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Abstract. The linear temporal logic (LTL) was introduced by Pnueli as alogic
to express properties over the computations of reactive systems. Since this sem-
inal work, there have been a large number of papers that have studied deductive
systems and algorithmic methods to reason about the correctness of reactive pro-
grams with regard to LTL properties. In this paper, we propose new efficient algo-
rithms for LTL satisfiability and model-checking. Our algorithms do not construct
nondeterministic automata from LTL formulas but work directly with alternating
automata using efficient exploration techniques based on antichains.

1 Introduction

A model for an LTL formula over a setP of propositions is an infinite wordw over the
alphabetΣ = 2P . An LTL formulaφ defines a set of words[[φ]] = {w ∈ Σω | w |= φ}.
Thesatisfiability problemfor LTL asks, given an LTL formulaφ, if [[φ]] is empty. The
model-checking problemfor LTL asks, given an omega-regular languageL (e.g., the set
of all computations of a reactive system) and a LTL formulaφ, if L ⊆ [[φ]].

The link between LTL and omega-regular languages is at the heart of theautomata-
theoretic approachto LTL [24]. Given a LTL formulaφ, we can construct a nonde-
terministic Büchi automaton (NBW)Aφ whose language, notedLb(Aφ), corresponds
exactly to the models ofφ, i.e.,Lb(Aφ) = [[φ]]. This reduces the satisfiability and model-
checking problems to automata-theoretic questions.

This elegant framework has triggered a large body of works that have been imple-
mented in explicit state model-checking tools such as SPIN [19] and in symbolic state
model-checking tools such as SMV [15] and NUSMV [2].

The translation from LTL to NBW is central to the automata-theoretic approach to
model-checking. When done explicitly, this translation isworst-case exponential. Ex-
plicit translation is required for explicit state model-checking, while in the symbolic
approach to LTL model-checking [3] the NBW is symbolically encoded using boolean
constraints. In [18], Rozier and Vardi have extensively compared symbolic and explicit
approaches to satisfiability checking using a large number of tools. From their experi-
ments, the symbolic approach scales better.
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Efficient algorithms to reason on large LTL formulas are highly desirable. First,
as writing formal requirements is a difficult task, verifying consistency is an issue for
which efficient satisfiability checking would be highly valuable. Second, when model-
checking a system and especially in the “debugging” phase, we may want to check
properties that are true only under a set of assumptions, in which case specifications are
of the formρ1 ∧ ρ2 ∧ · · · ∧ ρn → φ, and are usually very large. The reader will find
such large formulas for example in [1] and in the experimentsreported here.

In this paper, we present a new approach to LTL satisfiabilityand model-checking.
Our approach avoids the explicit translation to NBW and doesnot resort to pure boolean
reasoning as in the symbolic approach. Instead, we associate to every LTL formula
an alternating Büchi automaton over a symbolic alphabet (sABW) that recognizes the
models of the formula. The use of alternation instead of nondeterminism, and of sym-
bolic alphabets allows for the construction of compact automata (the number of states
and symbolic transitions are linear in the size of the LTL formula). While this construc-
tion is well-known and is an intermediate step in several translators from LTL to explicit
NBW [23], we provide a new efficient way to analyze sABW. This new algorithm is an
extension of [7], where we have shown how to efficiently decide the emptiness problem
for (non-symbolic) ABW. The efficiency of our new algorithm relies on avoiding the
explicit construction of a NBW and on the existence of pre-orders that can be exploited
to efficiently compute fixpoint expressions directly over the transition relation of ABW.

Contributions The three main contributions of the paper are as follows. First, we
adapt the algorithm of [7] for checking emptiness of symbolic ABW. The algorithm
in [7] enumerates the alphabetΣ, which is impractical for LTL where the alphabet
Σ = 2P is of exponential size. To cope with this, we introduce a way to combine BDD-
based techniques with antichain algorithms, taking advantage of the strengths of BDDs
for boolean reasoning. Second, we extend the combination ofBDDs and antichains
to model-checking of LTL specifications over symbolic Kripke structures. In [7], only
explicit-state models and specifications given as NBWs werehandled. Third, we have
implemented and extensively tested our new algorithms. While the previous evalua-
tions of antichain algorithms [6, 7] were performed on randomly generated models, we
experiment here our new algorithms on concrete (i.e., with ameaningful semantics as
opposed to randomly generated instances) satisfiability and model-checking examples.
Most of our examples are taken in [18] and [20] where they are presented as benchmarks
to compare model-checking algorithms. Our new algorithms outperform standard clas-
sical symbolic algorithms of the highly optimized industrial-level tools like NUSMV
for both satisfiability and model-checking.

Related works We review the recent related works about LTL satisfiability and model-
checking. For many years, great efforts have been devoted toreduce the cost of the
explicit translation from LTL to NBW (see e.g., [8, 9, 22, 4]). The existing translators are
now very sophisticated and it is questionable that they can still be drastically improved.
According to [18], the current explicit tools are suitable for relatively small formulas
but do not scale well. Rozier and Vardi advocate the use of symbolic methods as defined
in [3] and tools like NUSMV for LTL satisfiability checking. They can handle much



larger formulas than explicit tools. Therefore, we compareour new algorithms with
NUSMV on benchmarks proposed by Rozier and Vardi, with very good results.

In [20], Vardi et al. propose ahybrid approachto model-checking: the system is
represented symbolically using BDDs and the LTL formula is translated explicitly as a
NBW. Their method has the nice property to partition the usually huge symbolic state
space into pieces associated to each state of the NBW (this heuristic is calledproperty-
driven partitioningin [18]). Our approach also gains from this interesting feature, but in
contrast to Vardiet al., we do not need the expensive construction of the explicit NBW
from the LTL formula.

Structure of the paper The paper is structured as follows. In Section 2, we recall
the definitions of LTL and ABW. In Section 3, we present a forward semi-symbolic
algorithm for satisfiability checking of LTL and we evaluateits performance in Section
4. In Section 5, we present a similar algorithm for model-checking and we show in
Section 6 that it has performances that are better than the best existing tools. We draw
some conclusion in Section 7.

2 LTL and Alternating Automata

Linear Temporal Logic Given a finite setP of propositions, aKripke structureover
P is a tupleK = 〈Q, qι,→K,L〉 whereQ is a finite set of states,qι ∈ Q is the initial
state,→K ⊆ Q × Q is a transition relation, andL : Q → 2P is a labeling function.
A run of K is an infinite sequenceρ = q0q1 . . . such thatq0 = qι and for alli ≥ 0,
(qi, qi+1) ∈ →K. LetL(ρ) = L(q0)L(q1) . . . and define thelanguageof K asL(K) =
{L(ρ) | ρ is a run ofK}.

TheLTL formulasoverP are defined byφ ::= p | ¬φ | φ ∨ φ | Xφ | φUφ where
p ∈ P . Given an infinite wordw = σ0σ1 · · · ∈ Σω whereΣ = 2P , and an LTL formula
φ overP , we say thatw satisfiesφ (writtenw |= φ) if and only if (recursively):

• φ ≡ p andp ∈ σ0,
• or φ ≡ ¬φ1 andw 6|= φ1,
• or φ ≡ φ1 ∨ φ2 andw |= φ1 or w |= φ2,
• or φ ≡ Xφ1 andσ1σ2 . . . |= φ1,
• or φ ≡ φ1 Uφ2 and for somek ∈ N, σkσk+1 . . . |= φ2 and for alli, 0 ≤ i < k,

σiσi+1 . . . |= φ1.

Additional formulas such astrue, false andφ1 ∧ φ2 can be derived from the defini-
tion in the usual way, as well as the following temporal operators: let3φ = trueUφ,
2φ = ¬3¬φ andφ1Rφ2 = ¬(¬φ1U ¬φ2).

Let [[φ]] = {w ∈ Σω | w |= φ} be thelanguagedefined by the LTL formulaφ. The
satisfiability-checking problemasks, given an LTL formulaφ whether[[φ]] 6= ∅ (if so,
we say thatφ is satisfiable). Given an LTL formulaφ and a Kripke structureK overP ,
we say thatK satisfiesφ (writtenK |= φ) if and only if L(K) ⊆ [[φ]], that is for all runs
ρ of K, we haveL(ρ) |= φ. Themodel-checking problemasks, given a Kripke structure
K and an LTL formulaφ, whetherK |= φ. Satisfiability and model-checking of LTL
are both PSPACE-COMPLETE. The time complexity of LTL model-checking is linear
in the number of states of the Kripke structure and exponential in the size of the LTL
formula.



Symbolic Alternating Büchi Automata The automata-based approach to satisfiability
is to transform the formulaφ to an automatonAφ that defines the same language, and
then to check the emptiness ofLb(Aφ). Similarly for model-checking, we check the
emptiness ofL(K)∩ Lb(A¬φ). These automata are defined over a symbolic alphabet of
propositional formulas. Intuitively, a transition labeled by a formulaϕ encodes all the
transitions that are labeled by a set of propositions that satisfiesϕ.

Given a finite setQ, let Lit(Q) = Q ∪ {¬q | q ∈ Q} be the set ofliterals overQ,
andB+(Q) be the set ofpositive boolean formulasoverQ, that is formulas built from
elements inQ∪{true, false} using the boolean connectives∧ and∨. GivenR ⊆ Q and
ϕ ∈ B+(Q), we writeR |= ϕ if and only if the truth assignment that assignstrue to the
elements ofR andfalse to the elements ofQ \ R satisfiesϕ.

A symbolic alternating B̈uchi automaton(sABW) over the set of propositionsP is
a tupleA = 〈Loc, I, Σ, δ, α〉 where:

• Loc is a finite set of states (or locations);
• I ∈ B+(Loc) defines the set of possible initial sets of locations. Intuitively, a set

s ⊆ Loc is initial if s |= I;
• Σ = 2P is the alphabet;
• δ : Loc → B+(Lit(P )∪Loc) is the transition function. The use of formulas to label

transitions inδ allows a compact representation ofδ′, e.g., using BDD. We write
ℓ

σ
−→δ s wheneverσ ∪ s |= δ(ℓ);

• α ⊆ Loc is the set of accepting states.

A run of A on an infinite wordw = σ0σ1 · · · ∈ Σω is a DAG Tw = 〈V, Vι,→〉
where:

• V ⊆ Loc × N is the set of nodes. A node(ℓ, i) represents the locationℓ after the
first i letters ofw have been read byA. Nodes of the form(ℓ, i) with ℓ ∈ α are
calledα-nodes;

• Vι ⊆ Loc × {0} is such thatVι ⊆ V and{ℓ | (ℓ, 0) ∈ Vι} |= I;
• and→⊆ V × V is such that (i) if (ℓ, i) → (ℓ′, i′) then i′ = i + 1 and (ii)

σi ∪ {ℓ′ | (ℓ, i) → (ℓ′, i + 1)} |= δ(ℓ) for all (ℓ, i) ∈ V .

A run Tw = 〈V, vι,→〉 of A on an infinite wordw is acceptingif all its infinite
paths visitα-nodes infinitely often. An infinite wordw ∈ Σω is acceptedbyA if there
exists an accepting run on it. We denote byLb(A) the set of infinite words accepted
byA.

A nondeterministic B̈uchi automaton(sNBW) is an sABWA = 〈Loc, I, Σ, δ, α〉
such thatI is a disjunction of locations, and for eachℓ ∈ Loc, δ(ℓ) is a disjunction
of formulas of the formϕ ∧ ℓ′ whereϕ ∈ B+(Lit(P )) andℓ′ ∈ Loc. In the sequel,
we often identifyI with the set of locations that appear inI and δ as a the set of
all transitions(ℓ, σ, ℓ′) such thatσ ∪ {ℓ′} |= δ(ℓ). Runs of sNBW reduce to (linear)
sequences of locations as a single initial state can be chosen in I, and each node has
at most one successor. We define thereverseautomaton ofA as the sNBWA−1 =
〈Loc, α, Σ, δ−1, I〉 whereδ−1 = {(ℓ, σ, ℓ′) | (ℓ′, σ, ℓ) ∈ δ}.

There exists a simple translation from LTL to sABW [9, 23]. Wedo not recall the
translation but we give an example hereafter. The construction is defined recursively



over the structure of the formula and it gives a compact automata representation of LTL
formulas (the number of states of the automaton is linear in the size of the formula).
The succinctness results from the presence of alternation in the transition function, and
from the use of propositional formulas (the symbolic alphabet) to label the transitions.

ℓ4 ℓ3

ℓ2 ℓ1

true
p

¬p ∧ ¬r

p true

true ¬r

Fig. 1. Alternating automaton for
ϕ ≡ ¬(23p → 2(¬p → 3r)).

Example Fig. 1 shows the sABW for the nega-
tion of the formula23p → 2(¬p → 3r),
which is equivalent to the conjunction ofφ1 ≡
23p andφ2 ≡ 3(¬p ∧ 2¬r). The accepting
states areα = {ℓ1, ℓ4}. Intuitively, the states
ℓ4, ℓ3 check thatφ1 holds, and statesℓ2, ℓ1 check
that φ2 holds. The conjunction is enforced by
the initial conditionℓ4 ∧ ℓ2. We write transitions
in disjunctive normal form and we consider two
parts in each conjunction, one for the proposi-
tions and one for the locations. E.g., the transition
from ℓ4 is δ(ℓ4) = (p ∧ ℓ4) ∨ (true ∧ ℓ3 ∧ ℓ4),
and fromℓ3 it is δ(ℓ3) = (true∧ ℓ3)∨ (p∧ true).
We usetrue to emphasize when there is no con-
straint on either propositions or locations. In the
figure, a conjunction of locations is depicted by a
forked arrow, the conjunction of literals is labelling the arrow. One arrow fromℓ3 has
an empty target as∅ |= true. If the control of the automaton is inℓ4 and the automaton
reads someσ ∈ 2P such thatp 6∈ σ, then the control moves simultaneously to loca-
tion ℓ4 and locationℓ3. As ℓ3 is not accepting, the control has to leaveℓ3 eventually by
reading someσ′ such thatp ∈ σ′. So every run accepted fromℓ4 satisfies23p.

3 Satisfiability-Checking of LTL

By the above translation from LTL to sABW, the satisfiability-checking problem re-
duces to emptiness of sABW (that is to decide, given an sABWA, whetherLb(A) = ∅)
which can be solved using a translation from sABW to sNBW thatpreserves the lan-
guage of the automaton [16]. This construction involves an exponential blow-up that
makes straight implementations infeasible in practice. Wedo not construct this automa-
ton, but the correctness of our approach relies on its existence.

Miyano-Hayashi construction The construction transforms an sABW into a sNBW
that accepts the same language. It has the flavor of the subsetconstruction for automata
over finite words. Intuitively, the sNBW maintains a sets of states of the sABW that
corresponds to a whole level of a guessed runDAG of the sABW. In addition, the sNBW
maintains a seto of states that “owe” a visit to an accepting state. Whenever the seto
gets empty, meaning that every path of the guessed run has visited at least one accepting
state, the seto is initiated with the current level of the guessed run. The B¨uchi condition
asks thato gets empty infinitely often in order to ensure that every pathof the runDAG

visits accepting states infinitely often. The constructionis as follows (we adapt it for
symbolic sABW).



Given an sABWA = 〈Loc, I, Σ, δ, α〉 overP , letMH(A) = 〈Q, IMH, Σ, δMH, αMH〉
be a sNBW where:

• Q = 2Loc × 2Loc;
• IMH is the disjunction of all the pairs〈s, ∅〉 such thats |= I;
• δMH is defined for all〈s, o〉 ∈ Q as follows:

• If o 6= ∅, thenδMH(〈s, o〉) is the disjunction of all the formulasϕ∧ 〈s′, o′ \α〉
with ϕ ∈ B+(Lit(P )) such that:
(i) o′ ⊆ s′;

(ii) ∀ℓ ∈ s · ∀σ ⊆ P : if σ |= ϕ thenσ ∪ s′ |= δ(ℓ);
(iii) ∀ℓ ∈ o · ∀σ ⊆ P : if σ |= ϕ thenσ ∪ o′ |= δ(ℓ).
• If o = ∅, thenδMH(〈s, o〉) is the disjunction of all the formulasϕ∧〈s′, s′ \α〉)

with ϕ ∈ B+(Lit(P )) such that:
∀ℓ ∈ s · ∀σ ⊆ P : if σ |= ϕ thenσ ∪ s′ |= δ(ℓ);

• αMH = 2Loc × {∅}.

The number of states of the Miyano-Hayashi construction is exponential in the num-
ber of states of the original automaton.

Theorem 1 ([16]) For all sABWA, we haveLb(MH(A)) = Lb(A).

Fixpoint formulas To check the satisfiability of an LTL formulaφ we check the empti-
ness ofMH(Aφ) = 〈Q, IMH, Σ, δMH, αMH〉.

It is well-known that[[φ]]= Lb(Aφ) = ∅ iff IMH ∩ Fφ = ∅ whereFφ is the
following fixpoint formula [5]:

Fφ ≡ νy · µx · (Pre(x) ∪ (Pre(y) ∩ αMH))

wherePre(L) = {q ∈ Q | ∃σ ∈ Σ · ∃q′ ∈ L : σ ∪ {q′} |= δMH(q)}.
We callFφ abackwardalgorithm as it uses the predecessor operatorPre(·). The set

of states that are computed in the iterations of the fixpointsmay be unreachable from
the initial states [12]. Therefore, aforward algorithm based on the successor operator
Post(·) would have the advantage of exploring only the reachable states of the automa-
ton. Moreover, the number of successors is often smaller than the number of prede-
cessors, especially when the LTL formula “specifies” initial conditions that reduce the
forward non-determinism.

The following fixpoint formulas compute the accepting reachable statesRα and
then the setF ′

φ in a forward fashion.

Rα ≡ αMH ∩ µx · (Post(x) ∪ IMH)

F ′
φ ≡ νy · µx · (Post(x) ∪ (Post(y) ∩ Rα))

wherePost(L) = {q ∈ Q | ∃σ ∈ Σ · ∃q′ ∈ L : σ ∪ {q} |= δMH(q′)}.

Theorem 2 Lb(Aφ) = ∅ iff F ′
φ = ∅.



Proof. Define∆MH : Q×Σ+ the extension of the transition relationδMH to nonempty
words as follows (recursively):∆MH(q, σ) = δMH(q, σ) and∆MH(q, wσ) = {q′ ∈ Q |
∃q′′ ∈ ∆MH(q, w) : σ ∪ {q′} |= δMH(q′′)} for eachq ∈ Q, w ∈ Σ+ andσ ∈ Σ.

Let CMH = {q ∈ Q | ∃w ∈ Σ+ : q ∈ ∆MH(q, w)} be the set ofloopingstates
in MH(Aφ). From the definition of Büchi acceptance condition for NBW,we have
Lb(Aφ) = ∅ iff CMH∩Rα = ∅. LetHM(Aφ) be the reverse automaton3. The following
equivalences (the first one being well-known) establish thetheorem:

νy · µx · (Pre(x) ∪ (Pre(y) ∩ Rα)) = ∅

iff CMH ∩ Rα = ∅

iff CHM ∩ Rα = ∅

iff νy · µx · (Post(x) ∪ (Post(y) ∩ Rα)) = ∅

iff F ′
φ = ∅

�

Closed Sets and AntichainsRemember thatQ is exponential in the size ofφ. Follow-
ing the lines of [7], we show thatF ′

φ can be computed more efficiently. Let�⊆ Q×Q

be a preorder and letq1 ≺ q2 iff q1 � q2 andq2 6� q1. A setR ⊆ Q is �-closediff
for all q1, q2 ∈ Q, if q1 � q2 andq2 ∈ R thenq1 ∈ R. The�-closureof R, is the set
[[R]]�= {q ∈ Q | ∃q′ ∈ R : q � q′}. Let ⌈R⌉� = {q ∈ R | ∄q′ ∈ R : q ≺ q′} be the
set of�-maximal elementsof R, and dually let⌊R⌋� = {q ∈ R | ∄q′ ∈ R : q ≻ q′}
be the set of�-minimal elementsof R.

For all �-closed setsR ⊆ Q, we haveR =[[⌈R⌉�]]� and for all�-closed sets
R ⊆ Q, we haveR =[[⌊R⌋�]]�. Furthermore, if� is a partial order, then⌈R⌉� is an
antichainand it is a canonical representation ofR.

Let A = 〈Loc, I, Σ, δ, α〉 be a NBW. A preorder�⊆ Loc × Loc is a forward-
simulationfor A (q1 forward-simulatesq2 if q1 � q2) if for all q1, q2, q3 ∈ Loc, for all
σ ∈ Σ, (i) if q1 � q2 andq2

σ
−→δ q3 then there existsq4 ∈ Loc such thatq1

σ
−→δ q4 and

q4 � q3, and(ii) if q1 � q2 andq2 ∈ α thenq1 ∈ α. A backward-simulationfor A is
a forward-simulation forA−1. It is not true in general that� is a backward-simulation
for A if � is a forward-simulation forA (consider a stateqc that has no predecessor and
such thatqb � qc). However, the following lemma shows that the language of a sNBW is
unchanged if we add a transition from a stateqa to a stateqc which is forward-simulated
by one of the successors ofqa. By adding in this way all the possible transitions, we
obtain a sNBW for which� is a backward-simulation.

Lemma 3 LetA be a sNBW with transition relationδA and� be a forward-simulation
relation forA. If (qa, σ, qb) ∈ δA andqb � qc, then the sNBWA′ that differs fromA
only by its transition relationδA′ = δA ∪{(qa, σ, qc)} defines the same language asA,
that isLb(A

′) = Lb(A).

As a dual of the results of [7], it is easy to show that given a backward-simulation�
for MH(Aφ), all the sets that are computed to evaluateRα andF ′

φ are�-closed, that is

3 In the sequel,Pre(·) andPost(·) are always computed onMH(Aφ) and never onHM(Aφ).



IMH andαMH are�-closed, andx ∩ y, x ∪ y andPre(x) are�-closed wheneverx and
y are�-closed [7]. The relation�alt defined by〈s, o〉 �alt 〈s

′, o′〉 iff (i) s ⊆ s′, (ii)
o ⊆ o′, and(iii) o = ∅ iff o′ = ∅ is a forward-simulation forMH(Aφ). Therefore,
the relation�alt (which is�−1

alt
) is a backward-simulation if we modify the transition

relation ofMH(Aφ) as follows: ifδMH(〈s, o〉) is a disjunction of formulas of the form
ϕ∧〈s′, o′〉 with ϕ ∈ B+(Lit(P )), then we disjunctively add all the formulasϕ∧〈s′′, o′′〉
to δMH(〈s, o〉) such that〈s′, o′〉 �alt 〈s

′′, o′′〉. According to Lemma 3, this preserves the
language ofMH(Aφ). We keep only the�alt-minimal elements of�alt-closed sets to
evaluateF ′

φ and so we dramatically reduce the size of the sets that are handled by the
algorithms.

Remark 1.The intuition for keeping only minimal elements is as follows. LetA be a
sABW, along a run ofMH(A) that reads a wordw, a pair〈s, o〉 keeps track of the set of
locations from which the sABW has to accept the suffix and to pass by accepting states.
Clearly, if there is no accepting run from〈s, o〉 then there is no accepting run from any
pair 〈s′, o′〉 where〈s′, o′〉 �alt 〈s, o〉. In short, the antichain algorithm concentrates on
the most promising pairs that can be part of an accepting run by only keeping track of
minimal elements.

Elements of efficient implementation The efficient computation of the�alt-minimal
elements ofPost([[·]]�alt

) is not trivial. For instance, the algorithm of [7] would have
to enumerate all the truth assignments of propositional formulas overP appearing on
transitions. To mitigate this problem, we propose to combine BDDs and antichains as
follows. Antichains of pairs〈s, o〉 are representedexplicitly (as a list of pairs of sets
of locations) while computation of the successors of a pair〈s, o〉 is donesymbolically.
This is why, in the following, we call our algorithmsemi-symbolic.

Given a BDDB over a set of variablesV (seen as a boolean formula overV ),
let [[B]] be the set of truth assignments overV that satisfyB. Given a pair〈s, o〉,
Algorithm 1 computes the setLPost = ⌊Post([[{〈s, o〉}]]�alt

)⌋�alt
. When computing

the successors of a pair〈s, o〉, the algorithm uses the intermediate boolean variables
x1, . . . , xn, y1, . . . , yn andy′

1, . . . , y
′
n to encode respectively the setss′, o′ \ α ando′

where〈s′, o′ \ α〉 ∈ Post([[{〈s, o〉}]]�alt
). We write δ(ℓ)[x1 . . . xn] to denote the for-

mula δ(ℓ) in which each occurrence of a locationℓi is replaced by variablexi for all
1 ≤ i ≤ n. The computations at lines 1–6 match exactly the definition of the Miyano-
Hayashi construction. The BDDθ(y, y′) is used to remove the accepting states from the
setso′ in BL, and the existential quantification over the setP of propositions matches
the definition of thePost(·) operator. Then, using a BDDω(x, y, x′, y′) that encodes
the relation≺alt (we have〈s′, o′〉 ≺alt 〈s, o〉 in ω wheres, o, s′, o′ are encoded respec-
tively with variablesx, y, x′, y′), we eliminate the non-minimal elements inBL and we
reconstruct the explicit set of pairs〈s′, o′〉 from Bmin

L (x, y).
The encoding that we have chosen uses a number of variables linear in the size of

the set of locations of the sABW and number of propositions. Preliminary experiments
have shown that this approach is faster than an enumerative algorithm implemented in
a clever way. The combinatorial blow-up that is hidden in thequantification∃P over
propositions is likely to be the reason for this, as it is wellknown that for this purpose
symbolic algorithms are faster in practice.



Algorithm 1: Semi-symbolic Algorithm forPost(·).
Data : An sABWA = 〈Loc, I, Σ, δ, α〉, and a pair〈s, o〉 such thato ⊆ s.

Result : The setLPost = ⌊Post([[{〈s, o〉}]]�alt
)⌋�alt

.

begin
1 if o 6= ∅ then

2 BL(x, y′)← ∃P :

8

<

:

Vn

i=1
y′

i → xi // o
′ ⊆ s

′

∧
V

ℓ∈s
δ(ℓ)[x1 . . . xn] // σ ∪ s′ |= δ(ℓ) for all ℓ ∈ s

∧
V

ℓ∈o
δ(ℓ)[y′

1 . . . y′
n] // σ ∪ o′ |= δ(ℓ) for all ℓ ∈ o

3 θ(y, y′)←
V

ℓi∈α
¬yi ∧

V

ℓi 6∈α
yi ↔ y′

i // o
′ \ α

4 BL(x, y)← ∃ y′ : BL(x, y′) ∧ θ(y, y′)

5 else

6 BL(x, y)← ∃P :

 V

ℓi∈α
¬yi ∧

V

ℓi 6∈α
yi ↔ xi // o

′ is s′ \ α

∧
V

ℓ∈s
δ(ℓ)[x1 . . . xn] // s

′ |= δ(ℓ) for all ℓ ∈ s

7 ω(x, y, x′, y′)←

8

<

:

Vn

i=1

`

x′
i → xi ∧ y′

i → yi

´

∧
Wn

i=1

`

xi 6= x′
i ∨ yi 6= y′

i

´

// ω encodes≺alt

∧ (
Wn

i=1
yi)↔ (

Wn

i=1
y′

i)

8 Bmin

L (x, y)← BL(x, y) ∧ ¬
`

∃x′, y′ : ω(x, y, x′, y′) ∧BL(x′, y′)
´

9 LPost ←
˘

〈s′, o′〉 | ∃v ∈[[Bmin

L ]]: s′ = {ℓi | v(xi) = true}, o′ = {ℓi | v(yi) =

true}
¯

end

4 Satisfiability: Performance Evaluation

We have implemented our new forward semi-symbolic satisfiability algorithm in a pro-
totype written in Python4. Before evaluating the fixpoint expression, the prototype per-
forms the following steps: the LTL formula is parsed, standard fast heuristical rewriting
rules are applied [22], and the formula is then translated toa sABW [9]. This sABW
containsn locations, wheren is linear in the size of the LTL formula. To compactly
represent the symbolic transitions associated to each location, we use BDDs overn+ k

boolean variables wherek is the number of propositions that appear in the formula.
Usually, the BDDs that are associated to the locations of thesABW are small because
they are typically expressing constraints over few locations. This is usually in sharp
contrast with the size of the BDDs that represent the underlying NBW of a LTL for-
mula in fully-symbolic model-checking. The BDD package used by our prototype is
CUDD [21] which is available through a python binding called PYCUDD5.

Comparison with the state-of-the-art algorithmsAccording to the extensive survey of
Vardi and Rozier [18] NUSMV is the most efficient available tool for LTL satisfia-
bility. We therefore compare our prototype with NUSMV. Satisfiability checking with
NuSMV is done simply by model checking the negation of the formula against a uni-

4 Python is an interpreted object-oriented language. See http://www.python.org
5 http://www.ece.ucsb.edu/bears/pycudd.html



versal Kripke structure. In all our experiments, we used NUSMV 2.4 with the default
options.6 No variable reordering techniques were activated in eithertool.

Benchmarks.We have compared both tools on four families of LTL formulas.Our
satisfiability-checking prototype is reported as “sat.py”in the figures. All the experi-
ments were performed on a single Intel Xeon CPU at 3.0 GHz, with 4 GB of RAM,
using a timeout of 10 min and a maximum memory usage limit of 2.5 GB (all experi-
ments timed out before exceeding the memory limit). All the LTL formulas tested here
can be found in the long version of this paper[14].7

The first family is a parametric specification of a lift systemwith n floors that we
have taken from Harding’s thesis [11]. Two encodings are used: one (“lift”) that uses
a linear number of variables per floor, and another (“lift-b”) which uses a number of
variables that is logarithmic in the number of floors (resulting in larger formulas). As
seen in figure 2(a), our algorithm scales much better than NUSMV for both encodings.
For more than 7-floor (a formula with91 temporal operators and17 distinct boolean
propositions), NUSMV is more than 60 times slower than our tool.

The second family of formulas was referenced in [20] as examples of difficult LTL
to NBW translation and describes liveness properties for the Szymanski mutual exclu-
sion protocol and for a variant of this protocol due to Pnueli. We have run both our
prototype and NUSMV on these four formulas (pos) and their negation (neg), all of
which can be found in [14]. Again, our tool shows better performances (by factors of
50 and higher), as reported in figure 2(b).

The third family we used is a random model described in [4] andalso used in [18].
Random LTL formulas are generated according to the following parameters: the length
of the formula (L), the number of propositions (N ) each with equal probability of oc-
currence, and the probability (P ) of choosing a temporal operator (U orR). As in [18],
we fix P = 0.5 and compare execution times forL ∈ {10, 20, . . . , 100} and for both
N = 2 andN = 4. As indicated by figure 2(c), our algorithm copes much betterwith
the joint increase in formula length and number of propositions8. ForL = 100, going
fromN = 2 toN = 4 multiplies the time needed by NUSMV by 7, while our prototype
only exhibits an 8% increase in execution time.

Finally, the last set of formulas (also taken in [18]) describes how a binary counter,
parameterized by its length, is incremented. Two ways of formalizing the increment are
considered (“count”, “count-l”). Those formulas are quiteparticular as they all define a
unique model: forn = 2, the model is(00·01·10·11)ω. In this benchmark, the classical
fully-symbolic algorithm behaves much better than our antichain algorithm. This is
not surprising for two reasons. First, the efficiency of our antichain-based algorithms
comes from the ability to identify prefixes of runs in the ABW which can be ignored
because they impose more constraints than others on the future (see Remark 1). As there
is only one future allowed by the formula, the locations of the NBW defined by the
Miyano-Hayashi construction are incomparable for the simulation relation defined in

6 The options are numerous, check the NUSMV user manual for full details.
7 They can also be downloaded at http://www.ulb.ac.be/di/ssd/nmaquet/tacas.
8 We report only the mean execution times, but the standard deviation is similar for both tools.
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(g)

Time and Memory for the Bakery Algorithm
Mutual Exclusion Fairness

NuSMV mc.py NuSMV mc.py
2 proc. 0.22s 0.55s 10.66s 3.47s

10.7MB 60.3MB 35.4MB 60.3MB
3 proc. 359.12s 8.81s 28740.17s 730.60s

656.7MB 87.3MB 495.0MB 201.3MB
4 proc. > 1000s 630, 7s N/A N/A

out of Mem.579, 01MB N/A N/A

(h)

Fig. 2.Experimental results comparing NUSMV with our algorithms.



Section 3, causing very long antichains and poor performances. This can be considered
as a pathological and maybe not very interesting case.

5 LTL Model-Checking

Our algorithm for LTL model-checking is based on forward exploration and semi-
symbolic representations. It is also related to the hybrid approach proposed by Vardi
et al. in [20] with the essential difference that we work directly on the sABW for the
LTL formula, avoiding the construction of a NBW.

Given a Kripke structureK = 〈Q, qι,→K,L〉 and an LTL formulaφ, the model-
checking problem forK andφ reduces to the emptiness ofL(K) ∩ Lb(A¬φ) (where
A¬φ = 〈Loc, I, Σ, δ, α〉 is the sABW for¬φ) which can be checked by computing the
following fixpoint formulas over the lattice of subsets ofQ × 2Loc × 2Loc:

RK
α ≡ α′ ∩ µx · (PostMC(x) ∪ I ′)

FK
φ ≡ νy · µx · (PostMC(x) ∪ (PostMC(y) ∩ RK

α ))

wherePostMC(L) = {(q′, 〈s′, o′〉) | ∃(q, 〈s, o〉) ∈ L : q →K q′ ∧ L(q) ∪ {〈s′, o′〉} |=
δMH(〈s, o〉)}, I ′ = {qι} × IMH andα′ = Q × αMH (where theMH superscript refers
to the sABWMH(A¬φ)). As before, we haveFK

φ = ∅ iff L(K) ∩ Lb(A¬φ) = ∅ iff
K |= φ.

Moreover, there exists a partial order�MC for which all the sets that are com-
puted to evaluateFK

φ are�MC-closed. The relation�MC is defined by(q, 〈s, o〉) �MC

(q′, 〈s′, o′〉) iff q = q′ and〈s, o〉 �alt 〈s
′, o′〉.

We use a semi-symbolic forward algorithm for model-checking as this is the most
promising combination, in the light of our experiences withsatisfiability. We assume
a symbolic representation ofK where each stateq ∈ Q is a valuation for a finite set
of boolean variablesV = {z1, . . . , zm} such thatP ⊆ V . The labeling functionL is
defined as the projection of2V to 2P in the natural way. The transition relation is given
by a BDDT (V, V ′) overV ∪ V ′ where the setV ′ = {z′ | z ∈ V } of primed variables
is used to define the value of the variables after the transition.

To efficiently computeFK
φ , we need a compact representation of�MC-antichains.

Under the hypothesis that the huge size ofQ is the main obstacle, we consider a semi-
symbolic representation of antichains, as a set of pairs(B, 〈s, o〉) whereB is a BDD
overV . A pair (B, 〈s, o〉) represents the set[[(B, 〈s, o〉)]]= {(q, 〈s, o〉) | q ∈[[B]]}.

LetL = {(q1, 〈s1, o1〉), (q2, 〈s2, o2〉), . . . } be an�MC-antichain. LetSL = {〈s, o〉 |
∃(q, 〈s, o〉) ∈ L}. We defineR(L) = {(B, 〈s, o〉) | 〈s, o〉 ∈ SL∧ [[B]]= {q |
(q, 〈s, o〉) ∈ L}. It is easy to establish the following property of this encoding.

Lemma 4 If L is an�MC-antichain for all (B1, 〈s1, o1〉), (B2, 〈s2, o2〉) ∈ R(L), if
〈s1, o1〉 ≻alt 〈s2, o2〉, then[[B1]] ∩ [[B2]]= ∅.

We say thatR(L) is asemi-symbolicandcanonicalrepresentation of[[L]]�MC
. The

algorithm to computePostMC(·) follows the lines of Algorithm 1, using2n boolean
variables to encode a pair〈s, o〉. The existential quantification overV is performed
after synchronization over propositionsP with the Kripke structure. LetBL(x, y, V ) be



the BDD that encodes with variablesx, y the successors of〈s, o〉 over a symbolic label
encoded by variablesV . We compute the BDDCL(x, y, V ′) = ∃V : B(V )∧T (V, V ′)∧
BL(x, y, V ) and then we construct the encodingR(·) of its minimal elements.

6 Model-Checking: Performance Evaluation

Implementation.We have implemented the forward semi-symbolic model-checking al-
gorithm using the same technology as for satisfiability (i.e., Python and PYCUDD).
The sABW of the negation of the LTL formula is obtained as described in Section 3.
We have interfaced our prototype with NUSMV in order to get the BDDs9 obtained
from models written in the SMV input language. This has two advantages. First, we
can effectively run our algorithm on any available SMV model, making direct compar-
isons with NUSMV easy. Second, we are guaranteed to useexactlythe same BDDs
for the Kripke structure (with the same ordering on variables) than NUSMV, making
comparisons with this tool very meaningful.

On the use ofNUSMV. As for satisfiability, all our experiments were performed using
NuSMV 2.4 without any option except “-dcx” which disables the creation of counter-
examples. By default, NUSMV implements the following version of the LTL symbolic
algorithm: it precomputes the reachable states of the Kripke structure and then evaluates
a backward fixpoint expression (the Emerson-Lei algorithm)for checking emptiness
of the product of the structure and the NBW of the formula (encoded with BDDs).
Guiding the backward iterations with reachable states usually improves execution times
dramatically. It also makes the comparison with our algorithm fair as it also only visits
reachable states.

Benchmarks.We have compared our prototype with NUSMV on three families of scal-
able SMV models. The experiments were performed using the same environment as for
satisfiability (see Section 4). Again, additional information about models and formulas
can be found in[14].

The first family describes a gas station with an operator, onepump, andn customers
(n is a parameter) waiting in line to use the pump. The operator manages the customer
queue and activates or deactivates the pump. This resource-access protocol was used
in [20] as an LTL model-checking benchmark. We have used the same LTL formulas as
in [20]. The running times forn between 2 and 50 are given in Fig. 2(g). The difference
in scalability is striking. While our tool is slower than NUSMV for n=2 (probably due
to the overhead of using an interpreted language instead of C), it scales much better.
For instance, forn = 38 NUSMV needs several minutes (between 233 and 418 seconds
depending on the property), while our algorithm completes in just over 3 seconds for all
properties. NUSMV is not able to verify models with 50 customers within 10 minutes
while our algorithm handles them in less than 10 seconds.

The second family of models also comes from [20] and represents a stack, on which
push, pop, empty and freeze operations can be performed. Each cell of the stack can

9 These are essentially: the predicates appearing in the LTL formula, the initial constraints, the
transition relation and the invariant constraints.



hold a value from the set{1,2} and a freeze operation allows to permanently freeze the
stack, after which the model runs a pointer along the stack from top to bottom repeat-
edly. At each step of this infinite loop, a “call” predicate indicates the value currently
pointed.10 As we needed a scalable set of formulas for at least one model to compare the
scalability of our algorithm with NuSMV, we have provided and used our own speci-
fications for this model. These specifications simply enforce that if the sequence of
push operations “12 . . . n” is performed and not followed by any pop until the freeze
operation, then the subsequence of call operations “n . . . 21” appears infinitely often.

Finally, the last family of models that we consider is a finitestate version of the
Lamport’s bakery mutex protocol [13]. This protocol is interesting becauses it imposes
fairness among all processes and again it is parametric in the numbern of participating
processes. Our model is large and grows very rapidly with thenumber of processes.
For 2 processes, it uses 42 boolean variables and requires BDDs with a total of 7750
nodes to encode the model, for 4 processes, it uses 91 variables and BDDs with more
than 20 million nodes. Again, our algorithm scales much better than the classical fully
symbolic algorithm. For 3 processes, we are able to verify the fairness requirement in
730.6 seconds while NUSMV needs 28740.17s. Also, our algorithm requires much less
memory than NUSMV, see Table 2(h) for the details.

7 Conclusion

In this paper, we have defined new algorithms for LTL satisfiability and model-checking.
The new algorithms use a clever combination of the antichainmethod defined in [7] and
BDDs. Our method differs fundamentally from the explicit and hybrid approach to LTL
as it does not require the explicit construction of a NBW, andfrom the symbolic ap-
proach as it does not encode the NBW with BDDs.

With a prototype implementation written in Python, we outperform in time and
memory usage the state-of-the-art implementation in NUSMV of the classical fully
symbolic approach on all but one benchmark. More importantly, our implementation is
able to handle LTL formulas and models that are too large for NUSMV.

There are several lines of future works to consider both on the theoretical side and
on the practical side. First, we should investigate how we can take advantage of the
structure of sABW that are produced from the LTL formula. Indeed, those sABW are
weak in the sense of [17], a property that we do not exploit currently. Second, we use
a notion of simulation which is called the direct simulationin the terminology of [10].
Weaker notions of simulation exist for NBW like thefair simulationor thedelayed sim-
ulation. We should investigate their possible use instead of the direct simulation. This
would allow for more pruning as antichains for those orders would be smaller. Third,
high level heuristics should be investigated. Let us take anexample. A pair of locations
{l1, l2} is an incompatiblepair of locations in a sABWA if there is no wordw such
thatw is accepted inA simultaneously froml1 andl2. In the forward satisfiability algo-
rithm, it is easy to see that we can stop the exploration of anypairs〈s, o〉 such thats con-
tains an incompatible pair. We should look for easily (polynomial-time) checkable suffi-

10 For example, if the stack contains, from bottom to top,{1,2} then after the freeze operation,
the model will behave like this : call2, call1, call2, call1,...



cient conditions for incompatibility. Finally, a first release of our prototype (codenamed
ALASKA) is available for download at http://www.ulb.ac.be/di/ssd/nmaquet/alaska/.
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