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Abstract. We consider Markov decision processes with synchronizing
objectives, which require that a probability mass of 1 − ε accumulates
in a designated set of target states, either once, always, infinitely often,
or always from some point on, where ε = 0 for sure synchronizing, and
ε → 0 for almost-sure and limit-sure synchronizing.
We introduce two new qualitative modes of synchronizing, where the
probability mass should be either positive, or bounded away from 0.
They can be viewed as dual synchronizing objectives. We present al-
gorithms and tight complexity results for the problem of deciding if a
Markov decision process is positive, or bounded synchronizing, and we
provide explicit bounds on ε in all synchronizing modes. In particular,
we show that deciding positive and bounded synchronizing always from
some point on, is coNP-complete.

1 Introduction

Markov decision processes (MDP) are finite-state probabilistic systems with con-
trollable (non-deterministic) choices. They play a central role in several applica-
tion domains for practical purpose [14, 19], and in theoretical computer science
as a basic model for the analysis of stochastic transition systems [2, 9].

In the traditional state-based semantics, we consider the sequences of states
that form a path in the underlying graph of the MDP. When a control policy (or
strategy) for the non-deterministic choices is fixed, we obtain a purely stochastic
process that induces a probability measure over sets of paths [2, 7].

In the more recent distribution-based semantics, the outcome of a stochastic
process is a sequence of distributions over states [3, 18]. This alternative seman-
tics has received some attention recently for theoretical analysis of probabilistic
bisimulation [16] and is adequate to describe large populations of agents [12, 8]
with applications in system biology [18, 1]. The behaviour of an agent is modeled
as an MDP with some state space Q, and a large population of identical agents
is described by a (continuous) distribution d : Q → [0, 1] that gives the fraction
d(q) of agents in the population that are in each state q ∈ Q. The control prob-
lem is to construct a strategy for the agents that guarantees a specified global
outcome of the agents, defined in terms of sequences of distributions. Specifica-
tions of interest include safety objectives [1] and synchronization objectives [12].
A distribution is p-synchronized in a set T of states if it assigns to the states
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Fig. 1: A Markov chain that is positively but not boundedly synchronizing (for
all modes except eventually).

in T a mass of probability at least p. Synchronization objectives require that
p-synchronized distributions occur in the outcome sequence, either, at some po-
sition (eventually), at all positions (always), infinitely often (weakly), or always
from some point on (strongly), where synchronization is sure winning for p = 1,
and almost-sure or limit-sure winning for p arbitrarily close to 1 [12].

Consider eventually synchronizing as an illustration. Formally, denoting by
dσi (T ) the probability mass in a set T under strategy σ at position i in a given
MDP, the three winning modes for eventually synchronizing correspond to the
following three possible orders of the quantifiers:

– ∀ε > 0 · ∃σ · ∃i : dσi (T ) ≥ 1− ε, for limit-sure winning,

– ∃σ · ∀ε > 0 · ∃i : dσi (T ) ≥ 1− ε, for almost-sure winning,

– ∃σ · ∃i · ∀ε > 0 : dσi (T ) ≥ 1− ε, for sure winning.

Note that the formula ∀ε > 0 : dσi (T ) ≥ 1−ε is equivalent to dσi (T ) = 1 in the
case of sure winning. Defining the value of a strategy σ as val(σ) = supi d

σ
i (T ),

the question for limit-sure winning is analogous to the cutpoint isolation problem
for value 1, i.e. whether the value 1 can be approached arbitrarily closely [20, 4].
Previous work [12] shows that the above three questions are PSPACE-complete,
and presents a construction of the (existentially quantified) strategy σ when one
exists.

In this paper, we consider dual synchronization objectives obtained either
by taking the negation of the synchronization objectives, or by replacing the
existential quantifier on strategies by a universal quantifier.

1. Taking the negation corresponds to the control player having no strat-
egy to satisfy the synchronization objective. In that case, we show that a more
precise information can be derived, namely bounds on the value of ε, which is
existentially quantified, and we construct explicit values for the four synchro-
nizing modes. These values give bounds on the isolation distance of the value 1.
For instance, the negation of limit-sure eventually synchronizing in T is given
by the formula:

∃ε > 0 · ∀σ · ∀i : dσi (T ) ≤ 1− ε.

We show that the statement holds for a value ε = εe(n, α, α0) that depends on
the number n of states of the MDP, the smallest positive probability α in the
transitions of the MDP, and the smallest positive probability α0 in the initial
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Table 1: Positive and Bounded winning modes for always, strongly, weakly, and
eventually synchronizing objectives.

Always Strongly

Positively ∃σ ∀i dσi (T ) > 0 ∃σ ∃N ∀i ≥ N dσi (T ) > 0

Boundedly ∃σ infi dσi (T ) > 0 ∃σ lim infi→∞ dσi (T ) > 0

Weakly Eventually

Positively ∃σ ∀N ∃i ≥ N dσi (T ) > 0 ∃σ ∃i dσi (T ) > 0

Boundedly ∃σ lim sup
i→∞

dσi (T ) > 0 ∃σ sup
i

dσi (T ) > 0

distribution d0 (see Theorem 1). The most interesting case is when limit-sure
weakly synchronizing does not hold, that is:

∃ε > 0 · ∀σ · ∃N · ∀i ≥ N : dσi (T ) ≤ 1− ε.

Given the value ε = εw that satisfies this condition (see Theorem 2), the value
of N can be arbitrarily large (depending on the strategy σ). Nevertheless, we can
effectively construct a constantNw such that, for all strategies σ, in the sequence
(dσi )i∈N there are at most Nw distributions that are (1− εw)-synchronized in T .

2. Replacing the existential strategy quantifier by a universal quantifier cor-
responds to an adversarial MDP where all strategies need to satisfy the require-
ment, or after taking the negation, to the existence of a strategy that violates
a dual of the synchronizing requirement. Note that there is no more alternation
of quantifiers on ε and on σ (∀ε · ∀σ is the same as ∀σ · ∀ε), which gives rise to
only two new winning modes in existential form:

– ∃σ · ∃ε > 0 · ∀i : dσi (T ) ≥ ε, that we call bounded winning,
– ∃σ · ∀i · ∃ε > 0 : dσi (T ) ≥ ε, that we call positive winning (since this is

equivalent to ∃σ · ∀i : dσi (T ) > 0).

Table 1 presents the analogous definitions of bounded and positive winning
for the four synchronizing modes. It is easy to see that for eventually synchroniz-
ing, the positive and bounded mode coincide, while for the other synchronizing
modes the positive and bounded modes are distinct, already in Markov chains
(see Fig. 1).

We establish the complexity of deciding bounded and positive winning in
the four synchronizing modes, given an MDP and initial distribution (which
we call the membership problem), and we also construct explicit values for ε.
Adversarial MDPs are a special case of two-player stochastic games [7] in which
only the second player (the adversary of the first player) is non-trivial. The
results of this paper will be useful for the analysis of adversarial MDPs obtained
from a game by fixing a strategy of the first player. The complexity results are
summarized in Table 2. For positive winning, memoryless winning strategies
exist (playing all actions uniformly at random is sufficient), and the problem
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Table 2: Computational complexity of the membership problem (for eventually
synchronizing, the positive and bounded modes coincide).

Always Eventually Weakly Strongly

Positively coNP-C
NL-C

NL-C coNP-C

Boundedly coNP-C NL-C coNP-C

can be solved by graph-theoretic techniques on Markov chains. For bounded
winning, the most challenging case is strongly synchronizing, where we show
that a simple form of strategy with memory is winning, and that the decision
problem is coNP-complete. We give a structural characterization of bounded
strongly synchronizing MDPs, and show that it can be decided in coNP. Note
that the coNP upper bound is not obtained by guessing a strategy, since the
coNP lower bound holds in the case of Markov chains where strategies play no
role. Omitted proofs and additional material can be found in an extended version
of this paper [13].

Related works. The distribution-based semantics of MDPs [3, 18] has received an
increased amount of attention recently, with works on safety objectives [1] and
synchronizing objectives [12] (see also references therein). Logic and automata-
based frameworks express distribution-based properties, by allowing different
order of the logical quantifiers, such as ∀σ∃i in standard reachability which be-
comes ∃i∀σ in synchronized reachability [3, 17, 6]. The bounded and positive win-
ning modes introduced in this paper have not been considered before. They bear
some similarity with the qualitative winning modes in concurrent games [11].

Applications are found in modeling of large populations of identical agents,
such as molecules, yeast, bacteria, etc. [18, 1] where the probability distributions
represent concentrations of each agent in the system. Analogous models have
been considered in a discrete setting where the number of agents is a parameter n,
giving rise to control problems for parameterized systems, asking if there exists
a strategy that brings all n agents synchronously to a target state [5, 8].

2 Definitions

A probability distribution over a finite set Q is a function d : Q → [0, 1] such
that

∑

q∈Q d(q) = 1. The support of d is the set Supp(d) = {q ∈ Q | d(q) > 0}.
We denote by D(Q) the set of all probability distributions over Q. Given a set
T ⊆ Q, let d(T ) =

∑

s∈T d(s).
A Markov decision process (MDP) is a tuple M = 〈Q,A, δ〉 where Q is a

finite set of states, A is a finite set of labels called actions, and δ : Q×A → D(Q)
is a probabilistic transition function. A Markov chain is an MDP with singleton
action set |A| = 1. Given a state q ∈ Q and an action a ∈ A, the successor state
of q under action a is q′ with probability δ(q, a)(q′).
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Given X,Y ⊆ Q, let

APre(Y,X) = {q ∈ Q | ∃a ∈ A : Supp(δ(q, a)) ⊆ Y ∧ Supp(δ(q, a)) ∩X 6= ∅},

be the set of states from which there is an action to ensure that all successor
states are in Y and that with positive probability the successor state is in X ,
and for X = Q, let Pre(Y ) = APre(Y,Q) = {q ∈ Q | ∃a ∈ A : Supp(δ(q, a)) ⊆ Y }
be the set of states from which there is an action to ensure (with probability 1)
that the successor state is in Y . For k > 0, let Prek(Y ) = Pre(Prek−1(Y ))
with Pre0(Y ) = Y . Note that the sequence Prek(Y ) of iterated predecessors is
ultimately periodic, precisely there exist k1 < k2 ≤ 2|Q| such that Prek1(Y ) =
Prek2(Y ).

Strategies. A (randomized) strategy in M is a function σ : (QA)∗Q → D(A)
that, given a finite sequence ρ = q0a0q1a1 . . . qk, chooses the next action ak with
probability σ(ρ)(ak). We write σ1 ⊆ σ2 if Supp(σ1(ρ)) ⊆ Supp(σ2(ρ)) for all
ρ ∈ (QA)∗Q. A strategy σ is pure if for all ρ ∈ (QA)∗Q, there exists an action
a ∈ A such that σ(ρ)(a) = 1. In all problems considered in this paper, it is known
that pure strategies are sufficient [12]. However, the bounds we provide in case
there is no winning strategy hold for all strategies, pure or randomized.

Given an initial distribution d0 ∈ D(Q) and a strategy σ in M, the
probability of a finite sequence ρ = q0a0q1a1 . . . qk is defined by Prσd0

(ρ) =

d0(q0) ·
∏k−1

j=0 σ(q0a0 . . . qj)(aj) ·δ(qj , aj)(qj+1). For an initial distribution d0 such
that d0(q0) = 1, we sometimes write Prσq0(·) and say that q0 is the initial state.
We say that ρ is compatible with σ and d0 if Prσd0

(ρ) > 0. By extension, an infi-
nite sequence π ∈ (QA)ω is compatible with σ and d0 if all prefixes of π that end
in a state are compatible. It is standard to extend (in a unique way) Prσd0

over
Borel sets of infinite paths in (QA)ω (called events), by assigning probability
Prσd0

(ρ) to the basic cylinder set containing all infinite paths with prefix ρ [22,
2]. Given a set T ⊆ Q of target states, and k ∈ N, we define the following events
(sometimes called objectives):

– ✷T = {q0a0q1 · · · ∈ (QA)ω | ∀i : qi ∈ T } the safety event of staying in T ;
– ✸T = {q0a0q1 · · · ∈ (QA)ω | ∃i : qi ∈ T } the event of reaching T ;
– ✸

k T = {q0a0q1 · · · ∈ (QA)ω | qk ∈ T } the event of reaching T after exactly
k steps;

A distribution d0 is almost-sure winning for an event Ω if there exists a
strategy σ such that Prσd0

(Ω) = 1, and limit-sure winning if supσ Pr
σ
d0
(Ω) = 1,

that is the event Ω can be realized with probability arbitrarily close to 1. Finally
d0 is sure winning for Ω if there exists a strategy σ such that all paths compatible
with σ and d0 belong to Ω.

Safety and reachability events are dual, in the sense that ✸T and ✷(Q \ T )
form a partition of (QA)ω. It is known for safety objectives ✷T that the three
winning regions (sure, almost-sure winning, and limit-sure winning) coincide in
MDPs, and for reachability objectives ✸T , almost-sure and limit-sure winning
coincide [10]. It follows that if the negation of almost-sure reachability holds, that
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is Prσd0
(✸T ) < 1 for all strategies σ, then equivalently infσ Pr

σ
d0
(✷(Q \ T )) > 0

(note the strict inequality), the probability mass that remains always outside T
can be bounded. An explicit bound can be obtained from the classical charac-
terization of the winning region for almost-sure reachability [9].

Lemma 1. If a distribution d0 is not almost-sure winning for a reachability
objective ✸T in an MDP M, then for all strategies σ, for all i ≥ 0, we have
Prσd0

(✸i T ) ≤ 1−α0 ·α
n where n = |Q| is the number of states and α the smallest

positive probability in M, and α0 = min{d0(q) | q ∈ Supp(d0)} is the smallest
positive probability in the initial distribution d0.

In Lemma 1 it is crucial to notice that the bound α0 · αn is independent of
the number i of steps.

Synchronizing objectives. We consider MDPs as generators of sequences of prob-
ability distributions over states [18]. Given an initial distribution d0 ∈ D(Q)
and a strategy σ in M, the sequence Mσ = (Mσ

i )i∈N of probability distri-
butions (from d0, which we assume is clear from the context) is defined by
Mσ

i (q) = Prσd0
(✸i {q}) for all i ≥ 0 and q ∈ Q. Hence, Mσ

i is the probability
distribution over states after i steps under strategy σ. Note that Mσ

0 = d0.
Informally, synchronizing objectives require that the probability of some set T

of states tends to 1 in the sequence (Mσ
i )i∈N, either always, once, infinitely

often, or always after some point [12]. Given a target set T ⊆ Q, we say that
a probability distribution d is p-synchronized in T if d(T ) ≥ p (and strictly
p-synchronized in T if d(T ) > p), and that a sequence d0d1 . . . of probability
distributions is:

(a) always p-synchronizing if di is p-synchronized (in T ) for all i ≥ 0;
(b) event(ually) p-synchronizing if di is p-synchronized (in T ) for some i ≥ 0;
(c) weakly p-synchronizing if di is p-synchronized (in T ) for infinitely many i’s;
(d) strongly p-synchronizing if di is p-synchronized (in T ) for all but finitely

many i’s.

Given an initial distribution d0, we say that for the objective of {always,
eventually, weakly, strongly} synchronizing from d0, the MDP M is:

– sure winning if there exists a strategy σ such that the sequence Mσ from d0
is {always, eventually, weakly, strongly} 1-synchronizing in T ;

– almost-sure winning if there exists a strategy σ such that for all ε > 0
the sequence Mσ from d0 is {always, eventually, weakly, strongly} (1 − ε)-
synchronizing in T ;

– limit-sure winning if for all ε > 0, there exists a strategy σ such that
the sequence Mσ from d0 is {always, eventually, weakly, strongly} (1 − ε)-
synchronizing in T ;

For λ ∈ {always, event, weakly, strongly}, we denote by 〈〈1〉〉λsure(T ) the win-
ning region defined as the set of initial distributions d0 such that M is sure
winning for λ-synchronizing in T (in this notation, we assume that M is clear
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Fig. 2: An MDP where {q0} ∈ 〈〈1〉〉eventlimit ({q2}).

from the context). We define analogously the winning regions 〈〈1〉〉λalmost (T ) and
〈〈1〉〉λlimit (T ) of almost-sure and limit-sure winning distributions.

It is known that for all winning modes, only the support of the initial dis-
tributions is relevant, that is for every winning region W = 〈〈1〉〉λµ(T ) (where
µ ∈ {sure, almost, limit}), for all distributions d, d′, if Supp(d) = Supp(d′), then
d ∈ W if and only if d′ ∈ W [12]. Therefore, in the sequel we sometimes write
S ∈ 〈〈1〉〉λµ(T ), which can be read as any distribution d with support S is in

〈〈1〉〉λµ(T ). For each synchronizing mode λ and winning mode µ, the membership
problem asks to decide, given an MDP M, a target set T , and a set S, whether
S ∈ 〈〈1〉〉λµ(T ).

Consider the MDP in Fig. 2, with initial state q0 and target set T = {q2}.
The probability mass cannot loop through q2 and therefore, it is immediate that
the MDP is neither always, nor weakly, nor strongly (1− ε)-synchronizing, thus
{q0} 6∈ 〈〈1〉〉λalmost (T ) for λ = always, weakly, strongly, and thus also {q0} 6∈
〈〈1〉〉λsure(T ).

For eventually synchronizing in q2, at every step, half of the probability mass
in q0 stays in q0 while the other half is sent to q1. Thus, the probability mass
in q0 tends to 0 but is strictly positive at every step, and the MDP is not
sure eventually synchronizing, {q0} 6∈ 〈〈1〉〉eventsure (T ). In state q1, action a keeps
the probability mass in q1, while action b sends it to the target state q2. If
action b is never chosen, then q2 is never reached, and whenever b is chosen, a
strictly positive probability mass remains in q0, thus the MDP is not almost-
sure eventually synchronizing, {q0} 6∈ 〈〈1〉〉eventalmost (T ). On the other hand, for every
ε > 0, the strategy that plays a in q1 for k steps such that 1

2k
< ε, and then

plays b, is winning for eventually (1 − ε)-synchronizing in T . Thus the MDP is
limit-sure eventually synchronizing, {q0} ∈ 〈〈1〉〉eventlimit (T ).

The MDP in Fig. 3 is also limit-sure eventually synchronizing in {q2}. As
the probability mass is sent back to q0 from q2, the MDP is even almost-sure
weakly (and eventually) synchronizing, using a strategy that plays action a in
q1 for k steps to accumulate probability mass 1 − 1

2k in q1, then plays action b
and repeats the same pattern for increasing values of k.

End-components. Given a state q ∈ Q and a set S ⊆ Q, let AS(q) be the set of
all actions a ∈ A such that Supp(δ(q, a)) ⊆ S. A closed set in an MDP is a set
S ⊆ Q such that AS(q) 6= ∅ for all q ∈ S. A set S ⊆ Q is an end-component [10,
2] if (i) S is closed, and (ii) the graph (S,ES) is strongly connected where
ES = {(q, q′) ∈ S × S | δ(q, a)(q′) > 0 for some a ∈ AS(q)} denote the set
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Fig. 3: An MDP where {q0} ∈ 〈〈1〉〉weakly
almost ({q2}).

of edges given the actions. In the sequel, end-components should be considered
maximal, that is such that no strict superset is an end-component. We denote by
E the union of all end-components, and for q ∈ E , we denote by E(q) the maximal
end-component containing q. A fundamental property of end-components is that
under arbitrary strategies, with probability 1 the set of states visited infinitely
often along a path is an end-component.

Lemma 2 ([9, 10]). Let M be an MDP. For all strategies σ, we have
lim infi→∞ Mσ

i (E) = 1.

Tracking counter in MDPs. It will be useful to track the number of steps (modulo
a given number r) in MDPs. Given a number r ∈ N, define the MDP M× [r] =
〈Qr,A, δr〉 where Qr = Q × {r − 1, . . . , 1, 0} and δr is defined as follows, for all
〈q, i〉, 〈q′, j〉 ∈ Qr and a ∈ A:

δr(〈q, i〉, a)(〈q
′, j〉) =

{

δ(q, a)(q′) if j = i− 1 mod r,

0 otherwise.

For a distribution d ∈ D(Q) and 0 ≤ t < r, we denote by d × {t} the
distribution defined, for all q ∈ Q, by d × {t}(〈q, i〉) = d(q) if t = i, and d ×
{t}(〈q, i〉) = 0 otherwise. Given a finite sequence ρ = q0a0q1a1 . . . qn in M, and
0 ≤ t < r, there is a corresponding sequence ρ′ = 〈q0, k0〉a0〈q1, k1〉a1 . . . 〈qn, kn〉
in M× [r] where k0 = t and ki+1 = ki − 1 mod r for all 0 ≤ i < n. Since the
sequence ρ′ is uniquely defined from ρ and t, there is a clear bijection between
the paths in M starting in q0 and the paths in M × [r] starting in 〈q0, t〉. In
the sequel, we freely omit to apply and mention this bijection. In particular, we
often consider that a strategy σ in M can be played directly in M× [r].

Consider the MDP in Fig. 4 (which is in fact a Markov chain), with initial
state q0 and target set T = {q2, q3}. There are two end-components, S1 = {q1, q2}
and S2 = {q3, q4}. Although both S1 and S2 are sure eventually synchronizing
in T (from q1 and q3 respectively), the uniform distribution over {q1, q3} is not
even limit-sure eventually synchronizing in T .

3 Eventually synchronizing

In the rest of this paper, fix an MDP M = 〈Q,A, δ〉 and let n = |Q| be the size
of M, and let α be the smallest positive probability in the transitions of M.
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Fig. 4: A Markov chain with two periodic end-components.

We first consider eventually synchronizing, that is synchronization must happen
once.

3.1 Sure winning

We recall the following characterization of the sure-winning region for eventually
synchronizing [12, Lemma 7]: d ∈ 〈〈1〉〉eventsure (T ) if and only if there exists k ≥ 0
such that Supp(d) ⊆ Pre

k(T ). Intuitively, from all states in Pre
i(T ), there exists

an action to ensure that the successor is in Prei−1(T ) (for all i > 0), and therefore
there exists a strategy to ensure that the probability mass in Prek(T ) reaches
T in exactly k steps. Now, if q0 6∈ Prek(T ), then for all sequences of actions
a0, . . . , ak−1 there is a path q0a0q1a1 . . . qk of length k that ends in qk ∈ Q \ T .
It is easy to derive the following result from this characterization.

Lemma 3. If d0 6∈ 〈〈1〉〉eventsure (T ) is not sure eventually synchronizing in T , then
for all strategies σ, for all i ≥ 0, we have:

Mσ
i (T ) ≤ 1− α0 · α

i

where α0 is the smallest positive probability in d0.

Note that the bound 1−α0·α
i tends to 1 as i → ∞, which is unavoidable since

MDPs that are not sure eventually synchronizing may be almost-sure eventually
synchronizing [12]. The following variant of Lemma 3 will be useful in the sequel.

Remark 1. If {q0} 6∈ 〈〈1〉〉eventsure (T ) and we take α′
0 = d0(q0), then from the initial

distribution d0 we have, for all strategies σ, for all i ≥ 0:

Mσ
i (T ) ≤ 1− α′

0 · α
i.

3.2 Limit-sure winning

If the MDP M is not limit-sure winning for eventually synchronizing in T , then
the probability in Q \ T is bounded away from 0 in all distributions in Mσ (for
all strategies σ). We give an explicit bound εe as follows.
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Theorem 1. Given an initial distribution d0, let α0 be the smallest positive
probability in d0, and let εe = α0 · α(n+1)·2n . If d0 6∈ 〈〈1〉〉eventlimit (T ) is not limit-
sure eventually synchronizing in T , then for all strategies σ, for all i ≥ 0, we
have:

Mσ
i (T ) ≤ 1− εe,

that is, no distribution in Mσ is strictly (1− εe)-synchronizing in T .

Proof. We recall the characterization1 of [12, Lemma 11] for limit-sure synchro-
nizing in an arbitrary set T . For all k ≥ 0, we have

〈〈1〉〉eventlimit (T ) = 〈〈1〉〉eventsure (T ) ∪ 〈〈1〉〉eventlimit (R),

where R = Prek(T ).
We use this characterization with a specific k (and R) as follows. Consider the

sequence of predecessors Prei(T ) (for i = 1, 2, . . . ), which is ultimately periodic.
Let 0 ≤ k < 2n and 1 ≤ r < 2n be such that Pre

k(T ) = Pre
k+r(T ), and let

R = Prek(T ). Thus R = Prek+r(T ) = Prer(R).
Since d0 6∈ 〈〈1〉〉eventlimit (T ), we have:

(a) d0 6∈ 〈〈1〉〉eventsure (T ), and (b) d0 6∈ 〈〈1〉〉eventlimit (R).

By (a), it follows from Lemma 3 that Mσ
i (T ) ≤ 1 − α0 · αi for all strategies σ

and all i ≥ 0, which establishes the bound in the lemma for the first 2n steps,
since α0 · αi ≥ εe for all i ≤ 2n.

We now recall the characterization1 of [12, Lemma 12] for limit-sure synchro-
nizing in the set R, which has the property that R = Prer(R): d0 ∈ 〈〈1〉〉eventlimit (R)
if and only if there exists 0 ≤ t < r such that d0 × {t} is almost-sure winning
for the reachability objective ✸(R×{0}) in the MDP M× [r]. By (b), it follows
that for all 0 ≤ t < r, the distribution d0 × {t} is not almost-sure winning for
the reachability objective ✸(R× {0}) in the MDP M× [r].

Let N = M × [r]. By Lemma 1, from all distributions d0 × {t} (for all
0 ≤ t < r), for all strategies σ and all i ≥ 0, we have:

N σ
i (R × {0}) ≤ 1− α0 · α

|Qr | = 1− α0 · α
n·2n .

Since this holds for all t = 0, . . . , r− 1, we conclude that Mσ
i (Q\R) ≥ α0 ·αn·2n

in the original MDP M from d0, for all strategies σ and all i ≥ 0.
Since R = Prek(T ), it follows from Lemma 3 and Remark 1 that, if at step i a

mass of probability p is outside R, then at step i+k a mass of probability at least
p ·αk is outside T . Hence we have Mσ

i+k(Q \T ) ≥ α0 ·αn·2n ·αk ≥ α0 ·α(n+1)·2n

for all strategies σ and for all i ≥ 0, which implies Mσ
i (Q \ T ) ≥ α0 · α(n+1)·2n

for all i ≥ 2n (since k < 2n).
Combining the results for i ≤ 2n and for i ≥ 2n, we get Mσ

i (T ) ≤ 1− εe for
all i ≥ 0, which concludes the proof. ⊓⊔

1 The results of [12, Lemma 11 & 12] consider a more general definition of limit-sure
synchronizing, where the support of the (1−ε)-synchronizing distribution is required
to have its support contained in a given set Z. We release this constraint by taking
Z = Q.
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Theorem 1 also gives a sufficient condition that can be used as an alternative
to [12, Lemma 11] to show that an MDP is limit-sure eventually synchronizing.
This will be useful in the proof of our main result (Theorem 2).

A variant of Theorem 1 is obtained by observing that if d0 6∈ 〈〈1〉〉eventlimit (T ),
there exists a set S0 ⊆ Supp(d0) such that S0 6∈ 〈〈1〉〉eventlimit (T ). It may be that
S0 is a strict subset of Supp(d0), and then it is sufficient to consider α0 as the
smallest positive probability of d0 on S0.

Remark 2. If S0 6∈ 〈〈1〉〉eventlimit (T ) and S0 ⊆ Supp(d0), then we can define α0 by
min{d0(q) | q ∈ S0} in the bound εe of Theorem 1.

3.3 Almost-sure winning

A simple argument shows that the almost-sure winning region for eventually
synchronizing consists of the union of the sure winning region for eventually
synchronizing and the almost-sure winning region for weakly synchronizing [21,

Section 5.1.2], that is 〈〈1〉〉eventalmost (T ) = 〈〈1〉〉eventsure (T ) ∪ 〈〈1〉〉weakly
almost (T ).

It follows that if d0 6∈ 〈〈1〉〉eventalmost (T ), then both d0 6∈ 〈〈1〉〉eventsure (T ) and d0 6∈

〈〈1〉〉weakly
almost (T ), and we can use both the results of Lemma 3 and Theorem 2.

4 Weakly synchronizing

We now consider weakly synchronizing, which intuitively requires that synchro-
nization happens infinitely often.

4.1 Sure winning

We recall the following characterization of the sure-winning region for weakly
synchronizing [12, Lemma 18]: for all distributions d0 ∈ D(Q), we have d0 ∈
〈〈1〉〉weakly

sure (T ) if and only if there exists a set S ⊆ T such that Supp(d) ⊆ Prek(S)
for some k ≥ 0, and S ⊆ Prer(S) for some r ≥ 1.

Lemma 4. If d0 6∈ 〈〈1〉〉weakly
sure (T ) is not sure weakly synchronizing in T , then for

all strategies σ, in the sequence Mσ there are at most 2n distributions that are
1-synchronized in T , that is Mσ

i (T ) = 1 for at most 2n values of i.

4.2 Limit-sure and almost-sure winning

The winning region for limit-sure and almost-sure weakly synchronizing coin-
cide [12, Theorem 7]. Therefore, in the sequel we treat them interchangeably.
We recall the following characterization of almost-sure weakly synchronizing.

Lemma 5 ([12, Lemma 23,Theorem 7]). For all distributions d0, the fol-

lowing equivalence holds: d0 ∈ 〈〈1〉〉weakly
almost (T ) if and only if there exists a set

T ′ ⊆ T such that:

d0 ∈ 〈〈1〉〉eventlimit (T
′) and T ′ ∈ 〈〈1〉〉eventlimit (Pre(T

′)).

11



The condition in Lemma 5 ensures that from d0 almost all the probability
mass (namely 1 − ε for arbitrarily small ε > 0) can be injected in a set T ′ of
target states in 0 or more steps, and that from T ′ almost all the probability mass
can be injected in Pre(T ′), thus also in T ′ (but, in at least 1 step). Intuitively,
by successively halving the value of ε one can construct a strategy that ensures
almost all the probability mass loops through T ′, thus a limit-sure weakly syn-
chronizing strategy (which is equivalent to the existence of an almost-sure weakly
synchronizing strategy).

If d0 6∈ 〈〈1〉〉weakly
almost (T ) is not almost-sure weakly synchronizing, we use

Lemma 5 to show that for all sets T ′ ⊆ T , if d0 ∈ 〈〈1〉〉eventlimit (T
′) is limit-sure

eventually synchronizing in T ′, then T ′ is not limit-sure eventually synchro-
nizing in Pre(T ′) (i.e., T ′ 6∈ 〈〈1〉〉eventlimit (Pre(T

′))). This implies that a bounded
number of distributions in the sequence Mσ can be (1 − ε)-synchronized in T
(for sufficiently small ε). We now state the main result of this section.

Theorem 2. Given an initial distribution d0, let α0 be the smallest positive

probability in d0, and let εw = α0 ·
α(n+2)·4n

n2n+1 and Nw = 2n.

If d0 6∈ 〈〈1〉〉weakly
almost (T ) is not almost-sure weakly synchronizing in T , then

for all strategies σ, in the sequence Mσ at most Nw distributions are strictly
(1− εw)-synchronized in T , that is Mσ

i (T ) > 1− εw for at most Nw values of i.

Proof. Given the assumption of the lemma, we show the following statement
by induction on k = 0, 1, . . . , 2n: if there are k distributions in Mσ that are
strictly (1 − εw)-synchronized in T , then there exist k distinct nonempty sets
T1, . . . , Tk ⊆ T such that no distribution after those k distributions in Mσ is
strictly (1 − εw)-synchronized in Tj (for all 1 ≤ j ≤ k).

For k = 2n, one of the sets Tj is equal to T and it follows that at most
2n distributions in Mσ can be (1 − εw)-synchronized in T , which concludes
the base case. For the proof by induction, we use the bound εe of Theorem 1.
Let F = (n + 1) · 2n (thus εe = α0 · αF ) and for k = 0, 1, . . . define zk =

α0

n
·
(

αF+1

n

)k

. We prove a slightly stronger statement: for k = 0, 1, . . . , 2n, if there

are k positions i1 < i2 < . . . < ik such that the distributions Mσ
ij

(j = 1, . . . , k)

are strictly (1 − εw)-synchronized in T , then there exist k distinct nonempty
sets T1, . . . , Tk ⊆ T such that no distribution after position ij in Mσ is strictly
(1− zj · αF+1)-synchronized in Tj (for all 1 ≤ j ≤ k).

This statement is indeed stronger since the sequence zk is decreasing, and εw
was chosen such that εw ≤ z2n , from which it follows that 1 − εw ≥ 1 − zk for
all k ≤ 2n.

The base case for k = 0 holds trivially. For the induction case, assume that the
statement holds for a given k < 2n, and show that it holds for k+1 as follows. If
there are k+1 positions i1 < i2 < . . . < ik+1 such that all distributions dj = Mσ

ij

(j = 1, . . . , k+ 1) are strictly (1− εw)-synchronized in T , then by the induction
hypothesis, no distribution after position ij in Mσ is strictly (1 − zj · αF+1)-
synchronized in Tj (for all 1 ≤ j ≤ k).

12



Now consider the distribution dk+1 at position ik+1, which is (1 − εw)-
synchronized in T and appears after position ik in Mσ. We construct the set
Tk+1 = {q ∈ T ∩ Supp(dk+1) | dk+1(q) > zk+1}, which contains the states in T
that carry enough probability mass (namely zk+1) according to dk+1.

Note that not all states in T ∩Supp(dk+1) carry a probability mass less than
zk+1: otherwise, the total mass of T in dk+1 would be at most n · zk+1 ≤ 1− εw
(this inequality holds thanks to n ≥ 2), in contradiction with dk+1 being (1−εw)-
synchronized in T . Therefore Tk+1 is nonempty. Hence the set Tk+1 can be
obtained from T by removing at most n− 1 states and we have

{

dk+1(Tk+1) > 1− εw − (n− 1) · zk+1 ≥ 1− n · zk+1 = 1− zk · α
F+1

dk+1(q) > zk+1 for all q ∈ Tk+1

So dk+1 is strictly (1 − zk · αF+1)-synchronized in Tk+1, and therefore also
strictly (1 − zj · αF+1)-synchronized in Tk+1 (for all 1 ≤ j ≤ k). Then, the
induction hypothesis implies that the set Tk+1 is distinct from T1, . . . , Tk. Since
1 − zk · αF+1 ≥ 1− z0 · αF+1 > 1 − εe, it follows that dk+1 = Mσ

ik+1
is strictly

(1 − εe)-synchronized in Tk+1, and by Theorem 1, that the initial distribution
d0 is limit-sure eventually synchronizing in Tk+1, that is d0 ∈ 〈〈1〉〉eventlimit (Tk+1).

By Lemma 5, this entails that Tk+1 is not limit-sure eventually synchro-
nizing in Pre(Tk+1) (i.e., Tk+1 6∈ 〈〈1〉〉eventlimit (Pre(Tk+1))), and by Theorem 1,
for all distributions d in Mσ that occur at or after position ik+1, we have
d(Pre(Tk+1)) ≤ 1−zk+1 ·αF where zk+1 < min{dk+1(q) | q ∈ Tk+1∩Supp(dk+1)}
is a lower bound on the smallest positive probability of a state of Tk+1 in the
distribution dk+1, taken as the initial distribution (see Remark 2). It follows that
for all distributions d in Mσ that occur (strictly) after position ik+1, we have
d(Tk+1) ≤ 1 − zk+1 · αF+1. Hence no distribution in Mσ after dk+1 is strictly
(1− zk+1 ·αF+1)-synchronized, which concludes the proof of the induction case.

⊓⊔

5 Always and Strongly Synchronizing

The anaysis of always and strongly synchronizing modes is relatively straight-
forward, and we present the bounds in Theorem 3.

Theorem 3. Given an initial distribution d0, let α0 be the smallest positive

probability in d0, and let εa = α0 ·
αn

n
and εs = α0 ·

α2n

n2 .

– if d0 6∈ 〈〈1〉〉always
sure (T ) is not sure always synchronizing in T , then for all

strategies σ, in the sequence Mσ there exists a position i ≤ n such that Mσ
i

is not (1− εa)-synchronized in T ,
– if d0 6∈ 〈〈1〉〉stronglysure (T ) is not sure strongly synchronizing in T , then for all

strategies σ, in the sequence Mσ there exist infinitely many positions i0 <
i1 < i2 < . . . where i0 ≤ n and ij+1 − ij ≤ n for all j ≥ 0 such that Mσ

ij
is

not 1-synchronized in T .
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– if d0 6∈ 〈〈1〉〉stronglyalmost (T ) is not almost-sure strongly synchronizing in T , then
for all strategies σ, in the sequence Mσ there exist infinitely many positions
i0 < i1 < i2 < . . . where i0 ≤ n and ij+1 − ij ≤ n for all j ≥ 0 such that
Mσ

ij
is not (1− εs)-synchronized in T .

6 Adversarial Synchronizing Objectives

In an adversarial MDP the strategies are universally quantified, which corre-
sponds to satisfying an objective regardless of the choice of strategies by an ad-
versary. Replacing ∃σ by ∀σ in the definition of the three winning modes gives,
after taking the negation to get existentially quantified strategies, the following
new winning modes.

Given a set T ⊆ Q, we say that a sequence d0d1 . . . of probability distribu-
tions is:

– positively {always, eventually, weakly, strongly} winning if di(T ) > 0 for,
respectively, all i ≥ 0, some i ≥ 0, infinitely many i’s, all but finitely many
i’s.

– boundedly {always, eventually, weakly, strongly} winning if there exists ε > 0
such that di(T ) > ε for, respectively, all i ≥ 0, some i ≥ 0, infinitely many
i’s, all but finitely many i’s.

For λ ∈ {always, event, weakly, strongly}, we denote by 〈〈1〉〉λpositive(T )

(resp., 〈〈1〉〉λbounded (T )) the set of initial distributions d0 from which there ex-
ists a strategy σ such that the sequence Mσ is positively (resp., boundedly)
λ-synchronizing in T , and we say that σ is positively (resp., boundedly) λ-
synchronizing in T from d0.

Table 1 summarizes the new definitions. Note that replacing the existential
quantification on strategies in boundedly winning mode by a supremum gives
the same question, since ∃σ : f(σ) > 0 is equivalent to supσ f(σ) > 0. For the
same reason, we have the identity 〈〈1〉〉eventpositive(T ) = 〈〈1〉〉eventbounded (T ). It is easy to

show that the definitions imply the identity 〈〈1〉〉always
bounded(T ) = 〈〈1〉〉always

positive(T ) ∩

〈〈1〉〉stronglybounded(T ), which we also obtain as a corollary of Lemma 6 below.

Remark 3. It immediately follows from the definitions that for all synchronizing
modes λ ∈ {always, event, weakly, strongly}, and µ ∈ {positive, bounded}:

– 〈〈1〉〉always
µ (T ) ⊆ 〈〈1〉〉stronglyµ (T ) ⊆ 〈〈1〉〉weakly

µ (T ) ⊆ 〈〈1〉〉eventµ (T ),

– 〈〈1〉〉λbounded (T ) ⊆ 〈〈1〉〉λpositive(T ),

and moreover,

– 〈〈1〉〉eventpositive (T ) = 〈〈1〉〉eventbounded(T ), and

– 〈〈1〉〉always
bounded (T ) = 〈〈1〉〉always

positive(T ) ∩ 〈〈1〉〉stronglybounded (T ).
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It is easy to see that if there exists a strategy σ that is positively λ-
synchronizing in T , then the strategy σu that plays at every round all actions
uniformly at random is also positively λ-synchronizing in T , because the condi-
tion di(T ) > 0 is equivalent to Supp(di) ∩ T 6= ∅, and because we have σ ⊆ σu,
which implies that Supp(Mσ

i ) ⊆ Supp(Mσu

i ) for all i ≥ 0.
Hence, in all four synchronization modes, the question is equivalent to the

same question in Markov chains (obtained from the given MDP by fixing the
strategy σu) which can be solved as follows. Given a Markov chain, consider
the underlying directed graph 〈Q,E〉 where (q, q′) ∈ E if δ(q, a)(q′) > 0 (where
A = {a}). For positive eventually synchronizing, it suffices to find a state in T
that is reachable in that graph, and for positive weakly synchronizing, it suffices
to find a state in T that is both reachable and can reach itself. These questions
are NL-complete. For positive always and strongly synchronizing, the question
is equivalent to the model-checking problem for the formulas G∃T and FG∃T in
the logic CTL+Sync, which are both coNP-complete [6, Lemma 2 & Section 3].

For boundedly winning, we show that one strategy is good enough in all four
synchronization modes, like for positive winning. The strategy plays like σu for
the first 2n rounds, and then switches to a strategy σE that, in the states q ∈ E ,
plays uniformly at random all actions that stay in the end-component E(q) of
q (thus all actions in AE(q)), and in the transient states q 6∈ E , plays all actions
uniformly at random. We call this strategy the freezing strategy. Intuitively we
use σu to scatter the probability mass in all end-components of the MDP, and
then σE to maintain a bounded probability in each end-component.

Lemma 6. Let M be an MDP with n states and initial distribution d0, and let
T be a target set. Consider the following conditions:

(1) ∀i ≥ 0 : Mσu

i (T ) > 0 (2) ∀i ≥ 2n : Mσu

i (E ∩ T ) > 0

Then, the following equivalences hold:

(a) d0 ∈ 〈〈1〉〉always
positive (T ) if and only if Condition (1) holds;

(b) d0 ∈ 〈〈1〉〉stronglybounded(T ) if and only if Condition (2) holds;

(c) d0 ∈ 〈〈1〉〉always
bounded(T ) if and only if Conditions (1) and (2) hold;

Proof. Equivalence (a) follows from the definition of positive always synchro-
nizing, and from the fact that the uniform strategy σu is sufficient for positive
winning.

We show Equivalence (b) as follows. First, if Condition (2) does not hold, then
Mσu

i (E ∩ T ) = 0 for some i ≥ 2n, and thus also for infinitely many i’s (since the
sequence Supp(Mσu

i ) is ultimately periodic, after at most 2n steps). For arbitrary
strategy σ, we have Supp(Mσ

i ) ⊆ Supp(Mσu

i ) for all i ≥ 0, therefore Mσ
i (E ∩

T ) = 0 for infinitely many i’s. By Lemma 2, we have lim infi→∞ Mσ
i (E) = 1

which entails that lim supMσ
i (E \ T ) = 1 and lim supMσ

i (Q \ T ) = 1, that
is lim infMσ

i (T ) = 0. Since this holds for arbitrary strategy σ, it follows that

d0 6∈ 〈〈1〉〉stronglybounded(T ).
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For the converse direction, assuming Condition (2) holds, we show that d0 ∈

〈〈1〉〉stronglybounded(T ), witnessed by the freezing strategy σf (which plays like σu for the
first 2n rounds, and then switches to the strategy σE).

We show the key property that

Supp(Mσu

i ) ∩ E = Supp(M
σf

i ) ∩ E for all i ≥ 2n.

Fix an arbitrary i ≥ 2n and let p be a period of the sequence Supp(Mσu)
such that i−p ≤ 2n and Supp(Mσu

i ) = Supp(Mσu

i−p). Consider the Markov chain
ME obtained by fixing the strategy σE in M. From the basic theory of Markov
chains, each end-component C in M is a recurrent class in ME . For each i ≥ 2n,
either all or none of the states in a periodic class of C are in the support of Mσu

i .
To show the key property, first consider a state q ∈ Supp(Mσu

i )∩E for i ≥ 2n,
and show that q ∈ Supp(M

σf

i )∩E . Let S be the periodic class of E(q) containing
q (in ME), and thus

S ⊆ Supp(Mσu

i ) ∩ E , and thus S ⊆ Supp(Mσu

i−p) ∩ E .

Since σu and σf coincide on the first 2n rounds, we have S ⊆ Supp(M
σf

i−p) ∩ E .
Now consider the strategy σE and an initial distribution with support S, and

denote by S + j the support of the probability distribution after playing σE for
j steps. Then, since σE ⊆ σf ⊆ σu,

S + p ⊆ Supp(M
σf

i ) ∩ E , and S + p ⊆ Supp(Mσu

i ) ∩ E .

We can repeat the same argument with S + p instead of S, and show by
induction that S + j · p ⊆ Supp(M

σf

i ) ∩ E for all j ≥ 1. In particular, by taking
j the period of the end-component containing q, we get S + j · p = S and thus
S ⊆ Supp(M

σf

i ) ∩ E , which establishes one direction of the key property (the
converse direction follows from σf ⊆ σu).

From the theory of Markov chains, in every end-component state q ∈ E , the
positive probability mass is bounded away from 0 in ME , that is there exists
a bound ε > 0 such that for all i ≥ 2n, for all q ∈ E , if M

σf

i (q) 6= 0, then
M

σf

i (q) ≥ ε. By the key property and Condition (2), for all i ≥ 2n, there exists
q ∈ E ∩T such that M

σf

i (q) 6= 0, which implies that lim infi→∞ M
σf

i (T ) ≥ ε > 0

and thus d0 ∈ 〈〈1〉〉stronglybounded(T ).
Finally, the proof for Equivalence (c) follows the same steps as above to

show that Conditions (1) and (2) imply d0 ∈ 〈〈1〉〉always
bounded(T ), where Condi-

tion (1) is used to bound M
σf

i (T ) for the first 2n rounds, and thus to ensure that

M
σf

i (T ) ≥ B > 0 for all i ≥ 0, hence d0 ∈ 〈〈1〉〉always
bounded(T ). The converse direction

immediately follows from the first part of Remark 3 and Equivalences (a) and (b).
⊓⊔

We extract explicit bounds from the proof of Lemma 6. All end-components
are reached within a most n steps (under σu), and further all states in (a periodic
class of) a recurrent class are reached (synchronously) within a most n2 steps [15,
Theorem 4.2.11], thus all states in the periodic class have probability mass at
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least εa = α0 ·
(

α
|A|

)n+n2

where α0 is the smallest positive probability in the

initial distribution d0 (note that α/|A| is the smallest probability in the Markov
chain ME). It follows that the freezing strategy ensures probability at least εa
in T at every step (if M is boundedly always synchronizing), and probability at
least εa in T at every step after N = n+ n2.

The conditions (1) and (2) in Lemma 6 can be decided in coNP as follows.
For Condition (1) we guess an index i ≤ 2n (in binary) and compute the i-th

power of the Boolean transition matrix M ∈ {0, 1}n
2

where M(q, q′) = 1 if there
is a transition from state q to state q′ in the Markov chain obtained from the
given MDP M by fixing the strategy σu. The matrix M i can be computed in
polynomial time by successive squaring of M . Then it suffices to check whether
M i(q0, q) = 0 for all q0 ∈ Supp(d0) and q ∈ T . For Condition (2), since the
sequence Supp(Mσu

i ) is ultimately periodic, we guess two indices i, p ≤ 2n (p ≥ 1)
and check that Supp(Mσu

i ) = Supp(Mσu

i+p) and Supp(Mσu

i ) ∩ E ∩ T = ∅, using
the same approach by successive squaring. Note that the union E of all end-
components can be computed in polynomial time [9, 10].

Conditions (1) and (2) are also coNP-hard, using the same reduction that
established coNP-hardness of the positive always and positive bounded syn-
chronizing [6, Lemma 2 & Section 3], in which positive and bounded winning
mode coincide. It follows that the membership problem for bounded always and
bounded strongly synchronizing is coNP-complete.

We now show the solution for bounded weakly synchronizing. It suffices to
find a state in T ∩ E that is reachable in the underlying graph of the Markov
chain Mσu

, which is a NL-complete problem (like for positive weakly synchro-
nizing, except we require a reachable state in T ∩ E , not just in T ). Indeed, if
all reachable end-components are contained in Q \T , then by Lemma 2 we have
lim infi→∞ Mσ

i (Q \ T ) = 1, that is lim supi→∞ Mσ
i (T ) = 0. For the converse

direction, if a state q̂ ∈ T ∩ E is reachable, then by a similar argument as above
based on the theory of Markov chains, as the probability mass in the states of the
periodic classes (that contain some probability mass) is bounded away from 0 in
MσE , it follows that within every p steps, where p is the period of the recurrent
class E(q̂) the probability mass in q̂ is at least α0 · (α/|A|)n+n2

. Therefore, M is
boundedly weakly synchronizing in T . For the sake of completeness, note that
for eventually synchronizing MDPs, the probability mass εe = α0 · (α/|A|)n in
T can be ensured within n steps (using σu).

Theorem 4. The complexity of the membership problem for positive and
bounded synchronizing objectives is summarized in Table 2.

In Table 2, the merged cells for eventually synchronizing reflect the fact that
the winning regions coincide (see Remark 3). The winning regions for the other
synchronizing modes do not coincide, already in Markov chains (see Fig. 1).
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PhD thesis, U. Libre de Bruxelles & École Normale Supérieure de Cachan, 2014.
22. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-

grams. In Proc. of FOCS, pages 327–338. IEEE Computer Society, 1985.

18


