
Alpaga: A Tool for Solving Parity Games
with Imperfect Information

Dietmar Berwanger1, Krishnendu Chatterjee2, Martin De Wulf3,
Laurent Doyen3,4, and Thomas A. Henzinger4

1 LSV, ENS Cachan and CNRS, France
2 CE, University of California, Santa Cruz, USA
3 Université Libre de Bruxelles (ULB), Belgium

4 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Alpaga is a solver for two-player parity games with imperfect infor-
mation. Given the description of a game, it determines whether the first player
can ensure to win and, if so, it constructs a winning strategy. The tool provides a
symbolic implementation of a recent algorithm based on antichains.

1 Introduction

Alpaga is a tool for solving parity games with imperfect information. These are turn-
based games played on a graph by two players, one of them having imperfect infor-
mation about the current state of the play. We consider objectives over infinite paths
specified by parity conditions that can express safety, reachability, liveness, fairness,
and most properties commonly used in verification. Given the description of a game,
the tool determines whether the imperfect information player has a winning strategy for
the parity objective and, if this is the case, it constructs such a winning strategy.

The Alpaga implementation is based on a recent technique using antichains for solv-
ing games with imperfect information efficiently [3], and for representing the strategies
compactly [2]. To the best of our knowledge, this is the first implementation of a tool
for solving parity games with imperfect information.

In this paper, we outline the antichain technique which is based on fixed-point com-
putations using a compact representation of sets. Our algorithm essentially iterates a
controllable predecessor operator that returns the states from which a player can force
the play into a given target set in one round. For computing this operator, no polynomial
algorithms is known. We propose a new symbolic implementation based on BDDs to
avoid a naive enumerative procedure.

Imperfect-information games arise in several key applications related to verification
and synthesis of reactive systems, such as (a) synthesis of controllers for plants with un-
observable transitions; (b) distributed synthesis of processes with private variables not
visible to other processes; (c) synthesis of robust controllers; (d) synthesis of automata
specifications where only observations of automata are visible, and (e) the decision and
simulation problem of quantitative specification languages; (f) model-checking secrecy
and information flow. We believe that the tool Alpaga will make imperfect information
games a useful framework for designers in the above applications.

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 58–61, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Alpaga: A Tool for Solving Parity Games 59

An example of distributed-system synthesis has been solved with the tool. We have
considered the design of a mutual-exclusion protocol for two processes. The tool Al-
paga was able to synthesize a winning strategy for a requirement of mutual exclusion
and starvation freedom which corresponds to Peterson’s protocol. Details can be found
in an extended version of this paper [1].

2 Games and Algorithms

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of observations.
A game structure with imperfect information over Σ and Γ is a tuple G = (L, l0, Δ, γ),
where

– L is a finite set of locations (or states), l0 ∈ L is the initial location;

– Δ ⊆ L×Σ×L is a set of labelled transitions such that for all � ∈ L and all a ∈ Σ,
there exists �′ ∈ L such that (�, a, �′) ∈ Δ, i.e., the transition relation is total;

– γ : Γ → 2L \ ∅ is an observability function that maps each observation to a set
of locations such that the set {γ(o) | o ∈ Γ} partitions L. For each � ∈ L, let
obs(�) = o be the unique observation such that � ∈ γ(o).

The game on G is played in rounds. Initially, a token is placed in location l0. In every
round, Player 1 first chooses an action a ∈ Σ, and then Player 2 moves the token to an
a-successor �′ of the current location �, i.e., such that (�, a, �′) ∈ Δ. Player 1 does not
see the current location � of the token, but only the observation obs(�) associated to it.
A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possible outcomes
of α in G is the set Outcome(G, α) of sequences π = �1�2 . . . such that �1 = l0 and
(�i, α(obs(�1 . . . �i)), �i+1) ∈ Δ for all i ≥ 1. A visible parity condition on G is defined
by a function p : Γ → N that maps each observation to a non-negative integer priority.
We say that a strategy α for Player 1 is winning if for all π ∈ Outcome(G, α), the least
priority that appears infinitely often in π is even.

To decide whether Player 1 is winning in a game G, the basic approach consists
in tracing the knowledge of Player 1, represented a set of locations called a cell. The
initial knowledge is the cell s0 = {l0}. After each round, the knowledge s of Player 1
is updated according to the action a she played and the observation o she receives, to
s′ = posta(s) ∩ γ(o) where posta(s) = {�′ ∈ L | ∃� ∈ s : (�, a, �′) ∈ Δ}.

Antichain algorithm. The antichain algorithm is based on the controllable predecessor
operator CPre : 2S → 2S which, given a set of cells q, computes the set of cells q′ from
which Player 1 can force the game into a cell of q in one round:

CPre(q) = {s ⊆ L | ∃a ∈ Σ · ∀o ∈ Γ : posta(s) ∩ γ(o) ∈ q}. (1)

The key of the algorithm relies on the fact that CPre(·) preserves downward-closedness.
A set q of cells is downward-closed if, for all s ∈ q, every subset s′ ⊆ s is also in q.
Downward-closed sets q can be represented succinctly by their maximal elements r =

q� = {s ∈ q | ∀s′ ∈ q : s �⊂ s′}, which form an antichain. With this representation,
the controllable predecessor operator is defined by

CPre(r) =
⌈{s ⊆ L | ∃a ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ r : posta(s) ∩ γ(o) ⊆ s′}⌉. (2)



60 D. Berwanger et al.

Strategy construction. The implementation of the strategy construction is based on [2].
The algorithm of [2] employs antichains to compute winning strategies for imperfect-
information parity games in an efficient and compact way: the procedure is similar to the
classical algorithm of McNaughton [4] and Zielonka [5] for perfect-information parity
games, but, to preserve downwards closure, it avoids the complementation operation
of the classical algorithms by recurring into subgames with an objective obtained as a
boolean combination of reachability, safety, and reduced parity objectives.

Strategy simplification. A strategy in a game with imperfect information can be repre-
sented by a set Π = {(s1, rank1, a1), . . . , (sn, rankn, an)} of triples (si, ranki, ai) ∈
2L×N×Σ where si is a cell, and ai is an action. Such a triple assigns action ai to every
cell s ⊆ si; since a cell s may be contained in many si, we take the triple with minimal
value of ranki. Formally, given the current knowledge s of Player 1, let (si, ranki, ai)
be a triple with minimal rank in Π such that s ⊆ si (such a triple exists if s is a winning
cell); the strategy represented by Π plays the action ai in s.

Our implementation applies the following rules to simplify the strategies and ob-
tain a compact representation of winning strategies in parity games with imperfect
information.

(Rule 1) In a strategy Π , retain only elements that are maximal with respect to the
following order: (s, rank, a) � (s′, rank′, a′) if rank ≤ rank′ and s′ ⊆ s. Intuitively,
the rule specifies that we can delete (s′, rank′, a′) whenever all cells contained in s′ are
also contained in s; since rank ≤ rank′, the strategy can always choose (s, rank, a) and
play a.

(Rule 2) In a strategy Π , delete all triples (si, ranki, ai) such that there exists (sj , rankj ,
aj) ∈ Π (i �= j) with ai = aj , si ⊆ sj (and hence ranki < rankj by Rule 1),
such that for all (sk, rankk, ak) ∈ Π , if ranki ≤ rankk < rankj and si ∩ sk �= ∅,
then ai = ak. Intuitively, the rule specifies that we can delete (si, ranki, ai) whenever
all cells contained in si are also contained in sj , and the action aj is the same as the
action ai. Moreover, if a cell s ⊆ si is also contained in sk with ranki ≤ rankk < rankj ,
then the action played by the strategy is also ak = ai = aj .

3 Implementation

Computing CPre(·) is likely to require time exponential in the number of observations
(a natural decision problem involving CPre(·) is NP-hard [2]). Therefore, it is natural
to let the BDD machinery evaluate the universal quantification over observations in (2).
We present a BDD-based algorithm to compute CPre(·).

Let L = {�1, . . . , �n} be the state space of the game G. A cell s ⊆ L can be rep-
resented by a valuation v of the boolean variables x̄ = x1, . . . , xn such that, for all
1 ≤ i ≤ n, �i ∈ s iff v(xi) = true. A BDD over x1, . . . , xn is called a linear encoding,
it encodes a set of cells. A cell s ⊆ L can also be represented by a BDD over boolean
variables ȳ = y1, . . . , ym with m = 
log2 n�. This is called a logarithmic encoding, it
encodes a single cell.

We represent the transition relation of G by the n · |Σ| BDDs Ta(�i) (a ∈ Σ, 1 ≤
i ≤ n) with logarithmic encoding over ȳ. So, Ta(�i) represents the set {�j | (�i, a, �j) ∈



Alpaga: A Tool for Solving Parity Games 61

Δ}. The observations Γ = {o1, . . . , op} are encoded by 
log2 p� boolean variables
b0, b1, . . . in the BDD BΓ defined by

BΓ ≡
∧

0≤j≤p−1

b̄ = [j]2 → Cj+1(ȳ),

where [j]2 is the binary encoding of j and C1, . . . , Cp are BDDs that represent the sets
γ(o1), . . . , γ(op) in logarithmic encoding.

Given the antichain q = {s1, . . . , st}, let Sk (1 ≤ k ≤ t) be the BDDs that encode
the set sk in logarithmic encoding over ȳ. For each a ∈ Σ, we compute the BDD CPa

in linear encoding over x̄ as follows:

CPa ≡ ∀b̄ ·
∨

1≤k≤t

∧

1≤i≤n

xi →
[∀ȳ · (Ta(�i) ∧ BΓ

) → Sk

]
.

Then, we define CP ≡ ∨
a∈Σ CPa(q), and we extract the maximal elements in CP(x̄)

as follows, with ω a BDD that encodes the relation of (strict) set inclusion ⊂:

ω(x̄, x̄′) ≡
( n∧

i=1

xi → x′
i

)
∧

( n∨

i=1

xi �= x′
i

)
,

CPmin(x̄) ≡ CP(x̄) ∧ ¬∃x̄′ · ω(x̄, x̄′) ∧ CP(x̄′).

Finally, we construct the antichain CPre(q) as the following set of BDDs in logarithmic
encoding: CPre(q) = {s | ∃v ∈ CPmin : s = {�i | v(xi) = true}}.

Features of the tool. The input of the tool is a file describing the transitions and ob-
servations of the game graph. The output is the set of maximal winning cells, and a
winning strategy in compact representation. We have also implemented a simulator to
let the user play against the strategy computed by the tool. The user has to provide an
observation in each round (or may let the tool choose one randomly). The web page of
the tool is http://www.antichains.be/alpaga. We provide the source code,
the executable, an online demo, and several examples.

References

1. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Alpaga: A tool for
solving parity games with imperfect information. Technical Report MTC-REPORT-2008-007,
EPFL (2008), http://infoscience.epfl.ch/record/130681

2. Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy construction for
parity games with imperfect information. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)

3. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games
of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)

4. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied
Logic 65(2), 149–184 (1993)

5. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science 200, 135–183 (1998)

http://infoscience.epfl.ch/record/130681

	Alpaga: A Tool for Solving Parity Games with Imperfect Information
	Introduction
	Games and Algorithms
	Implementation



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


