi;

– for 0 < λ < 1, Discλ(v) =

∞∑

i=0

λi · vi;

Intuitively for a sequence v = v0v1 . . . of rational numbers from the finite set V ,
the Sup function chooses the maximal number that appear in v; the LimSup

function chooses the maximal number that appear infinitely often in v; the
LimInf function chooses the minimal number that appear infinitely often in v;
the LimAvg functions gives the long-run average of the numbers in v; and the
Discλ gives the discounted sum of the numbers in v. Note that LimAvg(v) is
defined using lim inf and is therefore well-defined; all results of this paper hold

also if the limit-average of v is defined instead as lim sup
n→∞

1

n
·

n−1∑

i=0

vi. One could

also consider the value function inf{vn | n ≥ 0} and obtain results analogous to
the Sup value function. Note that the classical finite-word acceptance condition
of finite automata (defining regular languages) can be encoded by Last-automata
with weights in {0, 1}, while Büchi and coBüchi automata are special cases of
respectively LimSup- and LimInf-automata, with weights in {0, 1}. The class of
languages defined by nondeterministic Büchi automata is called ω-regular.

Significance of value functions. The value functions provide natural generaliza-
tions of the classical boolean languages, they are complete for different levels
of the Borel hierarchy, and they have been well studied in the context of game
theory.

1. The Sup value function is the natural quantitative generalization of the reach-
ability condition and is complete for the first level of the Borel hierarchy (Σ1

complete).
2. The LimSup and LimInf objectives are the natural quantitative generaliza-

tions of the classical Büchi and coBüchi conditions. Moreover, the LimSup

and LimInf objectives are complete for the second level of the Borel hierar-
chy, and hence important and canonical quantitative functions (LimSup and
LimInf objectives are Π2 and Σ2 complete, respectively) (see [Wad84,MP92]
for details related to completeness and reducibility of objectives in the Borel
hierarchy).

3. The LimAvg and Discλ value functions have been studied in many differ-
ent contexts in game theory. Discounted functions on graph games were
introduced in the seminal work of Shapley [Sha53], and have been exten-
sively studied in economics. Discounted conditions have also been stud-
ied for discounting the future in systems theory [dAHM03]. The LimAvg

function has also been studied extensively in the context of games on
graphs: the works of Everett [Eve57], Liggett-Lippman [LL69], Hopfman-
Karp [HK66], Ehrenfeucht-Mycielski [EM79], Mertens-Neyman [MN81],
Zwick-Paterson [ZP96] have studied different classes of games with LimAvg
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objective. Also see the books [FV97,Put94] for applications of discounted
and limit-average value functions in the context of games on graphs. More-
over, the LimAvg value function is complete for the third level of the Borel
hierarchy (Π3-complete) [Cha07a].

Hence the value functions considered are classical, canonical, and well-studied
in the branching-time framework of games on graphs, and we study them in the
linear-time framework of weighted automata.

Notation. Classes of weighted automata over infinite words are denoted with
acronyms of the form xy where x is either N(ondeterministic), D(eterministic),
or N/D (when deterministic and nondeterministic automata have the same ex-
pressiveness), and y is one of the following: Sup, Lsup(LimSup), Linf(LimInf),
Lavg(LimAvg), or Disc. For Büchi and coBüchi condition, we use BW and CW
respectively.

Reducibility. A class C of weighted automata is reducible to a class C′ of
weighted automata if for every A ∈ C there exists A′ ∈ C′ such that LA = LA′ ,
i.e., LA(w) = LA′(w) for all (finite or infinite) words w. In particular, a class of
weighted automata can be determinized if it is reducible to its deterministic coun-
terpart. Reducibility relationships for (non)deterministic weighted automata are
given in [CDH08].

Composition. Given two quantitative languages L and L′ over Σ, and a ratio-
nal number c, we denote by max(L, L′) (resp. min(L, L′), L+L′, c+L, and cL) the
quantitative language that assigns max{L(w), L′(w)} (resp. min{L(w), L′(w)},
L(w)+L′(w), c+L(w), and c ·L(w)) to each word w ∈ Σ+ (or w ∈ Σω). We say
that c + L is the shift by c of L and that cL is the scale by c of L. The language
1−L is called the complement of L. The max, min and complement operators for
quantitative languages generalize respectively the union, intersection and com-
plement operator for boolean languages. For instance, De Morgan’s laws hold
(the complement of the max of two languages is the min of their complement,
etc.) and complementing twice leave languages unchanged.

Example 1. We consider a simple illustration of the use of limit-average automata
to model the energy consumption of a motor. The automaton B in Fig. 1(b) spec-
ifies the maximal energy consumption to maintain the motor on or off, and the
maximal consumption for a mode change. The specification abstracts away that
a mode change can occur smoothly with the slow command. A refined specifica-
tion A is given in Fig. 1(a) where the effect of slowing down is captured by a third
state. One can check that LA(w) ≤ LB(w) for all words w ∈ {on, off , slow}ω.
Given two limit-average automata that model the energy consumption of two dif-
ferent motors, one needs to define composition operations for weighted automata
to obtain the maximal, minimal, and sum of the average energy consumption of
the motors.

Example 2. Consider an investment of 100 dollars that can be made in two
banks A1 and A2 as follows: (a) 100 dollars to bank A1, (b) 100 dollars to bank
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OFF ON

SLOW

off
0 on, 10

slow
5

on
2

off, 10

slow
5

slow

1

off
5

on
5

(a) Limit-average automaton A.

OFF ON

off
0 on, slow

10

on
2

off, slow

10

(b) Limit-average automaton B.

Fig. 1. Specifications for the energy consumption of a motor: A refines B, i.e., LA ≤

LB .

A2, or (c) 50 dollars to bank A1 and 50 dollars to bank A2. The banks can be
either in a good state (denoted G1, G2) or in a bad state (denoted B1, B2). If it
is in a good state, then A1 offers 8% reward while A2 offers 6% reward. If it is
in a bad state, then A1 offers 2% reward while A2 offers 4% reward. The change
of state is triggered by the input symbols b1, b2 (from a good to a bad state)
and g1, g2 (from a bad to a good state). The rewards received earlier weight more
than rewards received later due to inflation represented by the discount factor.
The automata A1 and A2 in Figure 2 specify the behavior of the two banks
for an investment of 100 dollars, where the input alphabet is {g1, b1} × {g2, b2}
(where the notation (g1, ·) represents the two letters (g1, g2) and (g1, b2), and
similarly for the other symbols). If 50 dollars are invested in each bank, then
we obtain automata C1 and C2 from A1 and A2 where each reward is halved.
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G1 B1

(g1, ·), 8

(b1, ·), 2

(b1, ·), 2

(g1, ·), 8

(a) 100 dollars invested in bank A1.

G2 B2

(·, g2), 6

(·, b2), 4

(·, b2), 4

(·, g2), 6

(b) 100 dollars invested in bank A2.

Fig. 2. The discounted-sum automaton models of two banks.

The combined automaton is obtained as the composition of C1 and C2 under
the sum operator.

3 Expressiveness Results

The expressive power of weighted automata can be compared by mean of the
reducibility relation, saying that a class C of weighted automata is at least as ex-
pressive as a class C′ if every quantitative language definable by some automaton
in C′ is also definable by some automaton in C. The comparison includes boolean
languages, considering them as a special case of quantitative languages of the
form L : Σω → {0, 1}. It was shown in [CDH08] that a wide variety of classes
of quantitative languages can be defined by the different types of weighted au-
tomata, depending on the value function and whether they are deterministic or
not. This contrasts with the situation for boolean languages where most of the
classes of automata define ω-regular languages. In this section, we investigate
alternative ways of comparing the expressive power of weighted automata and
of classical finite automata. First, we use the cut-point languages of weighted
automata to compare with the class of ω-regular languages, and then we use
weighted automata with boolean weights, i.e. all transitions have weight 0 or 1,
to compare with general weighted automata.

3.1 Cut-point languages

Let L be a quantitative language over infinite words and let η ∈ R be a threshold.
The cut-point language defined by (L, η) is the (boolean) language

L≥η = {w ∈ Σω | L(w) ≥ η}.
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Cut-point languages for finite words are defined analogously. They have been first
defined for probabilistic automata [Rab63], then generalized to inverse image
recognition for semiring automata over finite words (see e.g. [KS86,CM00]). It is
easy to see that the cut-point languages of Max- and Last-automata are regular
(they have the same acceptance condition as finite automata), those of Sum-
automata are context-free (using a stack to simulate accumulated weights), and
those of Sup-, LimSup-, and LimInf-automata are ω-regular (they have the same
acceptance condition as Büchi and coBüchi automata).

We show that the classes of cut-point languages definable by
(non)deterministic limit-average and discounted-sum automata are incom-
parable with the ω-regular languages. One direction of this result follows from
Theorem 1, and the other direction follows from [CDH08, Theorems 13 and
14] where ω-regular languages are given that are not definable as cut-point
language of nondeterministic limit-average and discounted-sum automata.

Theorem 1. There exist deterministic limit-average and discounted-sum au-
tomata whose cut-point language is not ω-regular.

Proof. Consider the alphabet Σ = {a, b}, and consider the languages L1 that
assigns to each word its long-run average number of a’s, and L2 that assigns the
discounted sum of a’s. Note that L1 is definable by a deterministic limit-average
automaton, and L2 by a deterministic discounted-sum automaton. It was shown
in [Cha07b] that the cut-point language L

≥1
1 is complete for the third level of

the Borel hierarchy, and therefore is not ω-regular. We show that L
≥1
2 is not

ω-regular.
Given a finite word w ∈ Σ∗, let va(w) =

∑
i|wi=a λi−1 be the discounted

sum of a’s in w. We say that w is ambiguous if 1 − λ|w|

1−λ
≤ va(w) < 1. The

ambiguity lies in that some continuations of w (namely w.aω) are in L
≥1
2 and

some are not (namely w.bω). We show that for all λ > 1
2 , if w is ambiguous, then

either w.a or w.b is ambiguous, which entails that there exists an infinite word ŵ

all of whose finite prefixes are ambiguous (and L2(ŵ) = 1). To do this, assume

that 1 − λ|w|

1−λ
≤ va(w) < 1, and show that either 1 − λ1+|w|

1−λ
≤ va(w.a) < 1 or

1− λ1+|w|

1−λ
≤ va(w.b) < 1. Since va(w.a) = va(w) + λ|w| and va(w.b) = va(w), we

have to show that 1 − λ|w|

1−λ
≤ va(w) < 1 − λ|w| or 1 − λ1+|w|

1−λ
≤ va(w) < 1. This

holds if 1 − λ1+|w|

1−λ
< 1 − λ|w|, which is equivalent to λ > 1

2 .
Now, we show that if there exists a nondeterministic Büchi automaton A

for L
≥1
2 , then the set of states Sn reached in A by reading the first n letters

of ŵ (which we denote by ŵ[1...n]) should be different for each n, i.e., n 6= m

implies Sn 6= Sm. Towards a contradiction, assume that Sn = Sm for n < m.
Then for all continuations w′ ∈ Σω, we have ŵ[1...n].w

′ ∈ L
≥1
2 if and only if

ŵ[1...m].w
′ ∈ L

≥1
2 (⋆).

In particular, consider the continuations ŵ[n+1... ] and ŵ[m+1... ], and for each
i ≥ 1, let γi = va(ŵ[1...i]) and Ki = L2(ŵ[i+1... ]). Then, we have γi +λi ·Ki = 1,
and thus γm + λm ·Kn ≤ 1 iff Kn ≤ Km. Since either Kn ≤ Km or Km ≤ Kn,
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we have either L2(ŵ[1...m].ŵ[n+1... ]) ≤ 1 or L2(ŵ[1...n].ŵ[m+1... ]) ≤ 1. By (⋆), this
implies that either L2(ŵ[1...m].ŵ[n+1... ]) = 1, or L2(ŵ[1...n].ŵ[m+1... ]) = 1, and in
both cases since L2(ŵ) = 1, we get

1 − γm

λm
=

1 − γn

λn
.

This implies λm−n(1 − P (λ)) = 1 − Q(λ) where P (λ) = va(ŵ[1...n]) and Q(λ) =
va(ŵ[1...m]) are polynomials of respective degree n − 1 and m − 1, and with
coefficients in the set {0, 1}. First, observe that the equation is not identically 0
because the coefficient of the term of degree 0 is not 0 (as the first letter of ŵ

must be b since a is not ambiguous). Second, every coefficient in the equation is
in the set {−2,−1, 0, 1, 2}, and a classical result shows that if p

q
is a solution of a

polynomial equation with p and q mutually prime, then p divides the coefficient
of degree 0, and q divides the coefficient of highest degree. Therefore, no rational
number in the interval ]12 , 1[ can be a solution. This shows that n 6= m implies
Sn 6= Sm, and thus the automaton A cannot have finitely many states. �

We note that cut-point languages are not stable under arbitrarily small per-
turbations of the transition weights, nor of the value of the cut-point. Consider
the quantitative languages L1, L2 from the proof of Theorem 1. If for instance
a limit-average automaton A assigns weight 1 + ǫ to the a’s and 0 to the b’s,
its cut-point language L

≥1
A is clearly different from L

≥1
1 , no matter the value of

ǫ > 0. The same holds with respect to L2 if A is interpreted as a discounted-sum
automaton.

In the theory of probabilistic automata, where finite words are assigned a
probability of acceptance, the cut-point languages may also be non-regular.
Therefore, one considers the special case where the cut-point is isolated, and
shows that the cut-point languages are then regular [Rab63].

A number η is an isolated cut-point of a quantitative language L if there
exists ǫ > 0 such that

|L(w) − η| > ǫ for all w ∈ Σω.

We argue that isolated cut-point languages are robust, in that they remain
unchanged under small perturbations of the transition weights. This follows from
a more general result about the robustness of weighted automata.

A class of weighted automata is robust if a small (syntactical) perturbation
in the weights of an automaton induces only a small (semantical) perturbation
in the values of the words in the quantitative language of the automaton, and
the semantical perturbation tends to 0 when the syntactical perturbation tends
to 0. To formally define robustness, we need ǫ-approximations of automata, and
distance between quantitative languages.

Let A = 〈Q, qI , Σ, δ, γ〉 be a (nondeterministic) weighted automaton, and
let ǫ ∈ R≥0. We say that a weighted automaton B = 〈Q′, q′I , Σ, δ′, γ′〉 is an
ǫ-approximation of A if

– Q′ = Q, q′I = qI , δ′ = δ, and

11



– |γ′(q, σ, q′) − γ(q, σ, q′)| ≤ ǫ for all (q, σ, q′) ∈ δ.

The sup-distance between two quantitative languages L1, L2 : Σω → R is defined
by

Dsup(L1, L2) = sup
w∈Σω

|L1(w) − L2(w)|.

We say that a class C of weighted automata is uniformly robust if for all
η ∈ R>0, there exists ǫ ∈ R>0 such that for all automata A, B ∈ C such that
B is an ǫ-approximation of A, we have Dsup(LA, LB) ≤ η. Note that uniform
robustness implies a weaker notion of robustness where a class C of weighted
automata is called robust if for all automata A ∈ C and for all η ∈ R>0, there
exists ǫ ∈ R>0 such that for all ǫ-approximations B of A (with B ∈ C), we have
Dsup(LA, LB) ≤ η (here the value of ǫ can depend for instance on the weights
of the automaton A).

Theorem 2. The classes of (non)deterministic Sup-, LimSup-, LimInf-, LimAvg-
and Disc-automata are uniformly robust.

Proof. Let A, B be two weighted automata with B an ǫ-approximation of A. It
is easy to see that for Sup-, LimSup-, LimInf- and LimAvg-automata, the value of
a run r of B differs by at most ǫ from the value of the same run in A. Therefore,
Dsup(LA, LB) ≤ ǫ and we can take ǫ = η. For Disc-automata, the value of a run
of B differs by at most ǫ

1−λ
from the value of the same run in A, where λ is the

discount factor. Therefore, we can take ǫ = η(1 − λ). �

As a corollary of Theorem 2, for an isolated cut-point η, the cut-point lan-
guage L≥η remains unchanged under small perturbations of the weights.

Corollary 1. Let LA be the quantitative language defined by a weighted automa-
ton A, and let η be an isolated cut-point of LA. There exists a rational ǫ > 0
such that for all ǫ-approximations B of A, we have L

≥η
A = L

≥η
B (where LB is the

quantitative language defined by B).

Now, we show that the isolated cut-point languages of deterministic
discounted-sum and limit-average automata are ω-regular. For nondeterministic
automata, the same property holds in the discounted-sum case, but the question
is open for limit-average.

Theorem 3. Let L be the quantitative language defined by a Disc-automaton.
If η is an isolated cut-point of L, then the cut-point language L≥η is ω-regular.

Proof. Let λ be the discount factor of the Disc-automaton A that defines L.
Since η is an isolated cut-point of L, let ǫ > 0 such that |L(w) − η| > ǫ for all
w ∈ Σω. Let n ∈ N such that un = V ·λn

1−λ
< ǫ where V = max(q,σ,q′)∈δA

|γ(q, σ, q′)|
is the largest weight in A. Note that un is a bound on the difference between the
λ-discounted sum of the weights in any infinite run r̂ of A and the λ-discounted
sum of the weights in the prefix of length n of r̂, and un → 0 when n → ∞.

12



Consider an arbitrary run r in A of length n, and let γ(r) be the λ-discounted sum
of the weights along r. Then, it should be clear that γ(r) 6∈ [η−ǫ+un, η+ǫ−un],
because otherwise, the value of any (infinite) continuation of r would lie in the
interval [η − ǫ, η + ǫ], which would be a contradiction to the fact that η is an
isolated cut-point of L. Moreover, if γ(r) ≤ η − ǫ + un, then any (infinite)
continuation of r has value less than η − ǫ + 2un < η + ǫ, and therefore less
than η, while if γ(r) ≥ η + ǫ − un, then any (infinite) continuation of r has
value greater than η. Therefore, the cut-point language L≥η can be defined by
the unfolding up to length n of the Disc-automaton that defines L, in which the
states that are reached via a path with value at least η + ǫ − un are declared to
be accepting (for Büchi condition), and have a self-loop on Σ. �

Theorem 4. Let L be the quantitative language defined by a deterministic
LimAvg-automaton. If η is an isolated cut-point of L, then the cut-point lan-
guage L≥η is ω-regular.

Proof. Let A be a deterministic LimAvg-automaton, defining the language L.
Consider the SCC-decomposition C1, C2, . . . , Ck of the underlying graph of A.
For each 1 ≤ i ≤ k, let mi and Mi be the minimal and maximal average weight
of a cycle in Ci (those values can be computed with Karp’s algorithm [Kar78]).
It is easy to see that for every 1 ≤ i ≤ k, for every v ∈ [mi, Mi], there exists
a word w ∈ Σω such that L(w) = v. Therefore, since η is an isolated cut-point
of L, we have η 6∈ [mi, Mi] for all 1 ≤ i ≤ k. A deterministic Büchi automaton
(DBW) for L≥η is obtained from A by declaring to be accepting all states q of
A such that q ∈ Ci and mi > η. �

3.2 Boolean weights

We consider weighted automata with boolean set of weights, i.e. all transitions
have weight 0 or 1. The aim is to have a boolean counterpart to limit-average
and discounted-sum automata, and compare the expressive power. We show that
the restriction does not change the class of quantitative languages definable by
limit-average automata, but does reduce the expressive power of discounted-sum
automata.

Theorem 5. The class of nondeterministic (resp., deterministic) LimAvg-
automata with rational weights in [0, 1] is reducible to the class of nondeter-
ministic (resp., deterministic) LimAvg-automata with weights 0 and 1 only.

Proof. Given a NLavg A = 〈Q, qI , Σ, δ, γ〉 with weights in [0, 1], we construct
a NLavg B with weights in {0, 1} such that LA = LB.

First, let W = {γ(q, σ, q′) | (q, σ, q′) ∈ δ} be the set of weights that occur
in A, and let nA be the smallest integer n such that for all v ∈ W , there exists
p ∈ N such that v = p

n
(i.e., 1

nA
is the greatest common divisor of the weights

of A). We define B = 〈Q′, q′I , Σ, δ′, γ′〉 as follows:
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– Q′ = Q × [nA] (where [nA] denotes the set {0, 1, . . . , nA − 1}). Intuitively,
when we reach a state (q, i) in B, it means that the state q was reachable
in A and that the sum of the weights to reach q is of the form k + i

nA
for

some integer k. In B however, the sum of the weights to reach (q, i) will then
be k, and we store in the discrete state the information that the remainder
weight is i

nA
. Whenever this remainder exceeds 1, we introduce a weight 1

and decrement the remainder.
– q′I = (qI , 0);
– for each transition (q, σ, q′) ∈ δ and each value i ∈ [nA], the following tran-

sitions are in δ′ (where v = γ(q, σ, q′)):
• ((q, i), σ, (q′, j)) for j = i + v · nA if i

nA
+ v < 1; the weight of such a

transition is 0 in γ′,
• ((q, i), σ, (q′, j)) for j = i + (v − 1) · nA if i

nA
+ v ≥ 1; the weight of such

a transition is 1 in γ′.
Note that in the above, v · nA is an integer and j ∈ [nA].

There is a straightforward correspondence between the runs in A and the
runs in B. Moreover, if the average weight of a prefix of length n of a run in
A is S

n
, then the average weight of the prefix of length n of the corresponding

run in B is between S
n

and S+1
n

. Hence the difference tends to 0 when n → ∞.
Therefore, the value of a run in A is the same as the value of the corresponding
run in B, and therefore LA = LB.

Finally, note that if A is deterministic, then B is deterministic. �

Theorem 6. The class of deterministic Disc-automata with rational weights in
[0, 1] is not reducible to the class of (even nondeterministic) Disc-automata with
weights 0 and 1 only.

Proof. Given a discount factor 0 < λ < 1, consider the DDisc over Σ = {a, b}
that consists of a single state with a self-loop over a with weight 1+λ

2 and a
self-loop over b with weight 0. Let Lλ be the quantitative language defined by
this automaton. Towards a contradiction, assume that this language is defined
by a NDisc A with weights in {0, 1}. First, consider the word abω whose value
in Lλ is 1+λ

2 < 1. This entails that A cannot have a transition from the initial
state over a with weight 1 (as this would imply that LA(abω) ≥ 1). Now, the
maximal value that LA can assign to the word aω is λ + λ2 + λ3 + · · · = λ

1−λ

which is strictly smaller than Lλ(aω) = 1+λ
2(1−λ) . This shows that A cannot exist.

�

4 Closure Properties

We study the closure properties of weighted automata with respect to max, min,
complement and sum. We say that a class C of weighted automata is closed under
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a binary operator op(·, ·) (resp. a unary operator op′(·)) if for all A1, A2 ∈ C,
there exists A12 ∈ C such that LA12

= op(LA1
, LA2

) (resp. LA12
= op′(LA1

)).
All closure properties that we present in this paper are constructive: when C is
closed under an operator, we can always construct the automaton A12 ∈ C given
A1, A2 ∈ C. We say that the cost of the closure property of C under a binary
operator op is at most O(f(n1, m1, n2, m2)) if for all automata A1, A2 ∈ C with ni

states and mi transitions (for i = 1, 2 respectively), the constructed automaton
A12 ∈ C such that LA12

= op(LA1
, LA2

) has at most O(f(n1, m1, n2, m2)) many
states. Analogously, the cost of the closure property of C under a unary operator
op′ is at most O(f(n, m)) if for all automata A1 ∈ C with n states and m

transitions, the constructed automaton A12 ∈ C such that LA12
= op′(LA1

)
has at most O(f(n, m)) many states. For all reductions presented, the size of
the largest weight in A12 is linear in the size p of the largest weight in A1, A2

(however, the time needed to compute the weights is quadratic in p, as we need
addition, multiplication, or comparison, which are quadratic in p).

Notice that every class of weighted automata is closed under shift by c and
under scale by |c| for all c ∈ Q. For Sum-automata and discounted-sum automata,
we can define the shift by c by making a copy of the initial states and adding c

to the weights of all its outgoing transitions. For the other automata, it suffices
to add c to (resp. multiply by |c|) all weights of an automaton to obtain the
automaton for the shift by c (resp. scale by |c|) of its language. Therefore, all
closure properties also hold if the complement of a quantitative language L was
defined as k − L for any constant k.

Our purpose is the study of quantitative languages over infinite words. For
the sake of completeness we first give an overview of the closure properties for
finite words. Table 1(a) summarizes the closure properties for finite words, and
Table 1(b) for infinite words.

4.1 Closure properties for finite words

For finite words, we consider closure under max, min, complement, and sum for
Max-, Last- and Sum-automata.

Theorem 7. Deterministic Max- and Last-automata are closed under max, with
cost O(n1 ·n2). Nondeterministic Max-, Last- and Sum-automata are closed under
max, with cost O(n1 + n2). Deterministic Sum-automata are not closed under
max.

Proof. For the nondeterministic automata, the result follows from the fact
that the max operator can be obtained by an initial nondeterministic choice
between two quantitative automata. For deterministic Max- and Last-automata,
the result is obtained using a standard synchronized product construction, where
the weight of a transition in the product is the maximum of the corresponding
transition weights in the two automata. Finally, deterministic Sum-automata are
not closed under the max operator because the language over Σ = {a, b} that
assigns to each finite word w ∈ Σ+ the number max{La(w), Lb(w)} where Lσ(w)
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is the number of occurrences of σ in w (for σ = a, b) is definable by the max
of two deterministic-Sum languages, but not by a deterministic Sum-automaton
(Theorem 2 in [CDH08]). �

Theorem 8. Deterministic and nondeterministic Max-automata are closed un-
der min, with cost O(n1 · m1 · n2 · m2). Deterministic and nondeterministic
Last-automata are closed under min, with cost O(n1 · n2). Deterministic and
nondeterministic Sum-automata are not closed under min.

Proof. Given two Last-automata A1 and A2 (over the same alphabet), we
use the classical synchronized product A12 = A1 × A2, where the weight of
a transition in A12 is the minimum of the corresponding transition weights in
A1 and A2. It is easy to see that LA12

= min(LA1
, LA2

). If A1 and A2 are
deterministic, then so is A12.

The construction for Max-automata is the same as for Sup-automata over
infinite words given in the proof of Theorem 13.

Finally, for Sum-automata, consider the language Lm over Σ = {a, b} that
assigns to each finite word w ∈ Σ+ the value min{La(w), Lb(w)} where Lσ(w)
is the number of occurrences of σ in w (for σ = a, b). We claim that Lm is not
definable by a nondeterministic Sum-automaton. Indeed, assume that the Sum-
automaton A with state space Q defines Lm. First, the sum of weights in every
reachable cycle of A over a’s must be at most 0. Otherwise, we can reach the
cycle with a finite word w1 and obtain an arbitrarily large value for the word
w1a

i for i sufficiently large, while for any such i the value of w1a
i is the number

of b’s in w1 which is independent of i. Analogously, the sum of weights in every
reachable cycle of A over b’s must be at most 0. Now, let β = maxe∈δ|γ(e)| be
the maximal weight in A, and consider the word w = anbn for n > 2β · |Q|.
Every run of A over an (or over bn) can be decomposed in possibly nested cycles
(since A is nondeterministic) and a remaining non-cyclic path of length at most
|Q|. Hence, the value of any run over w is at most 2β · |Q|. However, the value
of w should be n, thus A cannot exist. �

Theorem 9. Deterministic Last- and Sum-automata are closed under comple-
ment, with cost O(n). Nondeterministic Last-automata are closed under comple-
ment, with cost O(2n). Nondeterministic Sum automata, and both deterministic
and nondeterministic Max-automata are not closed under complement.

Proof. To define the complement of the language of a deterministic Sum- (or
Last-) automaton, it suffices to multiply all the weights by −1, and then shift
the language by 1. For the class of nondeterministic Last-automata, the result
follows from the fact that it is reducible to its deterministic counterpart.

The negative result for Max-automata follows from an analogous in the
boolean case (consider the language L over {a, b} such that L(ai) = 0 for all
i ≥ 1, and L(w) = 1 for all words containing the letter b). Finally, according to
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the proof of Theorem 8, the language min(La, Lb) where Lσ(w) is the number of
occurrences of σ in w (for σ = a, b) is not definable by a nondeterministic Sum-
automaton. Since min(La, Lb) = 1 − max(1 − La, 1 − Lb) and (i) 1 − La and
1−Lb are definable by Sum-automata, and (ii) nondeterministic Sum-automata
are closed under max (Theorem 7), the language max(1−La, 1−Lb) is definable
by a nondeterministic Sum-automaton, but not its complement and the result
follows. �

Theorem 10. Every class of weighted automata over finite words is closed un-
der sum. The cost is O(n1·n2) for Last- and Sum-automata, and O(n1·m1·n2·m2)
for Max-automata.

Proof. It is easy to see that the synchronized product of two Last-automata
(resp. Sum-automata) defines the sum of their languages if the weight of a joint
transition is defined as the sum of the weights of the corresponding transitions
in the two Last-automata (resp. Sum-automata).

We give the construction for two Max-automata A1 = 〈Q1, q
1
I , Σ, δ1, γ1〉 and

A2 = 〈Q2, q
2
I , Σ, δ2, γ2〉. We construct a Max-automaton A12 = 〈Q, qI , Σ, δ, γ〉

such that LA12
= LA1

+ LA2
. Let Vi = {γi(e) | e ∈ δi} be the set of weights that

appear in Ai (for i = 1, 2), and define:

– Q = Q1×V1×Q2×V2. Intuitively, we remember in a state (q1, v1, q2, v2) the
largest weights v1, v2 seen so far in the corresponding runs of A1 and A2;

– qI = (q1
I , v1

min, q
2
I , v2

min) where vi
min is the minimal weight in Vi (for i = 1, 2);

– For each σ ∈ Σ, the set δ contains all the triples
〈(q1, v1, q2, v2), σ, (q′1, v

′
1, q

′
2, v

′
2)〉 such that vi ∈ Vi, (qi, σ, q′i) ∈ δi, and

v′i = max{vi, γ(qi, σ, q′i)}, for i = 1, 2;
– γ is defined by γ(〈(q1, v1, q2, v2), σ, (q′1, v

′
1, q

′
2, v

′
2)〉) = v′1 + v′2 for each

〈(q1, v1, q2, v2), σ, (q′1, v
′
1, q

′
2, v

′
2)〉 ∈ δ.

If A1 and A2 are deterministic, then A12 is deterministic. The result for deter-
ministic Max-automata follows. �

4.2 Closure under max for infinite words

The maximum of two quantitative languages defined by nondeterministic au-
tomata can be obtained by an initial nondeterministic choice between the two
automata. This observation was also made in [DR07] for discounted-sum au-
tomata. For deterministic automata, a synchronized product can be used for
Sup and LimSup, while for LimInf we use the fact that NLinf is determinizable
with an exponential blow-up [CDH08].

Theorem 11. The nondeterministic Sup-, LimSup-, LimInf-, LimAvg- and Disc-
automata are closed under max, with cost O(n1+n2), the deterministic Sup- and
LimSup-automata with cost O(n1 · n2), the deterministic LimInf-automata with
cost O((m1 + m2)

n1+n2).
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Proof Sketch. For all the nondeterministic quantitative automata, the result
follows from the fact that the max operator can be achieved with an initial
nondeterministic choice between two weighted automata. For DLinf, the result
follows from the reducibility of NLinf to DLinf with an exponential blow-
up [CDH08]. We now prove that DLsup and DSup are closed under max with
cost O(n1 ·n2). Given two DLsup (or DSup) A1 and A2 over the same alphabet,
we construct the usual synchronized product A12 = A1 × A2, where the weight
of a transition in A12 is the maximum of the corresponding transition weights
in A1 and A2. It is easy to see that LA12

= max(LA1
, LA2

) in both cases. �

Theorem 12. The deterministic LimAvg- and Disc-automata are not closed un-
der max.

Proof. The fact that DDisc is not closed under max follows from the proof
of Theorem 16 in [CDH08], where it is shown that the quantitative language
max(L1, L2) cannot be defined by a DDisc, where L1 (resp. L2) is the language
defined by the DDisc that assigns weight 1 (resp. 0) to a’s and weight 0 (resp.
1) to b’s.

We now show that DLavg is not closed under max. Consider the alphabet
Σ = {a, b} and the quantitative languages La and Lb that assign the value of
long-run average number of a’s and b’s, respectively. There exists DLavg for La

and Lb. We show that Lm = max(La, Lb) cannot be expressed by a DLavg. By
contradiction, assume that A is a DLavg with set of states Q that defines Lm.
Consider any reachable cycle C over a’s in A. The sum of the weights of the
cycle must be its length |C|, as if we consider the word w∗ = wC · (a|C|)ω where
wC is a finite word whose run reaches C, the value of w∗ in Lm is 1. It follows
that the sum of the weights of the cycle C must be |C|. Hence, the sum of the
weights of all the reachable cycles C over a’s in A is |C|.

Consider the infinite word w∞ = (a|Q| · b2|Q|)ω, and let wj = (a|Q| · b2|Q|)j .
Since Lm(w∞) = 2

3 , the run of A over w∞ has value 2
3 . It follows that for all

ε > 0, there is an integer jε, such that for all j ≥ jε, we have

γ(wj)

|wj |
≥

2

3
− ε

where γ(wj) is the sum of the weights of the run of A over wj . Consider a word
ŵ∞ constructed as follows. We start with the empty word ŵ0 and the initial state
q0 of A, and for all j ≥ 0, we construct (ŵj+1, qj+1) from (ŵj , qj) as follows: the
state qj+1 is the last state of the run of A from qj over a|Q| · b2|Q|. This run has
to contain a cycle Cj+1 over a’s. We set ŵj+1 = ŵj · a

|Q|+|Cj+1| · b2|Q|. Observe
that for all j ≥ 1, the run of A over w∞ in the segment between wj and wj+1 is
identical to the run from qj to qj+1 up to the repetition of the cycle Cj+1 once
more. The word ŵ∞ is the limit of this construction (ŵj is a prefix of ŵ∞ for

all j ≥ 0). Let αj =
∑j

i=1|Ci|. Since 1 ≤ |Ci| ≤ |Q| we have j ≤ αj ≤ j · |Q|.
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Hence we have the following equality:
γ( bwj)
| bwj |

=
γ(wj)+αj

|wj |+αj
. Hence for all ε > 0,

there exists jε such that for all j ≥ jε we have

γ(ŵj)

|ŵj |
≥

2
3 · |wj | − ε · |wj | + αj

|wj | + αj

≥
2

3
− ε +

1

3
·

αj

|wj | + αj

≥
2

3
− ε +

1

3
·

j

j · (3|Q| + |Q|)

≥
2

3
− ε +

1

12|Q|
.

This shows that lim infj→∞
γ( bwj)
| bwj |

≥ 2
3 + 1

12|Q| and thus we have LA(ŵ∞) ≥
2
3 + 1

12|Q| . Since 1 ≤ |Ci| ≤ |Q| for all i ≥ 1, we have Lm(ŵ∞) ≤ 2
3 which is a

contradiction. �

4.3 Closure under min for infinite words

The positive results about closure properties under min for quantitative lan-
guages generalize the closure properties of boolean languages under intersection.
The constructions are straightforward extensions of the standard constructions
for finite, Büchi, and coBüchi automata (see e.g. [Var96]).

Theorem 13. The (non)deterministic Sup-automata are closed under min, with
cost O(n1 · m1 · n2 · m2),

Proof. The construction in the proof of Theorem 10 can be adapted as fol-
lows: define the weight γ(〈(q1, v1, q2, v2), σ, (q′1, v

′
1, q

′
2, v

′
2)〉) as min{v′1, v

′
2} for

each 〈(q1, v1, q2, v2), σ, (q′1, v
′
1, q

′
2, v

′
2)〉 ∈ δ. �

Theorem 14. The deterministic LimSup-automata are closed under min with
cost O(n1 · n2 · 2

m1+m2).

Proof. Let A1 = 〈Q1, q
1
I , Σ, δ1, γ1〉 and A2 = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two DLsup.

We construct a DLsup A = 〈Q, qI , Σ, δ, γ〉 such that LA = min{LA1
, LA2

}. Let
Vi = {γi(e) | e ∈ δi} be the set of weights that occur in Ai (for i = 1, 2). For each
weight v ∈ V1 ∪ V2 = {v1, . . . , vn}, we construct a DBW Av

12 that consists of a
copy of A1 and a copy of A2. We switch from one copy to the other whenever an
edge with weight at least v is crossed. All such switching edges are accepting in
Av

12 (i.e., they have weight 1 while all other edges have weight 0). The automaton
A then consists of the synchronized product of these DBW, where the weight
of a joint edge is the largest weight v for which the underlying edge in Av

12 is
accepting. Formally, let
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– Q = Q1 × Q2 × {1, 2}m where m = |V1 ∪ V2| (and assume V1 ∪ V2 =
{v1, . . . , vm});

– qI = (q1
I , q2

I , b1, . . . , bm) where bi = 1 for all 1 ≤ i ≤ m;
– δ contains all the triples (〈q1, q2, b1, . . . , bm〉, σ, 〈q′1, q

′
2, b

′
1, . . . , b

′
m〉) such that

σ ∈ Σ and
• (qi, σ, q′i) ∈ δi for i = 1, 2;
• for all 1 ≤ j ≤ m, we have b′j = 3− bj if γbj

(qbj
, σ, q′bj

) ≥ vj , and b′j = bj

otherwise.
– γ assigns to each transition (〈q1, q2, b1, . . . , bm〉, σ, 〈q′1, q

′
2, b

′
1, . . . , b

′
m〉) ∈ δ the

weight v = max({vmin} ∪ {vj | bj 6= b′j}) where vmin is the minimal weight
in V1 ∪ V2.

�

Theorem 15. The (non)deterministic LimInf-automata are closed under min
with cost O(n1 ·n2), and the nondeterministic LimSup-automata with cost O(n1 ·
n2 · (m1 + m2)).

Proof. Let A1 = 〈Q1, q
1
I , Σ, δ1, γ1〉 and A2 = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two NLsup.

We construct a NLsup A = 〈Q, qI , Σ, δ, γ〉 such that LA = min{LA1
, LA2

}. Let
Vi = {γi(e) | e ∈ δi} be the set of weights that appear in Ai (for i = 1, 2). Let
V1 ∪ V2 = {v1, . . . , vn} and define

– Q = {qI}∪Q1×Q2 ×{1, 2}× (V1∪V2) (where qI 6∈ Q1 ∪Q2 is a new state).
Initially, a guess is made of the value v of the input word. Then, we check
that both A1 and A2 visit a weight at least v infinitely often. In a state
〈q1, q2, j, v〉 of A, the guess is stored in v (and will never change along a run)
and the value of the index j is toggled to 3 − j as soon as Aj does visit a
weight at least v;

– For each σ ∈ Σ, the set δ contains all the triples
• (qI , σ, 〈q1, q2, 1, v〉) such that v ∈ V1 ∪ V2 and for all i ∈ {1, 2}, we have

(qi
I , σ, qi) ∈ δi.

• (〈q1, q2, j, v〉, σ, 〈q′1, q
′
2, j

′, v′〉) such that v′ = v, (qi, σ, q′i) ∈ δi (i = 1, 2),
and j′ = 3 − j if γj(qj , σ, q′j) ≥ v, and j′ = j otherwise.

– γ is defined by γ(qI , σ, 〈q1, q2, 1, v〉) = 0 and γ(〈q1, q2, j, v〉, σ, 〈q′1, q
′
2, j

′, v′〉)
is v if j 6= j′ and vmin otherwise, where vmin is the minimal weight in V1∪V2.

For the case of LimInf-automata A1, A2, we can use the synchronized product
A12 = A1 × A2, where the weight of a joint transition in A12 is the minimum
of the corresponding transition weights in A1 and A2. It is easy to see that
LA12

= min(LA1
, LA2

) in both cases, and A12 is deterministic when A1 and
A2 are deterministic. This case is simpler also because for LimInf-automata,
deterministic and nondeterministic automata have the same expressive power.

�

On the negative side, the (deterministic or not) limit-average and discounted-
sum automata are not closed under min.
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Theorem 16. The (non)deterministic LimAvg-automata are not closed under
min.

Proof.

Consider the alphabet Σ = {a, b}, and consider the languages La and Lb

that assign the long-run average number of a’s and b’s, respectively. Note that
there exist DLavg for the languages La and Lb.

We show that there is no NLavg for the language Lm = min{La, Lb}. To
obtain a contradiction, assume that there exists a NLavg A for Lm. We first
claim that there must be either an a-cycle or a b-cycle C that is reachable in A

such that the sum of the weights in C is positive. Otherwise, if for all a-cycles
and b-cycles we have that the sum of the weights is zero or negative, then we fool
the automaton as follows. Let β be the maximum of the absolute values of the
weights in A, and let α = ⌈β⌉. Then consider the word w = (a5·α·|Q| · b5·α·|Q|)ω.
For a run r of A over w, the long-run average of the weights is bounded as
follows:

4 · β · |Q|

10 · α · |Q|
≤

2

5
.

The above bound is as follows: in the run over a5·α·|Q|, there can be a prefix of
size at most |Q| with sum of weights at most |Q| ·β, and then there would be a-
cycles, and then a trailing prefix of size at most |Q| with sum of weights at most
|Q| · β. Similar argument holds for the segment of b5·α·|Q|. Hence LA(w) ≤ 2

5 ,
however, Lm(w) = 1

2 , i.e., we have a contradiction. W.l.o.g., we assume that
there is an a-cycle C such that the sum of weights of C is positive. Then we
present the following word w: a finite word wC to reach the cycle C, followed by
aω; the answer of the automaton is positive, i.e., LA(w) > 0, while Lm(w) = 0.
Hence the result follows. �

Finally, we show that discounted-sum automata are not closed under min.

Theorem 17. The (non)deterministic Disc-automata are not closed under min.

Proof. Let λ be a non-algebraic number in ]12 , 1[. We consider the quantitative
languages Lλ

a and Lλ
b that assign the λ-discounted sum of a’s and b’s, respectively.

Formally, given a (finite or infinite) word w = w0w1 · · · ∈ Σ∗ ∪ Σω, let

va(w) =

|w|∑

i|wi=a

λi and vb(w) =

|w|∑

i|wi=b

λi

be the λ-discounted sum of the a’s (resp. b’s) of w. Then, Lλ
a(w) = va(w) and

Lλ
b (w) = vb(w). These languages are definable by DDisc. We show that the

language Lm = min(Lλ
a , Lλ

b ) is not definable by a NDisc.
Assume towards contradiction that there is a NDisc A for Lm. By Lemma 2

and 3 in [CDH08], there exists an infinite word ŵ such that va(ŵ) = vb(ŵ).
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Since va(ŵ)+vb(ŵ) = 1
1−λ

, we have Lm(ŵ) = 1
2(1−λ) and this is the maximal

value of a word in Lm(·).
The maximal value in the automaton A can be obtained for a lasso-word

of the form w1.(w2)
ω (where w1, w2 are finite words and w2 is nonempty), as

pure memoryless strategies exist in games over finite graphs with the objective
to maximize the discounted sum of payoffs. Since the language of A is Lm, the
value of w1.(w2)

ω is 1
2(1−λ) , and thus va(w1.(w2)

ω) = vb(w1.(w2)
ω) by a similar

argument as above. This last condition can be written as

pa(λ) +
λn1 · qa(λ)

1 − λn2
= pb(λ) +

λn1 · qb(λ)

1 − λn2

for some polynomials pa, pb, qa, qb and integers n1 ≥ 0 and n2 > 0, or more
simply as

(1 − λn2) · p(λ) + λn1 · q(λ) = 0 (1)

for some polynomials p of degree n1 − 1 and q of degree n2 − 1, all of whose
coefficients are either 1 or −1. Equation (1) is not identically zero as either (i)
n1 = 0 and it reduces to q(λ) = 0 or (ii) n1 > 0 and then p has degree at least
0 so that the term of degree zero is not null in (1).

Therefore, λ must be algebraic, a contradiction. �

4.4 Closure under complement for infinite words

Most of the weighted automata are not closed under complement. The next
result is a direct extension of the boolean case.

Theorem 18. The (non)deterministic Sup- and LimInf-automata, and the de-
terministic LimSup-automata are not closed under complement.

Proof. The result follows from a similar result for the boolean version of these
classes. For DSup and NSup, consider the language L1 over Σ = {a, b} such that
L1(a

ω) = 0 and L1(w) = 1 for all w 6= aω. For DLinf and NLinf, consider the
language L2 over Σ = {a, b} such that L2(Σ

∗.aω) = 1 and L(w) = 0 for all words
w containing infinitely many b’s, and for DLsup, consider L3 the complement
of L2. �

The next theorem is a positive result of closure under complementation for
NLsup. It reduces to the complementation of nondeterministic Büchi automata.

Theorem 19. The nondeterministic LimSup-automata are closed under com-
plement, with cost O(m · 2n log n).

Proof. Let A = 〈Q, q0, Σ, δ, γ〉 be a NLsup, and let V = {γ(e) | e ∈ δ} be the
set of weights that appear in A. For each v ∈ V , it is easy to construct a NBW Av

whose (boolean) language is the set of words w such that LA(w) ≥ v, by declaring
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a, 1

b, 0

Fig. 3. Deterministic Limit-average Automaton.

to be accepting the edges with weight at least v. We then construct for each v ∈ V

a NBW Āv (with accepting edges) that accepts the (boolean) complement of
the language accepted by Av. Finally, assuming that V = {v1, . . . , vn} with
v1 < v2 < · · · < vn, we construct the NLsup Bi for i = 2, . . . , n where Bi is
obtained from Āvi

by assigning weight 1 − vi−1 to each accepting edges, and
1 − vn to all other edges. The complement of LA is then max{LB2

, . . . , LBn
}

which is accepted by a NLsup by Theorem 11. �

Theorem 20. The deterministic Disc-automata are closed under complement,
with cost O(n).

Proof sketch. It suffices to replace each weight v of a DDisc by 1 − λ − v

(where λ is the discount factor) to obtain the DDisc for the complement. �

Theorem 21. The deterministic LimAvg-automata are not closed under com-
plement.

Proof. Consider the DLavg A over alphabet Σ = {a, b} (shown in Fig. 3) that
consists of a single self-loop state with weight 1 for a and 0 for b. Notice that
LA(w.aω) = 1 and LA(w.bω) = 0 for all w ∈ Σ∗. To obtain a contradiction,
assume that there exists a DLavg B whose language is LB = 1 − LA. For all
finite words w ∈ Σ∗, let L

Avg
B (w) be the average weight of the unique (finite) run

of B over w.
Fix 0 < ǫ < 1

2 . For all finite words w, there exists a number nw such that the
average number of a’s in w.bnw is at most ǫ, and there exists a number mw such
that L

Avg
B (w.amw ) ≤ ǫ (since LB(w.aω) = 0). Hence, we can construct a word

w = bn1am1bn2am2 . . . such that LA(w) ≤ ǫ and LB(w) ≤ ǫ. Since LB = 1−LA,
this implies that 1 ≤ 2ǫ, a contradiction. �

Theorem 22. The nondeterministic LimAvg- and Disc-automata are not closed
under complement.
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Proof. The fact that NLavg are not closed under complementation is as follows.
Consider the quantitative language L∗ = 1 − max{La, Lb} where La and Lb

assign the long-run average number of a’s and b’s, respectively. Exactly the
same argument as in the proof of Theorem 16 shows that L∗ cannot be expressed
as a NLavg, while the language max{La, Lb} can be expressed as NLavg by
Theorem 11.

That NDisc are not closed under complement can be obtained as follows:
given 0 < λ < 1, consider the language Lλ

a and Lλ
b that assigns to words the

λ-discounted sum of a’s and b’s, respectively. The language Lλ
a and Lλ

b can
be expressed as DDisc, and the max of them can be defined by NDisc. Ob-
serve that Lλ

a(w) + Lλ
b (w) = 1

1−λ
for all w ∈ Σω. Therefore, min{Lλ

a, Lλ
b } =

1
1−λ

− max{Lλ
a, Lλ

b }. Since NDisc is not closed under min (Theorem 17), we
immediately obtain that NDisc are not closed under complementation. �

4.5 Closure under sum for infinite words

All weighted automata are closed under sum, except DLavg and NLavg.

Theorem 23. The (non)deterministic Sup-automata are closed under sum,
with cost O(n1 · m1 · n2 · m2).

Proof. The construction is the same as for Max-automata over finite words
given in the proof of Theorem 10. �

Theorem 24. The nondeterministic LimSup-automata are closed under sum,
with cost O(n1 · m1 · n2 · m2).

Proof Sketch. Given two NLsup A1 and A2, we construct a NLsup A for the
sum of their languages as follows. Initially, we make a guess of a pair (v1, v2)
of weights (vi in Ai, for i = 1, 2) and we branch to a copy of the synchronized
product of A1 and A2. We attach a bit b whose range is {1, 2} to each state
to remember that we expect Ab to visit the guessed weight vb. Whenever this
occurs, the bit b is set to 3 − b, and the weight of the transition is v1 + v2.
All other transitions (i.e. when b is unchanged) have weight min{v1 + v2 | v1 ∈
V1 ∧ v2 ∈ V2}. �

Theorem 25. The deterministic LimSup-automata are closed under sum, with
cost O(n1 · n2 · 2

m1·m2).

Proof. Let A1 = 〈Q1, q
1
I , Σ, δ1, γ1〉 and A2 = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two DLsup.

We construct a DLsup A = 〈Q, qI , Σ, δ, γ〉 such that LA = LA1
+ LA2

. Let
Vi = {γi(e) | e ∈ δi} be the set of weights that appear in Ai (for i = 1, 2). The
automaton A implements the synchronized product of A1 and A2, and keeps one
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bit b(v1, v2) for each pair (v1, v2) of weights v1 ∈ V1 and v2 ∈ V2. For i = 1, 2, if
b(v1, v2) = i, then Ai is expected to cross a transition with weight vi. Whenever
this occurs, the bit is set to 3 − i. The weight of a transition in A is the largest
value of v1 + v2 such that the corresponding bit b(v1, v2) has changed in the
transition. Formally, we define:

– Q = Q1 × Q2 × [V1 × V2 → {1, 2}];
– qI = 〈q1

I , q2
I , bI〉 where bI(v1, v2) = 1 for all (v1, v2) ∈ V1 × V2;

– For each σ ∈ Σ, the set δ contains all the triples (〈q1, q2, b〉, σ, 〈q′1, q
′
2, b

′〉)
such that (qi, σ, q′i) ∈ δi (i = 1, 2), and for all (v1, v2) ∈ V1 × V2, we have
b′(v1, v2) = 3 − b(v1, v2) if γi(〈qi, σ, q′i〉) = vi for i = b(v1, v2), and otherwise
b′(v1, v2) = b(v1, v2).

– γ is defined by γ(〈q1, q2, b〉, σ, 〈q′1, q
′
2, b

′〉) = max({vmin∪{v1+v2 | b′(v1, v2) 6=
b(v1, v2)}) where vmin is the minimal weight in V1 + V2 = {v1 + v2 | v1 ∈
V1 ∧ v2 ∈ V2}.

�

Theorem 26. The (non)deterministic LimInf-automata are closed under sum
with cost O(n1 · n2 · 2

m1·m2).

Proof. Let A1 = 〈Q1, q
1
I , Σ, δ1, γ1〉 and A2 = 〈Q2, q

2
I , Σ, δ2, γ2〉 be two NLinf.

We construct a NLinf A = 〈Q, qI , Σ, δ, γ〉 such that LA = LA1
+ LA2

. Let
Vi = {γi(e) | e ∈ δi} be the set of weights that appear in Ai (for i = 1, 2). The
automaton A implements the synchronized product of A1 and A2, and keeps one
bit b(v1, v2) for each pair (v1, v2) of weights v1 ∈ V1 and v2 ∈ V2. If a transition
in Ai for some i ∈ {1, 2} has weight less than vi, then the bit b(v1, v2) is set to
⊥, otherwise is set to ⊤. The weight of a transition in A is the largest value of
v1 + v2 such that the corresponding bit b(v1, v2) is ⊤. Formally, we define:

– Q = Q1 × Q2 × [V1 × V2 → {⊤,⊥}];
– qI = 〈q1

I , q2
I , bI〉 where bI(v1, v2) = ⊥ for all (v1, v2) ∈ V1 × V2;

– For each σ ∈ Σ, the set δ contains all the triples (〈q1, q2, b〉, σ, 〈q′1, q
′
2, b

′〉)
such that (qi, σ, q′i) ∈ δi (i = 1, 2), and for all (v1, v2) ∈ V1 × V2, we have
b′(v1, v2) = ⊤ if γi(〈qi, σ, q′i〉) ≥ vi for i = 1, 2, and otherwise b′(v1, v2) = ⊥.

– γ is defined by γ(〈q1, q2, b〉, σ, 〈q′1, q
′
2, b

′〉) = max({vmin∪{v1+v2 | b′(v1, v2) =
⊤}) where vmin is the minimal weight in V1 + V2 = {v1 + v2 | v1 ∈ V1 ∧ v2 ∈
V2}.

The result for DLinf follows from the fact A is deterministic if A1 and A2 are
deterministic. �

Theorem 27. The (non)deterministic Disc-automata are closed under sum,
with cost O(n1 · n2).
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Proof Sketch. It is easy to see that the synchronized product of two NDisc
(resp. DDisc) defines the sum of their languages, if the weight of a joint transi-
tion is defined as the sum of the weights of the corresponding transitions in the
two NDisc (resp. DDisc). �

Theorem 28. The (non)deterministic LimAvg-automata are not closed under
sum.

Proof. Consider the alphabet Σ = {a, b}, and consider the DLavg-definable
languages La and Lb that assigns to each word w the long-run average number
of a’s and b’s in w respectively. Let L+ = La + Lb. Assume that L+ is defined
by a NLavg A with set of states Q (we assume w.l.o.g that every state in Q is
reachable).

First, we claim that from every state q ∈ Q, there is a run of A over a|Q|

that visit a cycle C∗ with average weight 1. To see this, notice that from every
state q ∈ Q, there is an infinite run ρ of A over aω whose value is 1 (since
L+(wq ·a

ω) = 1 for all finite words wq). Consider the following decomposition of
ρ. Starting with an empty stack, we push the states of ρ onto the stack as soon
as all the states on the stack are different. If the next state is already on the
stack, we pop all the states down to the repeated state thus removing a simple
cycle of ρ. Let C1, C2, . . . be the cycles that are successively removed. Observe
that the height of the stack is always at most |Q|. Let β be the largest average
weight of the cycles Ci, i ≥ 1, and let αmax be the largest weight in A. Assume
towards contradiction that β < 1. Then, for all n > 0, the value of the prefix of
length n of ρ is at most:

αmax · |Q| + β ·
∑kn

i=1|Ci|

n

where kn is the number of cycles that have been removed from the stack when
reading the first n symbols of ρ. Hence, the value of ρ is at most β < 1, which is
a contradiction. Therefore, the average weight of some cycle C∗ = Ci is exactly5

1 (there are finitely many different cycles as they are simple cycles). Since the
height of the stack is at most |Q|, the cycle C∗ is reachable in at most |Q| steps.

Second, it can be shown analogously that from every state q ∈ Q, there is a
run over b|Q| that visit a cycle C∗ with average weight 1.

Third, for arbitrarily small ǫ > 0, consider the word w and the run ρ of A over
w generated inductively by the following procedure: w0 is the empty word and
ρ0 is the initial state of A We generate wi+1 and ρi+1 from wi and ρi as follows:
(i) generate a long enough sequence w′

i+1 of a’s after wi such that the average
number of b’s in wi ·w

′
i+1 falls below ǫ and we can continue ρi and reach within

at most |Q| steps (and then repeat k times) a cycle C of average weight 1 and

5 It cannot be greater than 1 since L+(w · aω) = 1 for all finite words w.
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such that the average weight of this run prolonged by |Q| arbitrary transitions
is at least 1 − ǫ, i.e.

γ(ρi) + k · |C| + 2αmin · |Q|

|ρi| + k · |C| + 2 · |Q|
≥ 1 − ǫ

where αmin is the least weight in A. This is possible since k can be chosen
arbitrarily large. Let ρ′i be the prolongation of ρi over w′

i+1; (ii) then generate
a long enough sequence w′′

i+1 of b’s such that the average number of a’s in
wi · w

′
i+1 · w′′

i+1 falls below ǫ and as above, we can construct a continuation ρ′′i
of ρ′i whose average weight is at least 1 − ǫ (even if prolonged by |Q| arbitrary
transitions); (iii) the word wi+1 = wi · w

′
i+1 · w

′′
i+1 and the run ρi+1 is ρ′′i . The

word w and the run ρ are the limit of these sequences. We have La(w) = Lb(w) =
0 and thus L+(w) = 0, while the value of ρ is at least 1 − ǫ, a contradiction.

�
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