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Finite State Automaton

Finite automaton: A = 〈Loc, `I ,Σ, δ, F 〉

with δ : Loc × Σ → 2Loc (non-deterministic)
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For w ∈ Σ∗,we have







w ∈ L(A) iff some path on w accepts.

w 6∈ L(A) iff all paths on w reject.



Language Inclusion and Universality

An implementation A of a program is correct with regard

to its specification B if:

L(A) ⊆ L(B)

deterministic

non-deterministic



Language Inclusion and Universality

L(A) ⊆ L(B)

iff L(A ∩ Bc) is empty

• Computing Bc: hard (via determinization)

• Checking emptiness: easy

iff L(Ac ∪ B) is universal

• Computing Ac: easy

• Checking universality: hard



Language Inclusion and Universality

L(A) ⊆ L(B)

iff L(A ∩ Bc) is empty

• Computing Bc: hard (via determinization)

• Checking emptiness: easy

iff L(Ac ∪ B) is universal

• Computing Ac: easy

• Checking universality: hard

not so hard in practice with antichains.



Universality - Experimental results
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Universality - Exexution times (in milliseconds)

Number of states 20 40 60 80 100 175 500

Determinization 23 50 141 309 583 2257 -

Antichains 1 2 2 3 5 14 76

Number of states 1000 1500 2000 2500 3000 3500 4000

Determinization - - - - - - -

Antichains 400 973 1741 2886 5341 9063 13160
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Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no

matter how the antagonist reads it using A, the automaton

ends up in a rejecting location.

=⇒ This is a one-shot game.
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Example: Protagonist: w = 101

Antagonist: π = `0
1
−→ `0

0
−→ `2

1
−→ `2

Antagonist wins the play since `2 is accepting.



Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The protagonist has to provide a finite word w such that no

matter how the antagonist reads it using A, the automaton

ends up in a rejecting location.

=⇒ This is a one-shot game.

Protagonist has a strategy to win this game

iff

A is not universal



Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.
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Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.
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Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;
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Universality - A game approach

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

The game is turn-based:

• Protagonist provides a word w one letter at a time;

• Antagonist updates the state of A accordingly.

The protagonist cannot observe the state chosen by the

antagonist.

=⇒ This is a blind game (or game of null information).



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .
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Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

x0 = T

CPre(x0)
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Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

x2 = CPre(x1) ∪ x1



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

xi−1. . .

CPre(xi−1)



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Checking universality of A is equivalent to solving a blind

reachability game GT with target T = Loc\F .

Recipe for solving classical reachability games

Winning states

W = µx.(CPre(x) ∪ T )



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Universality of A is equivalent to a blind reachability game

GT with target T = Loc\F .

Recipe for solving classical reachability games

1. Compute the set of states that are winning in one

move: CPre(T )

2. Iterate CPre(·): compute W = µx.(CPre(x) ∪ T)

3. Check whether `I ∈ W



Universality - Controllable predecessor operator

Let A = 〈Loc, `I ,Σ, δA, F 〉.

• CPre(·) should encode the blindness of the game:

“The knowledge of the protagonist is a set of states.”

• CPre(T ) contains all the set of states s such that:

there exists σ ∈ Σ such that:

if protagonist plays σ from s, then the set T is reached

no matter the antagonist’s move.

∃σ ∈ Σ · ∀` ∈ s : δA(`, σ) ⊆ T
︸ ︷︷ ︸

postσ(s)⊆T



Universality - Controllable predecessor operator

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Consider the following controllable predecessor operator

over sets of sets of locations. For q ⊆ 2Loc, let:

CPre(q) =
{

s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′
}

So s ∈ CPre(q) if there is a set s′ ∈ q that is reached from

any location in s, reading input letter σ.

=⇒ CPre encodes the blindness of the game.



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Theorem:

{`I} ∈ µx.(CPre(x) ∪ {T})

iff

Protagonist has a strategy to win GT

iff

A is not universal

Claim: For s1 ⊆ s2, if postσ(s2) ⊆ s′
︸ ︷︷ ︸

s2∈CPre(·)

then postσ(s1) ⊆ s′
︸ ︷︷ ︸

s1∈CPre(·)

Hence, we compute ⊆-downward-closed sets of state sets.

Idea: Keep in CPre(x) only the maximal elements.



Universality - A game approach

Let A = 〈Loc, `I ,Σ, δA, F 〉.

Definition:

For q ⊆ 2Loc, let:

CPre(q) = MaximalSets({s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′})

=
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′}
⌉

where dqe = {s ∈ q | @s′ ∈ q : s ⊂ s′} is an antichain of sets of

locations (containing only pairwise ⊆-incomparable elements).
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Universality - Example
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Universality - Determinization
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Universality - Experimental results (1)

• We compare our algorithm Antichains with the best(1)

known algorithm dk.brics.automaton by Anders Møller.

(1) According to ”D. Tabakov, M. Y. Vardi. Experimental Eval-

uation of Classical Automata Constructions. LPAR 2005”.

• We use a randomized model to generate the instances

(automata of 175 locations). Two parameters:

– Transition density: r ≥ 0

– Density of accepting states: 0 ≤ f ≤ 1



Universality - Experimental results (2)
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Universality - Experimental results (3)
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• Transition density: r = 2.

• Density of accepting states: f = 1.



Determinization - Average Number of sets (100 instances)

# states 20 40 60 80 100 120 140 160

All instances 71 176 415 713 1120 1404 1750 2084
Univ. inst. 116 388 826 1563 2364 2805 3850 4758
¬Univ. inst. 11 28 64 98 61 162 32 67

Antichains - Average Number of sets (same 100 instances)

# states 20 40 60 80 100 120 140 160

All instances 3 4 6 7 9 9 9 12
Univ. inst. 3 6 7 9 12 13 14 19
¬Univ. inst. 3 3 4 6 6 6 5 7
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Beyond Universality

• Universality (L(A) = Σ∗): antichains over 2LocA.

CPre(q) =
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ : postσ(s) ⊆ s′}
⌉

• Language inclusion (L(A) ⊆ L(B)): antichains over

LocA × 2LocB.

CPre(q) =
⌈

{(`, s) | ∃(`′, s′) ∈ q · ∃σ ∈ Σ : `′ ∈ δA(`, σ)

∧ postBσ (s) ⊆ s′}
⌉

• Emptiness of AFA (L(A) = ∅): antichains over 2LocA.

CPre(q) =
⌈

{s | ∃s′ ∈ q · ∃σ ∈ Σ · ∀` ∈ s : s′ |= δ(`, σ)}
⌉



Conclusion and perspectives

The antichains algorithms apply to:

• Universality of FSA,

• Language inclusion of FSA,

• Emptiness of finite alternating automata.

• . . . and soon to automata over infinite words (Büchi)?

(work in progress)



Thank you

Questions ???


