Antichains: Alternative Algorithms for LTL
Satisfiability and Model-Checking*

M. De Wulf!, L. Doyer?, N. Maquet** and J.-F. Raskih

L CS, Université Libre de Bruxelles (ULB), Belgium
2 1&C, Ecole Polytechnique Fédérale de Lausanne (EPFLjtz8viand

Abstract. The linear temporal logic (LTL) was introduced by Pnueli dsgic
to express properties over the computations of reactiviesys Since this sem-
inal work, there have been a large number of papers that hasieed deductive
systems and algorithmic methods to reason about the coesscbf reactive pro-
grams with regard to LTL properties. In this paper, we preposw efficient algo-
rithms for LTL satisfiability and model-checking. Our alghms do not construct
nondeterministic automata from LTL formulas but work dthgevith alternating
automata using efficient exploration techniques based tichams.

1 Introduction

A model for an LTL formula over a sd? of propositions is an infinite word over the
alphabet” = 2. An LTL formula ¢ defines a set of wordg)] = {w € X | w = ¢}.
The satisfiability problenfor LTL asks, given an LTL formula, if [¢] is empty. The
model-checking problefior LTL asks, given an omega-regular languabge.g., the set
of all computations of a reactive system) and a LTL formayléf £ C [¢].

The link between LTL and omega-regular languages is at tadg bétheautomata-
theoretic approactio LTL [24]. Given a LTL formula¢, we can construct a nonde-
terministic Buchi automaton (NBW)l, whose language, noted (Ay), corresponds
exactly to the models af, i.e.,L,(Ag) = [¢]. This reduces the satisfiability and model-
checking problems to automata-theoretic questions.

This elegant framework has triggered a large body of works ltlave been imple-
mented in explicit state model-checking tools such esv$19] and in symbolic state
model-checking tools such as SMV [15] and SIMV [2].

The translation from LTL to NBW is central to the automatadhetic approach to
model-checking. When done explicitly, this translationvisrst-case exponentiaEx-
plicit translation is required for explicit state modeledking, while in the symbolic
approach to LTL model-checking [3] the NBW is symbolicallyoeded using boolean
constraints. In [18], Rozier and Vardi have extensively paned symbolic and explicit
approaches to satisfiability checking using a large numbtyads. From their experi-
ments, the symbolic approach scales better.

* This research was supported by the Belgian FNRS grant 2.a38dthe FRFC project “Cen-
tre Fédéré en Vérification” and by the project “MoVESH kateruniversity Attraction Poles
Project of the Belgian Federal Government.

** This author is supported by a FNRS-FRIA grant.

Efficient algorithms to reason on large LTL formulas are hgtesirable. First,
as writing formal requirements is a difficult task, verifgiconsistency is an issue for
which efficient satisfiability checking would be highly vahie. Second, when model-
checking a system and especially in the “debugging” phagemay want to check
properties that are true only under a set of assumptionshichxcase specifications are
of the formp; A p2 A -+ A p, — ¢, and are usually very large. The reader will find
such large formulas for example in [1] and in the experimegpsrted here.

In this paper, we present a new approach to LTL satisfialalitg model-checking.
Our approach avoids the explicit translation to NBW and dagsesort to pure boolean
reasoning as in the symbolic approach. Instead, we assdciavery LTL formula
an alternating Buchi automaton over a symbolic alphab’&BY{¥) that recognizes the
models of the formula. The use of alternation instead of eteraninism, and of sym-
bolic alphabets allows for the construction of compact mzta (the number of states
and symbolic transitions are linear in the size of the LTlnfata). While this construc-
tion is well-known and is an intermediate step in severaldiators from LTL to explicit
NBW [23], we provide a new efficient way to analyze sSABW. Thésnalgorithm is an
extension of [7], where we have shown how to efficiently de¢ite emptiness problem
for (non-symbolic) ABW. The efficiency of our new algorithralies on avoiding the
explicit construction of a NBW and on the existence of prdeos that can be exploited
to efficiently compute fixpoint expressions directly oves thansition relation of ABW.

Contributions The three main contributions of the paper are as followsstFiwe
adapt the algorithm of [7] for checking emptiness of symb@&BW. The algorithm
in [7] enumerates the alphab&t, which is impractical for LTL where the alphabet
¥ = 2% is of exponential size. To cope with this, we introduce a veagadmbine BDD-
based techniques with antichain algorithms, taking acgmbf the strengths of BDDs
for boolean reasoning. Second, we extend the combinatidDids and antichains
to model-checking of LTL specifications over symbolic Krgpgtructures. In [7], only
explicit-state models and specifications given as NBWs warelled. Third, we have
implemented and extensively tested our new algorithms.&\the previous evalua-
tions of antichain algorithms [6, 7] were performed on ramtiogenerated models, we
experiment here our new algorithms on concrete (i.e., witieaningful semantics as
opposed to randomly generated instances) satisfiabildyradel-checking examples.
Most of our examples are taken in [18] and [20] where they egsgnted as benchmarks
to compare model-checking algorithms. Our new algorithotperform standard clas-
sical symbolic algorithms of the highly optimized induatrievel tools like NUSMV
for both satisfiability and model-checking.

Related works We review the recent related works about LTL satisfiabilitd anodel-
checking. For many years, great efforts have been devoteediace the cost of the
explicittranslation from LTL to NBW (see e.g., [8, 9, 22, 4The existing translators are
now very sophisticated and it is questionable that they titibbe drastically improved.
According to [18], the current explicit tools are suitabte felatively small formulas
but do not scale well. Rozier and Vardi advocate the use obsjimmethods as defined
in [3] and tools like NUSMV for LTL satisfiability checking. They can handle much

larger formulas than explicit tools. Therefore, we compawme new algorithms with
NuUSMYV on benchmarks proposed by Rozier and Vardi, with verydgesults.

In [20], Vardi et al. propose aybrid approachto model-checking: the system is
represented symbolically using BDDs and the LTL formulaasislated explicitly as a
NBW. Their method has the nice property to partition the liglrauge symbolic state
space into pieces associated to each state of the NBW (thisstie is calledproperty-
driven partitioningin [18]). Our approach also gains from this interestingdeatbut in
contrast to Vardet al,, we do not need the expensive construction of the explicK\NB
from the LTL formula.

Structure of the paper The paper is structured as follows. In Section 2, we recall
the definitions of LTL and ABW. In Section 3, we present a forvaemi-symbolic
algorithm for satisfiability checking of LTL and we evaludeperformance in Section
4. In Section 5, we present a similar algorithm for modeletiireg and we show in
Section 6 that it has performances that are better than steekisting tools. We draw
some conclusion in Section 7.

2 LTL and Alternating Automata

Linear Temporal Logic Given a finite set” of propositions, &ripke structureover
PisatupleK = (Q, q,, —«, L) whereQ is a finite set of stateg, € @ is the initial
state,—x C @ x @ is a transition relation, and : Q — 2% is a labeling function.
A run of K is an infinite sequence = ¢oq1 - .. such thatyy = ¢, and for alli > 0,
(Gis qiv1) € —ic- Let L(p) = L(q0)L(q1) - . . and define théanguageof K asL(K) =
{L(p) | pisarunof}.

TheLTL formulasover P are defined by ::=p | =¢ | ¢V ¢ | X | oUP where
p € P. Given an infinite wordy = g0 - - - € X* whereX = 27, and an LTL formula
¢ over P, we say thaiv satisfiesp (writtenw = ¢) if and only if (recursively):

e ¢ =pandp € oy,

e Or ¢ = ¢y andw = ¢1,

e Orp =1 Voo andw = ¢y Orw = oo,

e Orp = X¢ andoqos ... = ¢,

e Or ¢ = ¢1Ups and for some: € N, oro,11... E ¢ and foralli, 0 < i < k,

;0441 - - - ': ¢1.

Additional formulas such asue, false and¢; A ¢ can be derived from the defini-
tion in the usual way, as well as the following temporal opens let>¢ = trueld ¢,
O¢ = ~O=¢ andg1R o = ~(=d1U ~¢a).

Let[¢] = {w € ¥ | w |= ¢} be thelanguagedefined by the LTL formula. The
satisfiability-checking problerasks, given an LTL formula whether[¢] # & (if so,
we say that is satisfiabl@. Given an LTL formulap and a Kripke structur& over P,
we say thaifC satisfiesp (written K = ¢) if and only if L(K) C [¢], that is for all runs
p of IC, we havel(p) = ¢. Themodel-checking probleasks, given a Kripke structure
K and an LTL formulap, whetherkC = ¢. Satisfiability and model-checking of LTL
are both BPACECOMPLETE. The time complexity of LTL model-checking is linear
in the number of states of the Kripke structure and expoakintithe size of the LTL
formula.

Symbolic Alternating Blichi Automata The automata-based approach to satisfiability
is to transform the formula to an automatond,, that defines the same language, and
then to check the emptiness bf(.4,). Similarly for model-checking, we check the
emptiness of () NLy(A-4). These automata are defined over a symbolic alphabet of
propositional formulas. Intuitively, a transition labélby a formulay encodes all the
transitions that are labeled by a set of propositions thafes .

Given a finite set), let Lit(Q) = Q U {—q | ¢ € @} be the set ofiterals over @),
andBT*(Q) be the set opositive boolean formulasver Q, that is formulas built from
elements irQ U {true, false} using the boolean connectivesandv. GivenR C @ and
» € BT(Q), we write R = ¢ if and only if the truth assignment that assigng to the
elements of? andfalse to the elements of) \ R satisfiesp.

A symbolic alternating Bchi automator{sABW) over the set of propositiornB is
atupleAd = (Loc, I, X, 6,) where:

e Locis afinite set of states (or locations);

e [€ BT (Loc) defines the set of possible initial sets of locations. lively, a set

s C Locisinitial if s = TI;

X = 27 is the alphabet;

d : Loc — B*(Lit(P)ULoc) is the transition function. The use of formulas to label
transitions ind allows a compact representation®f e.g., using BDD. We write

¢ %5 s whenevew U s = 6(¢);

e « C Locis the set of accepting states.

A run of A on an infinite wordw = ooy --- € X¥isabac T, = (V,V,,—)
where:

e VV C Loc x Nis the set of nodes. A nodé, i) represents the locatiaghafter the
first i letters ofw have been read byl. Nodes of the forn{¢,:) with ¢ € « are
calleda-nodes

e V, C Loc x {0} issuchthal, C Vand{¢| (¢,0) € V.} E I,

e and— C V x Vis such that) if (¢,i) — (¢,¢) theni = i+ 1 and (i)
o, U{l | (i) — (0'i+ 1)} =4(0) forall (¢,i) e V.

ArunT, = (V,v,—) of A on an infinite wordw is acceptingif all its infinite
paths visita-nodes infinitely often. An infinite word) € 3¢ is acceptedy A if there
exists an accepting run on it. We denotelhy.A) the set of infinite words accepted
by A.

A nondeterministic Bchi automator(sNBW) is an sSABW.A = (Loc, I, X, 4, «)
such that/ is a disjunction of locations, and for eaéhe Loc, §(¢) is a disjunction
of formulas of the formp A ¢/ wherep € B*(Lit(P)) and?’ € Loc. In the sequel,
we often identify/ with the set of locations that appear inand § as a the set of
all transitions(¢, o, ¢) such thato U {¢'} = 4(¢). Runs of SNBW reduce to (linear)
sequences of locations as a single initial state can be nhinse and each node has
at most one successor. We define theerseautomaton of4 as the sSNBWA~! =
(Loc,cr, 2,671, I) wheres—t = {(¢,0,0') | (¢',0,) € 6}.

There exists a simple translation from LTL to SABW [9, 23]. & not recall the
translation but we give an example hereafter. The consbués defined recursively

over the structure of the formula and it gives a compact aatamepresentation of LTL
formulas (the number of states of the automaton is lineahénsize of the formula).
The succinctness results from the presence of alternatitiheitransition function, and
from the use of propositional formulas (the symbolic alpgtabo label the transitions.

Example Fig. 1 shows the sABW for the nega-
tion of the formulaOCp — O(—p — Or),
which is equivalent to the conjunction ¢f =
OCp andgo = O(—p A O-r). The accepting
states arex = {{1,44}. Intuitively, the states
L4, 3 check thatp; holds, and state%, /; check
that ¢ holds. The conjunction is enforced by
the initial conditionf, A ¢5. We write transitions
in disjunctive normal form and we consider twg
parts in each conjunction, one for the propos
tions and one for the locations. E.g., the transitio|
from /4 is 5(44) = (p A 84) vV (true ALl A 84),
and from/s itis 0(¢3) = (true Als) V (p Atrue).
We usetrue to emphasize when there is no con- ="
straint on either propositions or locations. In th& =
figure, a conjunction of locations is depicted by a
forked arrow, the conjunction of literals is labelling theav. One arrow fron?s has

an empty target ag |~ true. If the control of the automaton is ih and the automaton
reads some < 2° such thatp ¢ o, then the control moves simultaneously to loca-
tion /4 and locatior/s. As /3 is not accepting, the control has to ledgesventually by
reading some’ such thap € o’. So every run accepted frof satisfies3Op.

nlfig. 1. Alternating automaton for
—(0Cp — O(—p — <r)).

3 Satisfiability-Checking of LTL

By the above translation from LTL to SABW, the satisfiabiiiecking problem re-
duces to emptiness of SABW (that is to decide, given an sABW/hetherL,(A) = ©)
which can be solved using a translation from sABW to sSNBW firaserves the lan-
guage of the automaton [16]. This construction involvesxgoaential blow-up that
makes straight implementations infeasible in practicedd/aot construct this automa-
ton, but the correctness of our approach relies on its existe

Miyano-Hayashi construction The construction transforms an sABW into a SNBW
that accepts the same language. It has the flavor of the stdossttuction for automata
over finite words. Intuitively, the SNBW maintains a sedf states of the SABW that
corresponds to a whole level of a guessedng of the SABW. In addition, the SNBW
maintains a set of states that “owe” a visit to an accepting state. Whendweiseto
gets empty, meaning that every path of the guessed run hieshas least one accepting
state, the setis initiated with the current level of the guessed run. Thield tondition
asks thab gets empty infinitely often in order to ensure that every mdithe runDAG
visits accepting states infinitely often. The construcimas follows (we adapt it for
symbolic SABW).

Givenan sABWA = (Loc, I, ¥, 4, o) overP, letMH(A) = (Q, IMH 5 sMH oMH)
be a SNBW where:

° Q — 2Loc % 2Loc;
e MH is the disjunction of all the pair&, @) such thats = I;
e sMis defined for all(s, o) € Q as follows:
o If 0 # @, thensMH((s, 0)) is the disjunction of all the formulas A (s’, o’ \ a)
with ¢ € BT (Lit(P)) such that:
(1) o C¢;
(ii) Ve s-No C P: if o EypthencUs' |E§(0);
(iti) Yl € 0-Yo C P : if o = ptheno Uo = §(4).
o If 0 = @, thendM"((s, 0)) is the disjunction of all the formulasA (s, s’ \ @)
with ¢ € BT (Lit(P)) such that:
Vles- Yo CP:ifolpthencUs’ = §(4);
o aMH = gloc . [51,

The number of states of the Miyano-Hayashi constructiorp@eential in the num-
ber of states of the original automaton.

Theorem 1 ([16]) For all SABW.A, we havd_,(MH(A)) = Ly(A).

Fixpoint formulas To check the satisfiability of an LTL formutawe check the empti-
ness oMH(A,) = (Q, IMH, 2, sMH oMH),

It is well-known that[¢]= Ly(Ay) = @ iff M N Fy = @ whereFy is the
following fixpoint formula [5]:

Fp =vy - px - (Pre(z) U (Pre(y) N aMH))

wherePre(L) = {q€ Q |Jo € ¥ -3¢ € L: a U{q} = sM(g)}.

We call 7, abackwardalgorithm as it uses the predecessor opefite(:). The set
of states that are computed in the iterations of the fixpairay be unreachable from
the initial states [12]. Therefore,farward algorithm based on the successor operator
Post(-) would have the advantage of exploring only the reachablestf the automa-
ton. Moreover, the number of successors is often smaller the number of prede-
cessors, especially when the LTL formula “specifies” initianditions that reduce the
forward non-determinism.

The following fixpoint formulas compute the accepting restule states?,, and
then the sef, in a forward fashion.

Ry = oMM 0 pa - (Post(x) U IMH)
Fy =vy - px - (Post(z) U (Post(y) N Ry))

wherePost(L) = {g€ Q |Jo € ¥ -3¢ € L: 0 U{q} = M (¢)}.

Theorem 2 Ly(Ay) = @ iff 7, = .

Proof. DefineAMH :) x Xt the extension of the transition relatioM" to nonempty
words as follows (recursivelyAMH (¢, o) = 6MH(q, o) andAM* (¢, wo) = {¢' € Q |
3¢" € AMH (g, w) : 0 U{q'} = sMH(¢")} foreachg € Q,w € ¥* ando € X.

LetcM! = {qg € Q | 3w € X* : ¢ € AMH(q,w)} be the set ofooping states
in MH(A,). From the definition of Blichi acceptance condition for NBWé have
Lo(Ag) = oiff CMHNR, = 2. LetHM(A,) be the reverse automatbiThe following
equivalences (the first one being well-known) establistlieerem:

vy - px - (Pre(x) U (Pre(y) N R,)) = @
iff CM"NR,=0
ifft C"MNR,=0
iff vy - px- (Post(x) U (Post(y) N Ry)) = @
iff 7, =2

Closed Sets and AntichainsRemember thaf) is exponential in the size af. Follow-
ing the lines of [7], we show thaf(; can be computed more efficiently. LetC @ x Q
be a preorder and let, < g2 iff ¢1 < g2 andgs A ¢1. A setR C @ is <-closediff
forall 1,92 € Q,if g1 < ¢2 andgs € R theng; € R. The =<-closureof R, is the set
[Rl=={¢€Q|3¢ €eR:q=q¢}.Let[Rl<={qe R| 3¢ € R:q < ¢} bethe
set of <-maximal elementsf R, and dually lef{ R|~ = {¢ € R | 3¢ € R:q = ¢}
be the set of--minimal elementsf R.

For all <-closed sets? C @, we haveR =[[R]<]< and for all =-closed sets
R C @, we haveR =[|R]<].. Furthermore, i< is a partial order, thefiR] < is an
antichainand it is a canonical representation/of

Let A = (Loc,I, X, 0,a) be a NBW. A preorderxC Loc x Loc is aforward-
simulationfor A (¢; forward-simulategs if ¢; = ¢o) if for all ¢1, g2, g3 € Loc, for all
o€ X, (i)if ¢ < g andgs L5 g3 then there existg; € Loc such that; 5 ¢4 and
qs = g3, and(ii) if ¢ < g2 andgs € a theng; € a. A backward-simulatiorior A is
a forward-simulation ford~!. It is not true in general that is a backward-simulation
for A if <is aforward-simulation fos (consider a state. that has no predecessor and
such thaty < ¢.). However, the following lemma shows that the language 6fBW is
unchanged if we add a transition from a stateo a state;. which is forward-simulated
by one of the successors @f. By adding in this way all the possible transitions, we
obtain a sSNBW for which is a backward-simulation.

Lemma 3 Let.A be a sSNBW with transition relatiofyy and=< be a forward-simulation
relation for A. If (¢a,0,q) € d4 andg, = q., then the SNBWA’ that differs fromA
only by its transition relatiod 4+ = 6.4 U{(qa, 0, q.)} defines the same language.ds
that iSLb(.AI) =Lp(A).

As a dual of the results of [7], it is easy to show that giveneklard-simulatior—
for MH(A,), all the sets that are computed to evaludteandF}, are--closed, that is

3 In the sequelPre(-) andPost(-) are always computed diH(A,) and never otHM(Ay).

IMH andaM" are=-closed, and: Ny, x Uy andPre(x) are--closed whenever and

y are=-closed [7]. The relatior<,;; defined by(s, o) <. (s',0') iff (i) s C ¢/, (i1)

o C o, and(iii) o = @ iff o' = @ is a forward-simulation foMH(Ay). Therefore,
the relation=,;; (which is <) is a backward-simulation if we modify the transition
relation ofMH(.A,) as follows: if sM"((s, o)) is a disjunction of formulas of the form
oA (s, 0") with p € BT (Lit(P)), then we disjunctively add all the formulas\ (s, 0’’)

to MM ((s,0)) such thats’, o’) <, (s”,0"). According to Lemma 3, this preserves the
language oMH(A,). We keep only the-,-minimal elements of-,:-closed sets to
evaluateF (; and so we dramatically reduce the size of the sets that adldthhy the

algorithms.

Remark 1.The intuition for keeping only minimal elements is as folkvicet A be a
SABW, along a run oMH(A) that reads a word, a pair(s, o) keeps track of the set of
locations from which the SABW has to accept the suffix and 8s{iy accepting states.
Clearly, if there is no accepting run frofa, o) then there is no accepting run from any
pair (s’,0’) where(s’, o’) = (s,0). In short, the antichain algorithm concentrates on
the most promising pairs that can be part of an accepting ywnly keeping track of
minimal elements.

Elements of efficient implementation The efficient computation of the ,;-minimal
elements ofPost([-]-.,) is not trivial. For instance, the algorithm of [7] would have
to enumerate all the truth assignments of propositionahédas overP appearing on
transitions. To mitigate this problem, we propose to comlBDDs and antichains as
follows. Antichains of pairgs, o) are representeexplicitly (as a list of pairs of sets
of locations) while computation of the successors of a pai) is donesymbolically
This is why, in the following, we call our algorithsemi-symbolic

Given a BDD B over a set of variable$” (seen as a boolean formula ové),
let [B] be the set of truth assignments ovérthat satisfyB. Given a pair(s, o),
Algorithm 1 computes the setpes: = |Post([{(s,0)}]=..)]=..- When computing
the successors of a pdis, o), the algorithm uses the intermediate boolean variables
Xl,.. oy Ty Yl,---,Yn @andy), ..., yl, to encode respectively the setso’ \ « ando’
where(s’, 0’ \) € Post([{(s,0)}]=..)- We write §(¢)[z; ...z,] to denote the for-
mulad(¢) in which each occurrence of a locatiénis replaced by variable; for all
1 < i < n. The computations at lines 1-6 match exactly the definiticth® Miyano-
Hayashi construction. The BD&y, y') is used to remove the accepting states from the
setso’ in By, and the existential quantification over the gedf propositions matches
the definition of thePost(-) operator. Then, using a BDD(z, y,z’,y’) that encodes
the relation<.,;; (we have(s’, o’) <.k (s, 0) inw wheres, o, s’, o’ are encoded respec-
tively with variablese, y, ', y’), we eliminate the non-minimal elementsi, and we
reconstruct the explicit set of paits’, o’) from B (z, y).

The encoding that we have chosen uses a number of variatées in the size of
the set of locations of the SABW and number of propositiomslifinary experiments
have shown that this approach is faster than an enumerégivgtam implemented in
a clever way. The combinatorial blow-up that is hidden in gu@ntificationd P over
propositions is likely to be the reason for this, as it is vkelbwn that for this purpose
symbolic algorithms are faster in practice.

Algorithm 1: Semi-symbolic Algorithm foPost(-).
Data :AnsABW A = (Loc, I, X, 0, o), and a paixs, o) such thab C s.
Result : The setlpos: = [Post([{(s, 0) }=...) = .-
begin
1 if o £ @ then

Niz1yi = @i /o C¢
2 Br(z,y') —3P: § ANy 6(0)[x1...zn] [/ oUs =d(¢)forallles
A/\ZGO(S(Z)[yi...y;] //ouUd Ed(f) forallleo
3 0, Y') — Nesea i N No,ga Vi < Yi /] o'\ a
4 L Br(z,y) < 3y Bo(z,y') ANO(y,y)
5 else A A /) olise
. tica Vi NN\ ga Yi < T oiss’ \ «
o | | Bl =3P {A/\Zes(s(z)[xl...mn] /) =8¢ forallf € s

Ny (2 — i Ayi — i)
7 w(z,y, o', y) — S AV, (zi # 2 Vy # i) // w encodes=
_ A (Vi wi) < (Vi vi)
8 | BI™(z,y) < Br(z,y) A~(3',y rw(@,y,2',y') A Bu(z'y))
9 Lpost — {(s',0') | 3v €[BE™]: 8" = {; | v(z:) = true}, o’ = {t; | v(y:) =
true} }

end

4 Satisfiability: Performance Evaluation

We have implemented our new forward semi-symbolic satiifialalgorithm in a pro-
totype written in Pythoh Before evaluating the fixpoint expression, the prototype p
forms the following steps: the LTL formula is parsed, staddast heuristical rewriting
rules are applied [22], and the formula is then translatea $&BW [9]. This SABW
containsn locations, wherer is linear in the size of the LTL formula. To compactly
represent the symbolic transitions associated to eactidocave use BDDs ovet + &
boolean variables wherk is the number of propositions that appear in the formula.
Usually, the BDDs that are associated to the locations o$&®\W are small because
they are typically expressing constraints over few logaiorhis is usually in sharp
contrast with the size of the BDDs that represent the uniteyI}BW of a LTL for-
mula in fully-symbolic model-checking. The BDD package disy our prototype is
CuDD [21] which is available through a python binding called@DD?>.

Comparison with the state-of-the-art algorithmdgcording to the extensive survey of
Vardi and Rozier [18] NSMV is the most efficient available tool for LTL satisfia-
bility. We therefore compare our prototype withuSMV. Satisfiability checking with
NuSMV is done simply by model checking the negation of therfiola against a uni-

4 Python is an interpreted object-oriented language. Spd/mttvw. python.org
5 http://www.ece.ucsbh.edu/bears/pycudd.html

versal Kripke structure. In all our experiments, we usedINVV 2.4 with the default
options.® No variable reordering techniques were activated in etibaic

Benchmarks.We have compared both tools on four families of LTL formul@sr
satisfiability-checking prototype is reported as “sat.py'the figures. All the experi-
ments were performed on a single Intel Xeon CPU at 3.0 GHh WwiGB of RAM,
using a timeout of 10 min and a maximum memory usage limit 5fGB (all experi-
ments timed out before exceeding the memory limit). All tA& formulas tested here
can be found in the long version of this paper[14].

The first family is a parametric specification of a lift systerith n floors that we
have taken from Harding’s thesis [11]. Two encodings arelusee (“lift”) that uses
a linear number of variables per floor, and another (“lifj-’hich uses a number of
variables that is logarithmic in the number of floors (reggltin larger formulas). As
seen in figure 2(a), our algorithm scales much better thaS8MV for both encodings.
For more than 7-floor (a formula withl temporal operators antl’ distinct boolean
propositions), NSMV is more than 60 times slower than our tool.

The second family of formulas was referenced in [20] as exaspf difficult LTL
to NBW translation and describes liveness properties f@iSkymanski mutual exclu-
sion protocol and for a variant of this protocol due to Pnuke have run both our
prototype and NSMV on these four formulas (pos) and their negation (ned)efal
which can be found in [14]. Again, our tool shows better perfances (by factors of
50 and higher), as reported in figure 2(b).

The third family we used is a random model described in [4] @isd used in [18].
Random LTL formulas are generated according to the follgvaarameters: the length
of the formula), the number of propositions\W) each with equal probability of oc-
currence, and the probability’] of choosing a temporal operatdf pr R). As in [18],
we fix P = 0.5 and compare execution times fbre {10, 20,...,100} and for both
N = 2andN = 4. As indicated by figure 2(c), our algorithm copes much bettién
the joint increase in formula length and number of propos#. For L. = 100, going
from N = 2to N = 4 multiplies the time needed by®SMV by 7, while our prototype
only exhibits an 8% increase in execution time.

Finally, the last set of formulas (also taken in [18]) delses how a binary counter,
parameterized by its length, is incremented. Two ways oh&dizing the increment are
considered (“count”, “count-I"). Those formulas are quitaticular as they all define a
unique model: forn = 2, the model i00-01-10-11)“. In this benchmark, the classical
fully-symbolic algorithm behaves much better than our @rdin algorithm. This is
not surprising for two reasons. First, the efficiency of ontichain-based algorithms
comes from the ability to identify prefixes of runs in the ABWieh can be ignored
because they impose more constraints than others on thre {see Remark 1). As there
is only one future allowed by the formula, the locations & thiBW defined by the

Miyano-Hayashi construction are incomparable for the $ithan relation defined in

® The options are numerous, check the MV user manual for full details.
" They can also be downloaded at http://www.ulb.ac.befdiifssaquet/tacas.
8 We report only the mean execution times, but the standaridiitav is similar for both tools.

Lift Satisfiability

1000
T = tmeowtieqomn — — — — _ _
100 —‘
0 CINuSMV (iift)
- CINuSMV (lift-b)
“E) 104 W sat.py (lift)
= W sat.py (lift-b)
1
0.1+ H
2 3 4 5 6 7 8 9
number of floors
(a)

Satisfiability of random formulas (P=0.5)

Mean of 500 formulas per sample

Szymanski Satisfiability

25
2
L] NuSMV (N=2)
—~ 15 I NuSMV (N=4)
< W sat.py (N=2)
2 W sat.py (N=4)
£
S 1
0.5
0
10 20 30 40 50 60 70 80 90 100
Length
(©
Stack - True spec
1000
100 [NusMV (2)
CINuSMV (3)
w [NuSMV (4)
° I NuSMV (5)
g 10 W mc.py (2)
= W me.py (3)
Wl mc.py (4)
W mc.py (5)
1
0.1
(e)
Gas
1000
o~ —tmeostlne(omm- — — — — — — —
100 Y | -
)
o 101 {1
£
=1
1
0.1 !
8 14 20 26 32 38 44 50
number of customers

100
10 H
m [INuSMV (pos)
; CINuSMV (neg)
€ W sat.py (pos)
=] Ml sat.py (neg)
14
0.1+ L L _—
zn zpl zp2 zp3
LTL property
Binary Counter Satisfiability
1000
777777 tmeoutlne (10 min) - — — —
100 =
I [NuSMV (count.)
- [INuSMV (count.-I)
g 10 [|Msatpy (count)
= M sat.py (count.-))
1 L
0.1 m
2 4 6 8 10 12 14 16
number of bits
Stack - False spec
1000
-~ tmeowtineomm — — — —
100 mn
C)
o 10
£
=1
1
0.1 =

5 7)
number of cells

(®

Time and Memory for the Bakery Algorithm
Mutual Exclusion Fairness

NuSMV mc.py | NuSMV | mc.py

2 proc 0.22s 0.55s 10.66s 3.47s
10.7MB 60.3MB | 35.4MB | 60.3MB
3proc| 359.12s 8.81s |28740.17s| 730.60s
656.7MB | 87.3MB |495.0MB |201.3MB

4 proc{ > 1000s 630, 7s N/A N/A

out of Mem|579, 01MB N/A N/A

(h)

Fig. 2. Experimental results comparingd$ MV with our algorithms.

Section 3, causing very long antichains and poor perforesnihis can be considered
as a pathological and maybe not very interesting case.

5 LTL Model-Checking

Our algorithm for LTL model-checking is based on forward lexation and semi-
symbolic representations. It is also related to the hybpidreach proposed by Vardi
et al. in [20] with the essential difference that we work directly the SABW for the
LTL formula, avoiding the construction of a NBW.

Given a Kripke structurdC = (@, q,, —x, L) and an LTL formulap, the model-
checking problem fofC and ¢ reduces to the emptiness bffC) N L,(A-4) (where
A4 = (Loc, I, X, 6, a) is the SABW for—¢) which can be checked by computing the
following fixpoint formulas over the lattice of subsets@fx 2-°¢ x 2tec:

RN = o/ 0 px - (Postyc(z) U T')
]-'g = vy - pa - (Postyc(z) U (Postuc (y) N RY))

wherePostuc (L) = {(¢', (s',0)) | 3(q, (s,0)) € L : ¢ =k ¢ NL(q) U{(s',0")} =
SMH((s,oNY, I’ = {q,} x M anda’ = Q x oM™ (where theMH superscript refers
to the SABWMH(A-;)). As before, we haveF)y = @ iff L(K) N Ly(A-g) = & iff
K [¢.

Moreover, there exists a partial order,c for which all the sets that are com-
puted to evaluaté—“(’; are-vc-closed. The relatioi v is defined by(q, (s, 0)) =mc
(¢, (s',0))iff ¢ = ¢ and(s, o) =a (s',0).

We use a semi-symbolic forward algorithm for model-cheglas this is the most
promising combination, in the light of our experiences vgttisfiability. We assume
a symbolic representation & where each state € @ is a valuation for a finite set
of boolean variable¥” = {z1,...,z2,} such that? C V. The labeling functior is
defined as the projection @t to 27 in the natural way. The transition relation is given
by a BDDT(V, V') overV UV’ where the seV’ = {z’ | z € V'} of primed variables
is used to define the value of the variables after the tramsiti

To efficiently computé’-‘f, we need a compact representatior-@fc-antichains.
Under the hypothesis that the huge siz&)ik the main obstacle, we consider a semi-
symbolic representation of antichains, as a set of gd¥ss, o)) whereB is a BDD
overV. A pair (B, (s, 0)) represents the stB, (s, 0))]= {(q, (s,0)) | ¢ €[B]}.

LetL = {(q1, (s1,01)), (q2, (S2,02)), ... } be an=pmc-antichain. LetS;, = {(s, 0) |
(g, (s,0)) € L}. We defineR(L) = {(B,(s,0)) | (s,0) € SptA [B]= {q |
(¢, (s,0)) € L}. Itis easy to establish the following property of this enicad

Lemma 4 If L is an =puc-antichain for all (By, (s1,01)), (B2, (s2,02)) € R(L), if
<81701> —alt <52,02>, then[[Bl]] n [[BQ]]: .

We say thatR(L) is asemi-symboli@ndcanonicalrepresentation ofL],,.. The
algorithm to computéPostyc(-) follows the lines of Algorithm 1, usingn boolean
variables to encode a pafs, o). The existential quantification ovér is performed
after synchronization over propositioRswith the Kripke structure. LeB (x,y, V') be

the BDD that encodes with variablesy the successors @£, o) over a symbolic label
encoded by variablds. We compute the BDD, (x, y, V') = 3V : B(V)AT(V, V')A
Br(x,y, V) and then we construct the encodiR¢) of its minimal elements.

6 Model-Checking: Performance Evaluation

Implementation We have implemented the forward semi-symbolic model-cimegcii-
gorithm using the same technology as for satisfiability.,(iRython and PCuDD).
The sABW of the negation of the LTL formula is obtained as diésd in Section 3.
We have interfaced our prototype withtSMV in order to get the BDD5obtained
from models written in the SMV input language. This has tweadages. First, we
can effectively run our algorithm on any available SMV mqadeaking direct compar-
isons with NUSMV easy. Second, we are guaranteed to exsactlythe same BDDs
for the Kripke structure (with the same ordering on varigpthan NUSMV, making
comparisons with this tool very meaningful.

Onthe use oNUSMYV. As for satisfiability, all our experiments were performedhgs
NuSMV 2.4 without any option except “-dcx” which disableg tbreation of counter-
examples. By default, NSMV implements the following version of the LTL symbolic
algorithm: it precomputes the reachable states of the iérgptucture and then evaluates
a backward fixpoint expression (the Emerson-Lei algoritfion)checking emptiness
of the product of the structure and the NBW of the formula ¢efed with BDDs).
Guiding the backward iterations with reachable statesllysugproves execution times
dramatically. It also makes the comparison with our al¢onifair as it also only visits
reachable states.

BenchmarksWe have compared our prototype wituSMV on three families of scal-
able SMV models. The experiments were performed using tine gavironment as for
satisfiability (see Section 4). Again, additional inforinatabout models and formulas
can be found in[14].

The first family describes a gas station with an operatorpamep, anch customers
(n is a parameter) waiting in line to use the pump. The operatorages the customer
queue and activates or deactivates the pump. This resagosss protocol was used
in [20] as an LTL model-checking benchmark. We have usedaheed TL formulas as
in [20]. The running times fon between 2 and 50 are given in Fig. 2(g). The difference
in scalability is striking. While our tool is slower thanu$MV for n=2 (probably due
to the overhead of using an interpreted language instead,adf €cales much better.
For instance, fon = 38 NUSMV needs several minutes (between 233 and 418 seconds
depending on the property), while our algorithm completgast over 3 seconds for all
properties. NSMYV is not able to verify models with 50 customers within 1hoties
while our algorithm handles them in less than 10 seconds.

The second family of models also comes from [20] and reptesestack, on which
push, pop, empty and freeze operations can be performed. dedicof the stack can

° These are essentially: the predicates appearing in the aifhla, the initial constraints, the
transition relation and the invariant constraints.

hold a value from the s€tl,2} and a freeze operation allows to permanently freeze the
stack, after which the model runs a pointer along the stamk fiop to bottom repeat-
edly. At each step of this infinite loop, a “call” predicatalicates the value currently
pointed® As we needed a scalable set of formulas for at least one mwdehtpare the
scalability of our algorithm with NuSMV, we have provideddansed our own speci-
fications for this model. These specifications simply erdditat if the sequence of
push operationsl2...n” is performed and not followed by any pop until the freeze
operation, then the subsequence of call operatians “21” appears infinitely often.

Finally, the last family of models that we consider is a firstate version of the
Lamport’s bakery mutex protocol [13]. This protocol is irgsting becauses it imposes
fairness among all processes and again it is parametrieindmbenm of participating
processes. Our model is large and grows very rapidly withntinaber of processes.
For 2 processes, it uses 42 boolean variables and requirBs Bith a total of 7750
nodes to encode the model, for 4 processes, it uses 91 \ewiabtl BDDs with more
than 20 million nodes. Again, our algorithm scales muchdsdttan the classical fully
symbolic algorithm. For 3 processes, we are able to verdyféirness requirement in
730.6 seconds while BISMV needs 28740.17s. Also, our algorithm requires much less
memory than NSMV, see Table 2(h) for the detalils.

7 Conclusion

In this paper, we have defined new algorithms for LTL satidftgtand model-checking.
The new algorithms use a clever combination of the anticimethod defined in [7] and
BDDs. Our method differs fundamentally from the explicitidrybrid approachto LTL
as it does not require the explicit construction of a NBW, &oedn the symbolic ap-
proach as it does not encode the NBW with BDDs.

With a prototype implementation written in Python, we oufpem in time and
memory usage the state-of-the-art implementation WSNIV of the classical fully
symbolic approach on all but one benchmark. More imponaatlr implementation is
able to handle LTL formulas and models that are too large foEMV.

There are several lines of future works to consider both erttikoretical side and
on the practical side. First, we should investigate how we teke advantage of the
structure of SABW that are produced from the LTL formula.ded, those SABW are
weak in the sense of [17], a property that we do not exploitentty. Second, we use
a notion of simulation which is called the direct simulatiarthe terminology of [10].
Weaker notions of simulation exist for NBW like tifegr simulationor thedelayed sim-
ulation. We should investigate their possible use instead of trectgimulation. This
would allow for more pruning as antichains for those ordeosii be smaller. Third,
high level heuristics should be investigated. Let us takexample. A pair of locations
{l1,12} is anincompatiblepair of locations in a SABWA if there is no wordw such
thatw is accepted i simultaneously frond, andis. In the forward satisfiability algo-
rithm, itis easy to see that we can stop the exploration ofwing(s, o) such that con-
tains an incompatible pair. We should look for easily (palymal-time) checkable suffi-

1% For example, if the stack contains, from bottom to t6h,2} then after the freeze operation,
the model will behave like this : call2, calll, call2, calll,

cient conditions for incompatibility. Finally, a first relse of our prototype (codenamed
ALASKA) is available for download at http://www.ulb.ac fd@ssd/nmaquet/alaska/.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.

24.

K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstrgavsls systems to verify
parameterized networks. TACAS volume 1785 oL NCS pages 188-203. Springer, 2000.
A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NusmA new symbolic model
checker.STTT 2(4):410-425, 2000.

. E. Clarke, O. Grumberg, and K. Hamaguchi. Another looKTdt inodel checking. IICAV,

volume 818 oflLNCS pages 415-427. Springer, 1994.

. M. Daniele, F. Giunchiglia, and M. Vardi. Improved autdemgeneration for linear temporal

logic. In CAV, volume 1633 oL NCS pages 249-260. Springer, 1999.

. L. de Alfaro, T.A. Henzinger, and R. Majumdar. From vesdfion to control: Dynamic

programs for omega-regular objectives.LICS pages 279-290. IEEE, 2001.

. M. De Wulf, L. Doyen, T.A. Henzinger, and J-F. Raskin. Ahtkins: A new algorithm for

checking universality of finite automata. @AV, LNCS 4144, pages 17-30. Springer, 2006.

. L. Doyen and J-F. Raskin. Improved algorithms for the matta-based approach to model-

checking. INTACAS volume 4424 o NCS pages 451-465. Springer-Verlag, 2007.

. C. Fritz. Constructing Buchi automata from LTL using slation relations for alternating

Buchi automata. I'€1AA, volume 2759 oL NCS pages 35-48. Springer, 2003.

. P. Gastin and D. Oddoux. Fast LTL to Biichi automata tegiwsi. InCAV, volume 2102 of

Lecture Notes in Computer Scienpages 53-65. Springer-Verlag, 2001.

S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi.cOmplementing nondetermin-
istic Buchi automata. ITHARME volume 2860 of NCS pages 96—-110. Springer, 2003.
A. Harding. Symbolic Strategy Synthesis For Games With LTL Winning i@onsl PhD
thesis, University of Birmingham, 2005.

T.A. Henzinger, O. Kupferman, and S. Qadeer. Fpehistoric toposmodern symbolic
model checking. ICAV, volume 1427 of.NCS pages 195-206. Springer, 1998.

Leslie Lamport. A new solution of dijkstra’s concurrggtogramming problem. ACM,
17(8):453-455, 1974.

N. Maquet M. De Wulf, L. Doyen and J.-F. Raskin. AnticlmiAlternative algorithms for
LTL satisfiability and model-checking. Technical Repor02®4, CFV, Belgium.

K. L. McMillan. Symbolic Model Checkind<luwer Academic Publishers, 1993.

S. Miyano and T. Hayashi. Alternating finite automata orega-words. IrCAAP, pages
195-210, 1984.

S. RohdeAlternating Automata and the Temporal Logic of Ordind®D thesis, University
of Illinois at Urbana-Champaign, 1997.

K Rozier and M. Vardi. Ltl satisfiability checking. th International SPIN Workshop
volume 4595 oL NCS pages 149-167. Springer, 2007.

T. Ruys and G. Holzmann. Advanced Spin tutorial SRIN volume 2989 oLLNCS pages
304-305. Springer, 2004.

R. Sebastiani, S. Tonetta, and M. Vardi. Symbolic systesrplicit properties: On hybrid
approaches for LTL symbolic model checking.@AV, LNCS 3576, pages 350-363, 2005.
F. Somenzi. CUDD: CU Decision Diagram Package. UnitiediColorado, 1998.

F. Somenzi and R. Bloem. Efficient Biichi automata fromh EGrmulae. InCAV, volume
1855 ofLNCS pages 248-263. Springer, 2000.

M. Vardi. An automata-theoretic approach to linear teraplogic. In8th Banff Higher
Order Workshopvolume 1043 oL NCS pages 238-266. Springer, 1995.

M. Vardi and P. Wolper. Reasoning about infinite comporat Information and Computa-
tion, 115(1):1-37, 1994.

