
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Equivalence of Labeled Markov Chains∗

Laurent Doyen

I&C, École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Thomas A. Henzinger

I&C, École Polytechnique Fédérale de Lausanne (EPFL)
EECS, University of California at Berkeley

Jean-François Raskin

DI, Université Libre de Bruxelles (ULB)
Boulevard du Triomphe CP 212, 1050 Bruxelles, Belgium

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We consider the equivalence problem for labeled Markov chains (LMCs), where each
state is labeled with an observation. Two LMCs are equivalent if every finite sequence
of observations has the same probability of occurrence in the two LMCs. We show that
equivalence can be decided in polynomial time, using a reduction to the equivalence
problem for probabilistic automata, which is known to be solvable in polynomial time.
We provide an alternative algorithm to solve the equivalence problem, which is based on
a new definition of bisimulation for probabilistic automata. We also extend the technique
to decide the equivalence of weighted probabilistic automata.
Then, we consider the equivalence problem for labeled Markov decision processes
(LMDPs), which asks given two LMDPs whether for every scheduler (i.e. way of re-
solving the nondeterministic decisions) for each of the processes, there exists a scheduler
for the other process such that the resulting LMCs are equivalent. The decidability
of this problem remains open. We show that the schedulers can be restricted to be
observation-based, but may require infinite memory.

Keywords: Labeled Markov chain, Markov decision process, probabilistic automaton,
equivalence, bisimulation.

∗This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project
“Centre Fédéré en Vérification”, by the project “MoVES”, an Interuniversity Attraction Poles
Programme of the Belgian Federal Government, by the Swiss National Science Foundation, and
by the European Network of Excellence on Embedded Systems Design (ARTIST 2).

1

1. Introduction

A labeled Markov chain over an alphabet Σ is a state-transition graph whose

states are labeled by observations in Σ, and whose transitions are probabilistic. The

probability of a transitions q → q′ is fixed independently of the past sequence of

statefs visited by the machine. It generates a trace distribution P : Σ+ → [0, 1],

where P (w) is the probability to observe the sequence w ∈ Σ+ when the Markov

chain is executed for |w| steps.

In a labeled Markov decision process, the probabilities of the transitions can

be chosen among a finite set Γ of probabilistic transitions. This choice is made

by a scheduler which can in general choose randomly an element in Γ, and can

change the choice made in a given state, depending on the history of the process.

A Markov decision process can be seen as a set of Markov chains, each associated

with a particular scheduler.

Given two labeled Markov chains, the equivalence problem asks whether they

generate the same trace distribution. To show that this question can be decided in

polynomial time, we consider the same problem for probabilistic automata [4, 3]. A

probabilistic automaton is a finite automaton whose transitions are probabilistic and

that accepts or rejects finite words probabilistically, defining a trace distribution.

A polynomial-time O(n4) algorithm is known to solve the equivalence problem for

probabilistic automata [6].

In this paper, we present a new algorithm with the same complexity, which is

based on a fixed-point computation. The correctness of this algorithm is estab-

lished using a relation over state distributions for probabilistic automata, which is

reminiscent of the well-known bisimulation relation for finite automata. In contrast

to [6], we compute all initial distributions that make the two automata equivalent,

which reduces the execution time to O(n2) for further equivalence checks of the

same automata with different initial distributions. We also give a simple linear-time

equivalence-preserving transformation of labeled Markov chains to probabilistic au-

tomata, which implies that all the above results also apply to labeled Markov chains.

Finally, we extend our technique to solve the equivalence problem for weighted prob-

abilistic automata. A weighted probabilistic automaton has weights on transitions,

and the value of a word w is defined as the expected value of the maximal weight

of all paths over w in the automaton. Two weighted probabilistic automata are

equivalent if every word has the same value in the two automata.

Then, we consider the refinement and equivalence problems for labeled Markov

decision processes. Given two labeled Markov decision processes P1 and P2, the

refinement problem asks whether for every scheduler for P1, there exists a scheduler

for P2 such that the resulting labeled Markov chains are equivalent. If yes, we say

that P1 refines P2. The equivalence problem asks whether both P1 refines P2 and P2

refines P1. The decidability of these problems remains open, even in the particular

case where P1 or P2 is a labeled Markov chain. We show that the schedulers used to

resolve the decisions can be restricted to observation-based, but may require infinite

memory.

2

2. Definitions

Given a set A, we denote by D(A) the set of all probabilistic distributions over A,

i.e. functions X : A→ [0, 1] with
∑

A X(a) = 1, and given a ∈ A we denote by Xa

the Dirac-distribution over A such that Xa(a) = 1. Let A+ be the set of nonempty

finite sequences of elements in A, and A∗ = A+ ∪{ǫ} where ǫ is the empty word (of

length 0). For each n ≥ 0, let An be the set of all sequences w ∈ A∗ of length n.

Labeled Markov chains A labeled Markov chain (LMC) over Σ is a tupleM =

〈Q, π0, Σ,L, δ〉 where:

• Q is a finite set of states;

• π0 ∈ D(Q) is the initial distribution of states;

• Σ is a finite set of observations;

• L : Q → Σ is a labelling function. We extend L to finite sequences of states

in the natural way, i.e. L(q0 . . . qk) = L(q0) . . .L(qk);

• δ : Q → D(Q) is a probabilistic transition function. In state q, the successor

state is q′ with probability δ(q)(q′). We extend δ to distributions over Q as

follows: for all X ∈ D(Q), let δ(X) be the distribution defined by δ(X)(q′) =
∑

q∈Q X(q) · δ(q)(q′) for all q′ ∈ Q.

Define ∆ : D(Q) ×Q+ → [0, 1], the function that gives the probability ∆(X, q̄)

of observing the sequence of states q̄ = q0 . . . qk when M is started with the initial

distribution X as follows:

∆(X, q̄) = X(q0) ·

k∏

i=1

δ(qi−1)(qi)

We extend ∆ to nonempty sequences of observations as follows: for all w ∈ Σ+,

let ∆(X, w) =
∑

{q̄|L(q̄)=w} ∆(X, q̄) be the probability of observing w when M is

started with the initial distribution X .

The labeled Markov chain M defines the trace distribution PM : Σ+ → [0, 1]

defined by PM(w) = ∆(π0, w) for all w ∈ Σ+. Notice that for each length n ≥ 1,

the restriction of PM to Σn is a probabilistic distribution over Σn, and thus PM is

not a probabilistic distribution over Σ+.

Remark 1 We could have defined the labelling of an LMC as a probabilistic func-

tion L : Q→ D(Σ) and then for w = w1 . . . wk, define ∆(X, w) =
∑

q̄=q1...qk∈Qk ∆(X, q̄)·
∏k

i=1 L(qi)(wi). This is no more general than our definition. Given an LMC

M = 〈Q, π0, Σ,L, δ〉 with L : Q → D(Σ), we can construct an LMC M′ =

〈Q′, π′
0, Σ,L′, δ′〉 that defines the same trace distribution as M. Take Q′ = Q× Σ

and for all 〈q, σ〉 ∈ Q′ define π′
0(〈q, σ〉) = π0(q) · L(q)(σ), L′(〈q, σ〉) = σ and

δ′(〈q, σ〉)(〈q′, σ′〉) = δ(q)(q′) · L(q′)(σ′) for all 〈q, σ〉 ∈ Q′.

3

Probabilistic automata A probabilistic automaton is a tupleA = 〈S, ρ0, Σ, M, F 〉

where

• S = {s1, . . . , sn} is a finite set of states;

• ρ0 ∈ D(S) is the initial distribution of states;

• Σ is a finite alphabet of symbols;

• M : Σ → (S × S → [0, 1]) assigns to each symbol σ ∈ Σ of the alphabet a

stochastic matrix Mσ (the entries of each row sum up to 1). In state si, when

reading symbol σ, the successor state is sj with probability Mσ(si, sj). We

say that (si, σ, sj) is a transition of A if Mσ(si, sj) 6= 0.

We extend M to finite words w ∈ Σ∗ as follows: Mǫ is the (n × n) identity

matrix, and inductively, Mσw = Mσ ·Mw for all σ ∈ Σ and w ∈ Σ∗;

• F ⊆ S is a set of accepting states.

Let ηF be the n-dimensional column vector such that η[i] = 1 if si ∈ F and

η[i] = 0 if si 6∈ F , for all 1 ≤ i ≤ n. The probabilistic automaton A defines the

accepting trace distribution PA : Σ∗ → [0, 1] defined by PA(w) = ρ0 ·Mw · ηF , the

probability that the word w ∈ Σ∗ is accepted by A.

For computability issues, we assume that all the numbers appearing in LMC

and probabilistic automata are rational, encoded as pairs of integers in binary. We

assume that largest integer in Markov chains is bounded by a constant p. Without

this assumption, the time complexity of our algorithm would involve a factor p2 as

the operations of addition, multiplication and comparison are quadratic over the

rational numbers.

3. Bisimulation and equivalence

Definition 1 Two probabilistic automata A1,A2 with alphabet Σ are equivalent

if PA1 (w) = PA2(w) for all w ∈ Σ∗. Two LMC M1,M2 with alphabet Σ are

equivalent if PM1(w) = PM2(w) for all w ∈ Σ+.

A polynomial-time algorithm is known to decide equivalence of probabilistic

automata [6]. We present an alternative algorithm to decide equivalence which is

based on a new definition of bisimulation for probabilistic automata. Our algorithm

has the same worst-case time complexity as in [6], namely O((n1 + n2)
4) where ni

is the number of states of Ai.

Then we present a linear-time transformation of labeled Markov chains to prob-

abilistic automata that preserves the trace distribution. This shows that the al-

gorithms for equivalence of probabilistic automata can also be used for checking

equivalence of labeled Markov chains with the same complexity.

3.1. Equivalence is decidable for probabilistic automata

We define a natural generalization of classical bisimulation for probabilistic au-

tomata, as an equivalence relation over state distributions. It can be seen as the

4

q1 q2

a, 1
2 a, 1

2

a, 2
3 a, 1

3 a, 1
3 a, 2

3

a, 1 b, 1 a, 1 b, 1

a, 1

a, 1
2 a, 1

2

a, 1 b, 1

Figure 1: The states q1, q2 are not bisimilar according to [1, 2], but the Dirac-
distributions Xq1 and Xq2 are bisimilar according to Definition 2.

classical bisimulation for a (non-probabilistic) infinite-state transition graph whose

vertices are state distributions. The graph is deterministic and the successor by

σ ∈ Σ of a distribution X ∈ D(S) is the distribution X ·Mσ.

Definition 2 A bisimulation for two probabilistic automata Ai = 〈Si, ρi
0, Σ, M i, F i〉

(i = 1, 2) is a relation ≈⊆ D(S1)×D(S2) such that for all X ∈ D(S1), Y ∈ D(S2)

with X ≈ Y , we have (i) X · ηF 1 = Y · ηF 2 and (ii) X · M1
σ ≈ Y · M2

σ for all

σ ∈ Σ. We say that A1 and A2 are bisimilar if there exists a bisimulation for them

containing (ρ1
0, ρ

2
0).

The classical definition of bisimulation for probabilistic processes relates sin-

gle states rather than state distributions [1, 2]. There, a bisimulation for A =

〈S, ρ0, Σ, M, F 〉 is the largest equivalence relation ≈⊆ S × S such that s ≈ s′ im-

plies (i) s ∈ F iff s′ ∈ F and (ii) for each symbol σ ∈ Σ and each equivalence

class C of ≈, the probability that the successor of s belongs to C is equal to the

probability that the successor of s′ belongs to C, that is Xs ·Mσ ·ηC = Xs′ ·Mσ ·ηC .

Notice that the automaton A can be seen as the disjoint union of automata A1 and

A2 of Definition 2.

Our definition of bisimulation is weaker in the sense that whenever two states

q1, q2 are bisimilar according to [1, 2], then the Dirac-distributions Xq1 and Xq2 are

bisimilar according to Definition 2. Figure 1 shows an example over the alphabet

Σ = {a, b} where the reverse implication does not hold (the transitions that are not

depicted lead to a rejecting sink state). The two automata define the same trace

distribution, namely P (aaa) = 1
2 , P (aab) = 1

2 and P (w) = 0 for all w 6∈ {aaa, aab}.

We will see in Theorem 1 that this implies that they are bisimilar. However, it is

5

easy to see that individual states q1, q2 are not bisimilar according to [1, 2].

Notice that the union of two bisimulations is again a bisimulation, and thus

there always exists a unique maximal bisimulation for two probabilistic automata.

We show that equivalence and bisimilarity coincide.

Theorem 1 Two probabilistic automata are equivalent if and only if they are bisim-

ilar.

Proof. Let A1 = 〈S1, ρ1
0, Σ, M1, F 1〉 and A2 = 〈S2, ρ2

0, Σ, M2, F 2〉 be two prob-

abilistic automata. First, assume that A1 and A2 are bisimilar, witnessed by the

relation ≈. By definition of bisimilarity, since ρ1
0 ≈ ρ2

0 we have ρ1
0 ·M

1
w ≈ ρ2

0 ·M
2
w for

all words w ∈ Σ∗, and therefore ρ1
0·M

1
w·ηF 1 = ρ2

0·M
2
w ·ηF 2 , that is PA1 (w) = PA2(w).

Second, assume that A1 and A2 are equivalent. We show that the relation

≈= {(X, Y) ∈ D(S1) × D(S2) | ∀w ∈ Σ∗ : X ·M1
w · ηF 1 = Y ·M2

w · ηF 2} witnesses

the bisimilarity of A1 and A2. Clearly ρ1
0 ≈ ρ2

0, and for all X ≈ Y , we have (i)

X · ηF 1 = Y · ηF 2 (take w = ǫ in the definition of ≈) and (ii) X ·M1
σw · ηF 1 =

Y ·M2
σw ·ηF 2 for all w ∈ Σ∗ and σ ∈ Σ, so that X ·M1

σ ·M
1
w ·ηF 1 = Y ·M2

σ ·M
2
w ·ηF 2 ,

that is X ·M1
σ ≈ Y ·M2

σ . �

By Theorem 1, we can solve the equivalence problem by computing the largest

bisimulation. In the proof of Theorem 2, we give a fix-point algorithm to construct

all the state distributions that are bisimilar.

Theorem 2 The equivalence of two probabilistic automata can be decided in time

O((n1 +n2)
4), where n1 and n2 are the respective number of states of the automata.

Proof. Let A1 = 〈S1, ρ1
0, Σ, M1, F 1〉 and A2 = 〈S2, ρ2

0, Σ, M2, F 2〉 be two prob-

abilistic automata with ni = |Si| for i = 1, 2. We construct a formula φ∗(X, Y)

over variables X = (x1, . . . , xn1) and Y = (y1, . . . , yn2) that characterizes all the

bisimilar distributions for A1 and A2, that is such that {(ρ, ρ′) | φ(ρ, ρ′) holds} is

the largest bisimulation for A1 and A2. Let

φ0 ≡ X · ηF 1 = Y · ηF 2

φi+1 ≡ φi ∧
∧

σ∈Σ

φi(X ← X ·M1
σ , Y ← Y ·M2

σ) for all i ≥ 0.

where φi(X ← X ·M1
σ , Y ← Y ·M2

σ) is the formula obtained from φi by substituting

each variable xj (resp. yj) by the expression
∑

i xi ·M
1
σ(i, j) (resp.

∑

i ·yiM
2
σ(i, j)).

Then, for all i ≥ 0, either φi+1 is equivalent to φi, or φi+1 is the conjunction of

φi and at least one equality constraint which is independent of the constraints in

φi. Since there can be at most n1 + n2 independent linear equations over n1 + n2

variables, there must exists j∗ ≤ n1 + n2 such that φj+1 is equivalent to φj for all

j ≥ j∗. We take

φ∗ = φj∗ ∧
∑

i

xi = 1 ∧
∧

i

xi ≥ 0 ∧
∑

i

yi = 1 ∧
∧

i

yi ≥ 0

Let us show that φ∗(ρ1
0, ρ

2
0) holds if and only if A1 and A2 are bisimilar.

6

First, assume that φ∗(ρ1
0, ρ

2
0) holds. Let ρ ≈ ρ′ if and only if φ∗(ρ, ρ′) holds, and

let us show that ≈ is a bisimulation for A1 and A2. We have to show that ρ ≈ ρ′

implies (i) ρ · ηF 1 = ρ′ · ηF 2 and (ii) ρ ·M1
σ ≈ ρ′ ·M2

σ holds for all σ ∈ Σ. We

have seen above that φ∗ ≡ φj∗ ≡ φj∗+1 with j∗ ≤ n1 + n2, and clearly φj+1 implies

φj for all j ≥ 0. So, we have (i) ρ ≈ ρ′ implies φ0(ρ, ρ′), i.e. ρ · ηF 1 = ρ′ · ηF 2

and (ii) ρ ≈ ρ′ implies φj∗(X ← ρ ·M1
σ , Y ← ρ′ · M2

σ) for all σ ∈ Σ, which is

φ∗(X ← ρ ·M1
σ , Y ← ρ′ ·M2

σ) and thus ρ ·M1
σ ≈ ρ′ ·M2

σ .

Second, to show that {(ρ, ρ′) | φ(ρ, ρ′) holds} is the largest bisimulation, assume

that ≈ is a bisimulation for A1 and A2 and let us show by induction on i that

ρ ≈ ρ′ implies φi(ρ, ρ′) for all i ≥ 0. By definition of bisimulation, ρ ≈ ρ′ implies

ρ · ηF 1 = ρ′ · ηF 2 , that is φ0(ρ, ρ′). Assume by induction that ρ ≈ ρ′ implies

φi(ρ, ρ′) for all i ≤ k and show that ρ ≈ ρ′ implies φk+1(ρ, ρ′). Since φk+1(ρ, ρ′) ≡

φk(ρ, ρ′)∧
∧

σ∈Σ φi(ρ ·M
1
σ , ρ′ ·M2

σ), we have to show that (i) ρ ≈ ρ′ implies φk(ρ, ρ′)

which is entailed by the induction hypothesis, and (ii) for all σ ∈ Σ, ρ ≈ ρ′ implies

φk(ρ ·M1
σ , ρ′ ·M2

σ) which is entailed by the induction hypothesis and the fact that

ρ ·M1
σ ≈ ρ′ ·M2

σ.

In practice, we eliminate from each φi the equality constraints that are redundant

(i.e. that are linear combination of the others) and thus we have at most n1 + n2

constraints in each φi. Since (n×n)-matrix multiplication and linear independence

checking can be done in time O(n3), computing φ∗ can be done in time O((n1+n2)
4).

Finally, we check if φ∗(ρ1
0, ρ

2
0) holds, that is whether ρ1

0 ≈ ρ2
0 which is equivalent to

check equivalence of A1 and A2 by Theorem 1. �

Notice that the formula φ∗ defined in the above proof characterizes all the initial

distributions that make the two automata equivalent. Hence, to solve the equiva-

lence problem for the same automata with different initial distributions ρ1′

0 and ρ2′

0 ,

we only need to check that φ∗(ρ1′

0 , ρ2′

0) holds which is done in O((n1 + n2)
2). This

is in contrast with the algorithm of [6] that keeps the same complexity.

3.2. Transformation of labeled Markov chains to probabilistic automata

Theorem 3 For every labeled Markov chain M over Σ, we can construct in linear

time a probabilistic automaton AM such that PA(w) = PAM
(w) for all w ∈ Σ+.

Proof LetM = 〈Q, π0, Σ,L, δ〉. We construct AM = 〈S, ρ0, Σ, M, F 〉 as follows:

• S = Q ∪ {sink};

• ρ0(sink) = 0 and ρ0(q) = π0(q) for all q ∈ Q;

• For each σ ∈ Σ and q ∈ Q, let Mσ(sink, q) = 0 and Mσ(sink, sink) = 1; for

each q, q′ ∈ Q and σ ∈ Σ, let

Mσ(q, q′) =

δ(q)(q′) if σ = L(q)
1 if σ 6= L(q) and q′ = sink

0 otherwise

• F = Q; �

7

By Theorems 2 and 3, we derive the following corollary.

Corollary 1 The equivalence of two LMC can be decided in time O((n1 + n2)
4)

where n1, n2 are the respective number of states of the LMCs.

Remark 2 Several other models of probabilistic finite-state systems exist that can

be transformed in into equivalent probabilistic automata, which also provide equiv-

alence algorithms for these models. This is the case for instance for the probabilistic

finite-state automata of [7] and the hidden Markov chains of [8].

Example Consider the labeled Markov chains shown on Figure 2. The set of

observations is Σ = {A, B, C}, and the parameters λ, µ1, µ2, ν are fixed real numbers

in the interval [0, 1]. Using the proof of Theorem 2, we compute below the largest

bisimulation between the two probabilistic automata obtained by the transformation

of Theorem 3 (remember that there is just one additional rejecting sink state, all

the other states being accepting). It is easy to see that we can omit the variables

xsink and ysink corresponding to the sink states since their value must be 0 (see the

proof of Theorem 3). Let X = (x0, x1, x2, x3, x4) and Y = (y0, y1, y2, y3, y4). Then,

X ·M1
A = (0, λx0, (1− λ)x0, (1− µ1)x1 + µ2x2, µ1x1 + (1 − µ2)x2)

X ·M1
B = (0, 0 , 0 , x3 , 0)

X ·M1
C = (0, 0 , 0 , 0 , x4)

Y ·M2
A = (0, νy0 , (1− ν)y0 , y1 , y2)

Y ·M2
B = (0, 0 , 0 , y3 , 0)

Y ·M2
C = (0, 0 , 0 , 0 , y4)

So, we have

φ0(X, Y) ≡ x0 + x1 + x2 + x3 + x4 = y0 + y1 + y2 + y3 + y4

φ1(X, Y) ≡ φ0(X, Y) ∧
∧

σ∈{A,B,C}

φ0(X ·M
1
σ , Y ·M2

σ)

≡

x0 + x1 + x2 = y0 + y1 + y2

x3 = y3

x4 = y4

φ2(X, Y) ≡ φ1(X, Y) ∧ φ1(X ·M
1
A, Y ·M2

A) ∧
∧

σ∈{B,C}

φ1(X ·M
1
σ , Y ·M2

σ)

︸ ︷︷ ︸

implied by φ1(X,Y)

≡

x0 + x1 + x2 = y0 + y1 + y2

x3 = y3

x4 = y4

x0 = y0

(1− µ1)x1 + µ2x2 = y1

µ1x1 + (1− µ2)x2 = y2

8

A

x0

A

x1

A

x2

B

x3

C

x4

A

y0

A

y1

A

y2

B

y3

C

y4

λ

1− λ

1− µ1

µ1

µ2

1− µ2

ν

1− ν

1

1

Figure 2: The LMCs M1 and M2 are equivalent iff (1− µ1)λ + µ2(1− λ) = ν.

≡

x3 = y3

x4 = y4

x0 = y0

(1− µ1)x1 + µ2x2 = y1

µ1x1 + (1− µ2)x2 = y2

φ3(X, Y) ≡ φ2(X, Y) ∧ φ2(X ·M
1
A, Y ·M2

A) ∧
∧

σ∈{B,C}

φ1(X ·M
1
σ , Y ·M2

σ)

︸ ︷︷ ︸

implied by φ2(X,Y)

≡

x3 = y3

x4 = y4

(1− µ1)x1 + µ2x2 = y1

µ1x1 + (1− µ2)x2 = y2

(1− µ1)λx0 + µ2(1− λ)x0 = νy0

µ1λx0 + (1− µ2)(1− λ)x0 = (1− ν)y0

It is easy to check that φ4(X, Y) ≡ φ3(X, Y). For X0 = (1, 0, 0, 0, 0) = Y0, we

have X0 ≈ Y0 if and only if (1− µ1)λ + µ2(1− λ) = ν.

3.3. Equivalence for weighted probabilistic automata

Weighted automata have numerical weights on transitions [5]. The weight can

be interpreted as the amount of some resource that the system needs in order to

perform a transition, e.g., memory consumption or power consumption. The value

of a finite path in the automaton can be defined as the Max of the transition weights

on the path, corresponding to the peak consumption of the resource.

In a weighted probabilistic automaton, the value of a finite word w is the ex-

pected value of all paths labeled by w, defining a quantitative language, i.e. a

mapping Σ+ → R.

Formally, a weighted probabilistic automaton is a tuple A = 〈S, ρ0, Σ, M, F, γ〉

where

• 〈S, ρ0, Σ, M, F 〉 is a probabilistic automaton;

9

• γ : Q×Σ×Q→ Q is a weight function, where Q is the set of rational numbers.

For each finite word w = σ1 . . . σn ∈ Σ+, let Path(w) be the set of paths

π = s0σ1s1σ1 . . . σnsn where si ∈ S for all 0 ≤ i ≤ n and sn ∈ F . The proba-

bility of such a path is P (π) = ρ0(s0) ·
∏n

i=1 Mσi
(si−1, si) and its value is γ(π) =

max{γ(si−1, σi, si) | 1 ≤ i ≤ n}. The quantitative language of A assigns to each

word w ∈ Σ+ the expected value of the paths over w:

LA(w) =
∑

π∈Path(w)

P (π) · γ(π)

For technical reasons, we define LA(ǫ) =
∑

s∈F ρ0(s), that is LA(ǫ) is the probability

that the empty word ǫ is accepted by A.

Definition 3 Two weighted probabilistic automata A1,A2 with alphabet Σ are equiv-

alent if LA1(w) = LA2(w) for all w ∈ Σ∗.

We can decide if two weighted probabilistic automata are equivalent using the

technique of Section 3.1. We need a slightly different notion of bisimulation, based

on a (non-probabilistic) infinite-state transition graph whose vertices are proba-

bility distributions over pairs (s, v) of states s and weight v. In this graph, the

distribution X is reached after reading a word w if for all states s and weight v,

the probability is X(s, v) to reach in A the state s through a path whose maximal

weight is v. The successor of X by σ is therefore the distribution X ′ such that for

all states s′ and weight v′, we have

X ′(s′, v′) =
∑

s|γ(s,σ,s′)<v′

X(s, v′) ·Mσ(s, s′)

+
∑

s|γ(s,σ,s′)=v′

∑

v≤v′

X(s, v) ·Mσ(s, s′)

We denote the distribution X ′ by δ(X, σ). Intuitively, we reach s′ with weight v′

when reading σ if either we start from a state s with weight v′ and the weight of

the transition (s, σ, s′) is less than v′, or we start from a state s with weight at most

v′ and the weight of the transition (s, σ, s′) is v′.

Now, we define bisimulation for two weighted probabilistic automata Ai =

〈Si, ρi
0, Σ, M i, F i, γi〉 (i = 1, 2). For i = 1, 2, let Vi be the set of weights that

occur in Ai and assume without loss of generality that the minimal weight vmin of

V1 ∪ V2 belongs to V1 ∩ V2.

Definition 4 A bisimulation for two weighted probabilistic automata A1 and A2

is a relation ≈⊆ D(S1 × V1) × D(S2 × V2) such that for all X ≈ Y , we have

(i)
∑

s1∈F 1

∑

v1∈V1
v1 ·X(s1, v1) =

∑

s2∈F 2

∑

v2∈V2
v2 ·Y (s2, v2) and (ii) δ1(X, σ) ≈

δ2(X, σ) for all σ ∈ Σ. We say that A1 and A2 are bisimilar if there exists a

bisimulation for them containing (θ1
0 , θ

2
0) where for i = 1, 2, θi

0(si, vi) = ρi
0(si) if

vi = vmin, and θi
0(si, vi) = 0 otherwise.

By very similar arguments as for Theorems 1 and 2, it is easy to establish the

following result.

10

Theorem 4 Two weighted probabilistic automata are equivalent if and only if they

are bisimilar. The equivalence of two weighted probabilistic automata can be decided

in time O((n1 ·m1 + n2 ·m2)
4), where n1, n2 and m1, m2 are the respective number

of states and transitions of the automata.

The complexity bound follows from the fact that we need |S1| · |V1|+ |S
2| · |V2|

variables to encode a pair (X1, X2) of distributions Xi ∈ D(Si × Vi) (i = 1, 2).

4. Markov decision processes

Labeled Markov decision processes A labeled Markov decision process (LMDP)

over Σ is a tuple P = 〈Q, π0, Σ,L, Γ, δ〉 where

• Q, π0, Σ,L are defined as for labeled Markov chains;

• Γ is a finite set of moves;

• δ : Q× Γ→ D(Q) is a probabilistic transition function labeled by moves.

A scheduler for P is a function λ : Q+ → D(Γ). The scheduler λ for P defines

an infinite-state labeled Markov chain P(λ) = 〈Q+, π′
0, Σ,L′, δ̂〉 where

• L′(q1q2 . . . qn) = L(qn);

• π′
0(q1q2 . . . qn) = 0 if n ≥ 2, and π′

0(q) = π0(q);

• for all q̄, q̄′ ∈ Q+, if q̄ = q0q1 . . . qn and q̄′ = q0q1 . . . qn+1 then δ̂(q̄)(q̄′) =
∑

γ∈Γ λ(q̄)(γ) · δ(qn, γ)(qn+1), and otherwise δ̂(q̄)(q̄′) = 0.

Given a scheduler λ for P and a finite sequence q̄ = q1 . . . qk of states, define the

scheduler λ[q̄] for P by λ[q̄](q̄
′)(γ) = λ(q̄.q̄′)(γ) for all q̄′ ∈ Q+ and γ ∈ Γ. That is

λ[q̄] is playing like λ under history q̄.

Now, define δλ : Q→ D(Q) by δλ(q)(q′) =
∑

γ∈Γ λ(q)(γ)·δ(q, γ)(q′) for all q, q′ ∈

Q. Define ∆λ : D(Q)×Q+ → [0, 1], the function that gives the probability ∆λ(X, q̄)

of observing the sequence of states q̄ when P(λ) is started with the initial distribu-

tion X as follows: ∆λ(X, q) = X(q) and inductively, ∆λ(X, q̄.q′.q′′) = ∆λ(X, q̄.q′) ·

δλ[q̄]
(q′)(q′′) for all q̄ ∈ Q∗ and q′, q′′ ∈ Q. We extend ∆λ to nonempty sequences of

observations as follows: for all w ∈ Σ+, let ∆λ(X, w) =
∑

{q̄|L(q̄)=w} ∆λ(X, q̄).

We say that a scheduler λ has finite memory if there exists a finite set M (the

memory), a memory cell m0 ∈ M , and two functions update : M × Q → M and

µ : M → D(Γ) such that λ(q̄) = µ(update(m0, q̄)) for all q̄ ∈ Q+, where we extend

update to sequences of states as follows: update(m, q̄.q′) = update(update(m, q̄), q′)

for all m ∈M , q̄ ∈ Q+ and q′ ∈ Q.

Refinement Given an LMCM and two LMDPs P1, P2, we write

• M ⊑ P1 if there exists a scheduler λ for P1 such that M and P1(λ) are

equivalent;

11

• P1 ⊑M ifM and P1(λ) are equivalent for all schedulers λ for P1;

• P1 ⊑ P2 if for all schedulers λ for P1, there exists a scheduler µ for P2 such

that P1(λ) and P2(µ) are equivalent; if so, we say that P1 refines P2.

• P1 ≡ P2 if P1 ⊑ P2 and P2 ⊑ P1, and we say that P1 and P2 are equivalent.

The decidability of all the above relations is open. We show below that only the

schedulers that are observation-based need to be considered in the refinement and

equivalence relations. We also give an insight of the difficulty of these problems by

showing that infinite memory can be needed for a scheduler to establish for instance

M⊑ P1.

Remark 3 - Observation-based schedulers are sufficient. A scheduler λ for

P is observation-based if λ(ρ.q) = λ(ρ′.q) for all q ∈ Q and ρ, ρ′ ∈ Q∗ such that

L(ρ) = L(ρ′).

Lemma 1 Given a scheduler λ for an LMDP P, there exists an observation-based

scheduler µ for P such that the LMCs P(λ) and P(µ) are equivalent.

Proof. Let P = 〈Q, π0, Σ,L, Γ, δ〉. Define the observation-based scheduler µ as

follows, for all q̄1 ∈ Q∗, q ∈ Q and γ ∈ Γ:

µ(q̄1.q)(γ) =
∑

{q̄2|L(q̄2)=L(q̄1)}

cq̄2.q · λ(q̄2.q)(γ)

where cq̄2.q =
∆λ(π0, q̄2.q)

∑

{q̄3|L(q̄3)=L(q̄2)}
∆λ(π0, q̄3.q)

Clearly, µ is a well-defined scheduler since the coefficients cq̄2.q sum up to 1

when q̄2 is such that L(q̄2) = L(q̄1). Let us show by induction on the length of w

that for all q ∈ Q, we havea ∆λ(π0, w.q) = ∆µ(π0, w.q) for all w ∈ Σ∗. This will

immediately imply that ∆λ(π0, w) = ∆µ(π0, w) for all w ∈ Σ+ and thus P(λ) and

P(µ) are equivalent.

First, for the empty word w = ǫ, we have ∆λ(π0, ǫ.q) = π0(q) = ∆µ(π0, ǫ.q).

Second, assume that ∆λ(π0, w.q) = ∆µ(π0, w.q) holds for all q ∈ Q and w ∈ Σ∗ of

length ≤ k, and let w′ = wσ be a word of length k + 1. We have:

∆λ(π0, w
′.q) =

∑

{q̄1|L(q̄1)=w′}

∆λ(π0, q̄1.q)

=
∑

{q̄2|L(q̄2)=w}

∑

{q′|L(q′)=σ}

∑

γ∈Γ

∆λ(π0, q̄2.q
′) · λ(q̄2.q

′)(γ) · δ(q′, γ)(q)

=
∑

{q′|L(q′)=σ}

∑

γ∈Γ

δ(q′, γ)(q) ·
∑

{q̄2|L(q̄2)=w}

∆λ(π0, q̄2.q
′) · λ(q̄2.q

′)(γ)

aWe denote by ∆λ(π0, w.q) the probability of observing a sequence q1 . . . qk with w =
L(q1 . . . qk−1) and qk = q when P(λ) is started in distribution π0.

12

=
∑

{q′|L(q′)=σ}

∑

γ∈Γ

δ(q′, γ)(q) ·

∑

{q̄2|L(q̄2)=w}

∆λ(π0, q̄2.q
′)

 · µ(q̄′2.q
′)(γ)

for any sequence q̄′2 such that L(q̄′2) = w since µ is observation-based.

=
∑

{q′|L(q′)=σ}

∑

γ∈Γ

δ(q′, γ)(q) ·
(

∆λ(π0, w.q′)
)

· µ(q̄′2.q
′)(γ)

=
∑

{q′|L(q′)=σ}

∑

γ∈Γ

δ(q′, γ)(q) ·
(

∆µ(π0, w.q′)
)

· µ(q̄′2.q
′)(γ)

(by the induction hypothesis)

=
∑

{q′|L(q′)=σ}

∑

γ∈Γ

δ(q′, γ)(q) ·
∑

{q̄2|L(q̄2)=w}

∆µ(π0, q̄2.q
′) · µ(q̄2.q

′)(γ)

= ∆µ(π0, w
′.q)

�

Remark 4 - Infinite memory may be necessary. Consider the example in

Figure 3 showing a 4-states LMDP P with one nondeterministic choice in state x2,

and a 6-states LMC M. A scheduler for this LMDP should give the value λ(w)

of the parameter λ for each sequence of observations w ∈ Σ+ ending with symbols

BC. We claim that a scheduler needs infinite memory for witnessing the relation

M⊑ P (for x0 = y0 = 1).

Lemma 2 There exists an LMDP P and an LMC M such that M and P(λ) are

equivalent for some scheduler λ, but there is no scheduler λ′ with finite memory

such that M and P(λ′) are equivalent.

Intuitively, whenever we observe two consecutive ‘C’, we know for sure that we

have to simulate the y2, y4, y5-component of the LMC, and so we play λ = 1
2 . On

the other hand, if we observe only ‘BC’ sequences, we cannot surely discriminate

between the y1, y3-component and the y2, y4, y5-component. However, when the

number n of ‘BC’ sequences increases, it becomes more likely that we should simu-

late the y1, y3-component. Therefore, we should increase the probability of playing

as in the x1, x3-component, that is take λ→ 0 when n→∞. More precisely,

• if w contains two consecutive ‘C’, then play λ(w) = 1
2 ;

• otherwise, let n be the number of occurrences of the sequence ‘BC’ in w. Play

λ(w) = 1
2+2n ;

We show that there exists no finite memory scheduler λ such that M and

P(λ) are equivalent. To reach a contradiction, assume that such a finite mem-

ory scheduler exists, defined by M , m0 ∈M , update and µ. Consider the sequence

mi = update(m0, x0(x1x2)
i) for i = 1, 2, Since M is finite, there must ex-

ist n1 < n2 such that mn1 = mn2 . Let λi be the probability given by µ(mi)

to jump from x2 to x3, and let p1 =
∏n1−1

i=1 1 − λi be the probability to observe

the sequence A(BC)n1 , and let p2 =
∏n2−1

i=n1
1 − λi. If p2 = 1, then the word

13

A

x0

B

x1

C

x2

C

x3

A

y0

B

y1

B

y2

C

y3

C

y4

C

y5

1

1

1− λ

λ

1

1
2

1
2

1

1

1

1
2

1
2

1

Figure 3: Infinite memory is required for the LMDP (above) to be equivalent to the
LMC (below).

A(BC)n1C has probability 0 in P(λ), and probability 1
21+n1

6= 0 in M. Therefore

p2 < 1. Now, consider the infinite wordb w = A(BC)ω . We have PM(w) = 1
2 , while

PP(λ)(w) = limn→∞ p1.p
n
2 = 0. Hence the finite memory scheduler λ cannot exist.

Finally, notice that if we allow randomization in the memory update, that is

update : M ×Q→ D(M), then a finite memory scheduler exists: initially, we take

m ∈ {0, 1} uniformly at random. Next, we play λ = 0 forever if m = 0, and λ = 1
2

if m = 1. We do not know if finite randomized memory is sufficient in general.

5. Conclusion

We gave a new algorithm to decide in polynomial time the equivalence of la-

beled Markov chains. The algorithm is based on the computation of bisimilar state

distributions. The refinement and equivalence problems for LMDPs remains open.

Another important open problem about labeled Markov chains is the question of

minimization, that is, to find an efficient procedure to construct an LMC with the

minimal number of states which is equivalent to a given LMC. The question of the

existence of a unique minimal labeled Markov chain (up to isomorphism) is also

open.

bGiven a function f : Σ∗ → [0, 1], we write f(w) = a for w ∈ Σω if ∀ǫ > 0 ·∃n : |f(w[n])−a| ≤ ǫ

where w[n] is the prefix of w of length n.

14

References

1. Hans Hansson. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Uppsala University, 1991.

2. Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1–28, 1991.

3. Azaria Paz. Introduction to probabilistic automata. Computer Science and Applied
Mathematics. Academic Press, New York, 1971.

4. Michael Oser Rabin. Probabilistic automata. Information and Control, 6(3):230–
245, 1963.

5. Marcel Paul Schützenberger. On the definition of a family of automata. Information

and Control, 4(2-3):245–270, 1961.

6. Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput., 21(2):216–227, 1992.

7. Enrique Vidal, Franck Thollard, Colin de la Higuera, Francisco Casacuberta, and
Rafael C. Carrasco. Probabilistic finite-state machines-part I. IEEE Trans. Pattern

Anal. Mach. Intell., 27(7):1013–1025, 2005.

8. Enrique Vidal, Franck Thollard, Colin de la Higuera, Francisco Casacuberta, and
Rafael C. Carrasco. Probabilistic finite-state machines-part II. IEEE Trans. Pattern

Anal. Mach. Intell., 27(7):1026–1039, 2005.

15

