
Antichains: A New Algorithm for Checking

Universality of Finite Automata

Laurent Doyen

Université Libre de Bruxelles

Joint work with

Martin De Wulf, Tom Henzinger, Jean-François Raskin

CAV, Seattle, 17th August, 2006

Outline of the talk

• Motivation

• Universality - A Game Approach

• Example

• Experimental Results

• Conclusion

Finite State Automaton

Finite automaton: A = 〈Loc, `I ,Σ, δ, F 〉

with δ : Loc × Σ → 2Loc (non-deterministic)

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

For w ∈ Σ∗,we have







w ∈ L(A) iff some path on w accepts.

w 6∈ L(A) iff all paths on w reject.

Language Inclusion and Universality

An implementation A of a program is correct with regard

to its specification B if:

L(A) ⊆ L(B)

deterministic

non-deterministic

Language Inclusion and Universality

L(A) ⊆ L(B)

iff L(A ∩ Bc) is empty

• Computing Bc: hard (via determinization)

• Checking emptiness: easy

iff L(Ac ∪ B) is universal

• Computing Ac: easy

• Checking universality: hard

Language Inclusion and Universality

L(A) ⊆ L(B)

iff L(A ∩ Bc) is empty

• Computing Bc: hard (via determinization)

• Checking emptiness: easy

iff L(Ac ∪ B) is universal

• Computing Ac: easy

• Checking universality: hard

not so hard in practice with antichains.

Universality - Experimental results

dk.brics.automaton

Antichains

Number of states

E
x
e
c
u
ti
o
n

ti
m

e
(s

)

40003500300025002000150010005000

12

10

8

6

4

2

0

Universality - Experimental results
E

xe
cu

tio
n

T
im

e
(s

)

Number of states

3000 3500 400025002000

12

10

1000

500

0
50 100 150

1500

dk.brics.automaton

Antichains

Universality - Exexution times (in milliseconds)

Number of states 20 40 60 80 100 175 500

Determinization 23 50 141 309 583 2257 -

Antichains 1 2 2 3 5 14 76

Number of states 1000 1500 2000 2500 3000 3500 4000

Determinization - - - - - - -

Antichains 400 973 1741 2886 5341 9063 13160

Outline of the talk

• Motivation

• Universality - A Game Approach

• Example

• Experimental Results

• Conclusion

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no

matter how the antagonist reads it using A, the automaton

ends up in a rejecting location.

=⇒ This is a one-shot game.

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no

matter how the antagonist reads it using A, the automaton

ends up in a rejecting location.

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

Example: Protagonist: w = 101

Antagonist: π = `0
1
−→ `0

0
−→ `2

1
−→ `2

Antagonist wins the play since `2 is accepting.

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no

matter how the antagonist reads it using A, the automaton

ends up in a rejecting location.

=⇒ This is a one-shot game.

Protagonist has a strategy to win this game

iff

A is not universal

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

Example: Protagonist: w = 1

Antagonist: π = `0
1
−→ `0

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

Example: Protagonist: w = 10

Antagonist: π = `0
1
−→ `0

0
−→ `2

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

Example: Protagonist: w = 10

Antagonist: π = ?
1
−→ ?

0
−→ ?

{`0} {`0} {`1, `2}

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

`0

`1

`2

`3 `4

0

0

1

0

0,1

1

0

1

0,1

Example: Protagonist: w = 101

Antagonist: π = ?
1
−→ ?

0
−→ ?

1
−→ `2

Antagonist wins the play since `2 is accepting.

Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

The protagonist cannot observe the state chosen by the

antagonist.

=⇒ This is a blind game (or game of null information).

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

T

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

−−−→ ≡
0

−−−→

−−−→ ≡
1

−−−→

T

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

−−−→ ≡
0

−−−→

−−−→ ≡
1

−−−→

T

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

−−−→ ≡
0

−−−→

−−−→ ≡
1

−−−→

T

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

x0 = T

CPre(x0)

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

T

x1 = CPre(x0) ∪ x0

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

T

x1

CPre(x1)

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

x2 = CPre(x1) ∪ x1

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

xi−1. . .

CPre(xi−1)

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

Winning states

W = µx.(CPre(x) ∪ T)

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Universality of A is equivalent to a blind reachability game

GT with target T = Loc\F .

Recipe for solving classical reachability games

1. Compute the set of states that are winning in one

move: CPre(T)

2. Iterate CPre(·): compute W = µx.(CPre(x) ∪ T)

3. Check whether `I ∈ W

Universality - Controllable predecessor operator

Let A = 〈Loc, `I ,Σ, δA, F 〉.

• CPre(·) should encode the blindness of the game:

“The knowledge of the protagonist is a set of states.”

• CPre(T) contains all the set of states s such that:

there exists σ ∈ Σ such that:

if protagonist plays σ from s, then the set T is reached

no matter the antagonist’s move.

∃σ ∈ Σ · ∀` ∈ s : δA(`, σ) ⊆ T
︸ ︷︷ ︸

postσ(s)⊆T

Universality - Controllable predecessor operator

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Consider the following controllable predecessor operator

over sets of sets of locations. For q ⊆ 2Loc, let:

CPre(q) =
{

s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′
}

So s ∈ CPre(q) if there is a set s′ ∈ q that is reached from

any location in s, reading input letter σ.

=⇒ CPre encodes the blindness of the game.

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Theorem:

{`I} ∈ µx.(CPre(x) ∪ {T})

iff

Protagonist has a strategy to win GT

iff

A is not universal

Claim: For s1 ⊆ s2, if postσ(s2) ⊆ s′
︸ ︷︷ ︸

s2∈CPre(·)

then postσ(s1) ⊆ s′
︸ ︷︷ ︸

s1∈CPre(·)

Hence, we compute ⊆-downward-closed sets of state sets.

Idea: Keep in CPre(x) only the maximal elements.

Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Definition:

For q ⊆ 2Loc, let:

CPre(q) = MaximalSets({s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′})

=
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′}
⌉

where dqe = {s ∈ q | @s′ ∈ q : s ⊂ s′} is an antichain of sets of

locations (containing only pairwise ⊆-incomparable elements).

Outline of the talk

• Motivation

• Universality - A Game Approach

• Example

• Experimental Results

• Conclusion

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ T =

⌈{

{4}0,

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0, 1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =

⌈{

{4}0,1, {4,5}1, {5}1, ∅
}⌉

∪
{

{6,7}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =

⌈{

{4,5}, {2}0,

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =

⌈{

{4,5}, {2}0,1, {2,3}1, {3}1, ∅
}⌉

∪
{

{6,7}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =
{

{6,7}, {4,5}, {2,3}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =
{

{6,7}, {4,5}, {2,3}
}

x3 = CPre(x2) ∪ {T} =

⌈{

{4,5}, {2,3}, {1}1, ∅
}⌉

∪
{

{6,7}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =
{

{6,7}, {4,5}, {2,3}
}

x3 = CPre(x2) ∪ {T} =
{

{6,7}, {4,5}, {2,3}, {1}
}

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =
{

{6,7}, {4,5}, {2,3}
}

x3 = CPre(x2) ∪ {T} =
{

{6,7}, {4,5}, {2,3}, {1}
}

x4 = CPre(x3) ∪ {T} = x3

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

Protagonist has a strategy

to win GT (e.g.: w = 111)

⇐⇒ A is not universal

x0 = T =
{

{6,7}
}

x1 = CPre(x0) ∪ {T} =
{

{6,7}, {4,5}
}

x2 = CPre(x1) ∪ {T} =
{

{6,7}, {4,5}, {2,3}
}

x3 = CPre(x2) ∪ {T} =
{

{6,7}, {4,5}, {2,3}, {1}
}

x4 = CPre(x3) ∪ {T} = x3

Universality - Example

We have explored/constructed

{1} {2,3} {4,5} {6,7}1 1 1

instead of

{1}

{3}

{2}

{2,3}

{5}

{4}

{4,5}

{6,7}1

1

1

0
01

0,1

1

1

0,1

1

Universality - Determinization

{1}

{2}

{1,3}

{4,5}

{5}

{2,5}

{1,3,5}

{6,7}

{7,8}

{7}

{4,5,7}

{5,7,8}

{2,5,7}

{1,3,5,7,8}

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Outline of the talk

• Motivation

• Universality - A Game Approach

• Example

• Experimental Results

• Conclusion

Universality - Experimental results (1)

• We compare our algorithm Antichains with the best(1)

known algorithm dk.brics.automaton by Anders Møller.

(1) According to ”D. Tabakov, M. Y. Vardi. Experimental Eval-

uation of Classical Automata Constructions. LPAR 2005”.

• We use a randomized model to generate the instances

(automata of 175 locations). Two parameters:

– Transition density: r ≥ 0

– Density of accepting states: 0 ≤ f ≤ 1

Universality - Experimental results (2)

Time dk.brics.automaton

Time Antichains

D
en

sity
o
f
F
in
al

S
tates

(f) Transition
Density (r)

200

160

120

80

40

0

0.8

0.6

0.4

0.2
43.532.521.510.50

200

160

120

80

40

0

Each sample point: 100 automata with |Loc| = 175, Σ = {0,1}.

Universality - Experimental results (3)

dk.brics.automaton

Antichains

Number of states

E
x
e
c
u
ti
o
n

ti
m

e
(s

)

40003500300025002000150010005000

12

10

8

6

4

2

0

• Transition density: r = 2.

• Density of accepting states: f = 1.

Determinization - Average Number of sets (100 instances)

states 20 40 60 80 100 120 140 160

All instances 71 176 415 713 1120 1404 1750 2084
Univ. inst. 116 388 826 1563 2364 2805 3850 4758
¬Univ. inst. 11 28 64 98 61 162 32 67

Antichains - Average Number of sets (same 100 instances)

states 20 40 60 80 100 120 140 160

All instances 3 4 6 7 9 9 9 12
Univ. inst. 3 6 7 9 12 13 14 19
¬Univ. inst. 3 3 4 6 6 6 5 7

Outline of the talk

• Motivation

• Universality - A Game Approach

• Example

• Experimental Results

• Conclusion

Beyond Universality

• Universality (L(A) = Σ∗): antichains over 2LocA.

CPre(q) =
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′}
⌉

• Language inclusion (L(A) ⊆ L(B)): antichains over

LocA × 2LocB.

CPre(q) =
⌈

{(`, s) | ∃(`′, s′) ∈ q · ∃σ ∈ Σ : `′ ∈ δA(`, σ)

∧ postBσ (s) ⊆ s′}
⌉

• Emptiness of AFA (L(A) = ∅): antichains over 2LocA.

CPre(q) =
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ · ∀` ∈ s : s′ |= δ(`, σ)}
⌉

Conclusion and perspectives

The antichains algorithms apply to:

• Universality of FSA,

• Language inclusion of FSA,

• Emptiness of finite alternating automata.

• . . . and soon to automata over infinite words (Büchi)?

(work in progress)

Thank you

Questions ???

