
Verification of constant-time implementation in the
Compcert compiler toolchain
David Pichardie

Cache timing attacks

•Common side-channel: Cache timing attacks︎

• Exploit the latency between cache hits and misses ︎

•Attackers can recover cryptographic keys

• ︎Tromer et al (2010), Gullasch et al (2011) show efficient attacks on AES
implementations

• ︎Based on the use of look-up tables

• Access to memory addresses that depend on the key

Constant-time programs
Characterization

• 	Constant-time programs do not:

• branch on secrets

• perform memory accesses that depend on secrets  

• There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc

Verification of constant-time programs
Challenges

•Provide a mechanism to formally check that a program is constant-time

• static tainting analysis for implementations of cryptographic algorithms

•At low level implementation (C, assembly), advanced static analysis is
required

• secrets depends on data, data depends on control flow, control flow
depends on data…

•A high level of reliability is required

• semantic justifications, Coq mechanizations…

•Attackers exploit executable code, not source code

•we need guaranties at the assembly level using a compiler toolchain

Background: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded
software

= compiler + proof that the compiler does not introduce bugs

Using the Coq proof assistant, X. Leroy proves the following semantic
preservation property:

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,  
then «C behaves like S».

Background: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded
software

= compiler + proof that the compiler does not introduce bugs

Using the Coq proof assistant, X. Leroy proves the following semantic
preservation property:

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,  
then «C behaves like S».

does not deal with the  
constant-time security property !

CompCert: 1 compiler, 11 languages

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

instruction

selection

register

allocation (IRC)

linearization

of the CFG

layout of

stack frames

asm code

generation

(instruction scheduling)

CompCert: 1 compiler, 11 languages

type elimination

loop simplifications

CFG construction

expr. decomp.

spilling, reloading

calling conventions

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

side-effects out

of expressions

stack allocation

of «&»variables

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

instruction

selection

register

allocation (IRC)

linearization

of the CFG

layout of

stack frames

asm code

generation

(instruction scheduling)

Where should we perform  
the constant time

analysis ?

This talk: 3 approaches

1. Analysis at (almost) assembly level 
 
 
 
 

2. Analysis at (almost) assembly level, with help from an analysis at source level 
 
 
 
 

3. Analysis at source level

G. Barthe, G. Betarte, J. D. Campo, C. Luna and D. Pichardie. 
System-level non-interference for constant-time cryptography.  
CCS 2014.

G. Barthe, S. Blazy, V. Laporte, D. Pichardie, A. Trieu.  
Lightweight, Verified Translation Validation of Static Analyses. 
CSF 2017.

Sandrine Blazy, David Pichardie, Alix Trieu. 
Verifying Constant-Time Implementations by Abstract Interpretation.  
ESORICS 2017.

First approach 
Performing the analysis at (pre)-assembly level

Good place for proving constant-time on
actual implementation

•Compcert Mach level is the last IR before
full assembly

•Compcert does no introduce new memory
operations after that level

But the place is challenging for static analysis
tool

• no more memory abstraction: memory is
one single big array

• all memory accesses handle some kind of
arithmetic on adresses The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

MachInformation flow
static analyzer

First approach 
Performing the analysis at (pre)-assembly level

The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

MachInformation flow
static analyzer

Strong points

• verified static alias analysis at Mach level

• verified taint analysis using the alias
information

• several experiments on real crypto C
programs: Salsa20, Sha256, TEA

Weak points

• several manual rewriting of the source
programs are required

• efficiency is bad because of function full
inlining

G. Barthe, G. Betarte, J. D. Campo, C. Luna and D. Pichardie. 
System-level non-interference for constant-time cryptography.  
CCS 2014.

Performing the analysis at (pre)-assembly level
Technical details

Low level memory model

• registers + one memory block for each global variable + one memory
block for the whole stack

Pre-analysis

•we perform a points-to analysis to tracks the set of memory blocks
manipulated by each memory instruction 

Taint analysis

• one taint for each global variable

• one taint for each register, at each program point

• one taint for each stack slot (byte), at each program point

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

symbolic
memory
address

instruction at
program
point p

size of the
accessed

memory block

next 
program 

point

stored
value

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

points-to pre-
analysis

points-to pre-
analysis

symbolic
memory
address

instruction at
program
point p

size of the
accessed

memory block

next 
program 

point

stored
value

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

points-to pre-
analysis

points-to pre-
analysis

symbolic
memory
address

instruction at
program
point p

size of the
accessed

memory block

next 
program 

point

stored
value

we forbid high
taints on address

computation

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

points-to pre-
analysis

points-to pre-
analysis

symbolic
memory
address

instruction at
program
point p

size of the
accessed

memory block

next 
program 

point

stored
value

we forbid high
taints on address

computation

if register r is high,
global variable S

must be high

Performing the analysis at (pre)-assembly level
Constraint based specification (excerpt)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)
taint of each global

variable
program

point

taint of each
global

variable

local types  
(registers + stack slot)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

p[n] = op(op,~r , r ,n 0)

(n, ⇢, µ) ,
;�! (n 0, ⇢[r 7! JopK(⇢,~r)], µ)

p[n] = load
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr µ[vaddr]& = v

(n, ⇢, µ) ,
read vaddr��������! (n 0, ⇢[r 7! v], µ)

p[n] = store
&

(addr ,~r , r ,n 0)
JaddrK(⇢,~r) = vaddr store(µ, &, vaddr, ⇢(r)) = µ0

(n, ⇢, µ) ,
write vaddr���������! (n 0, ⇢, µ0)

Figure 3: Mach IR semantics (excerpts)

such as store
&

(indexed, [r1; r2], r ,n 0) do not carry this infor-
mation. The standard solution to recover this information is
to let the information flow analysis use the results of another
static analysis that performs these computations. There are
several possible choices that achieve di↵erent trade-o↵s be-
tween expressiveness, precision, and simplicity. We opt for
a conventional points-to [7] analysis. A similar analysis has
already been formalized for the CompCert toolchain [43], but
it targets a di↵erent language (RTL) and makes a di↵erent
trade-o↵ between e�ciency and precision; we use our own
formalization here.

Alias (points-to) type system. The definition of the alias
type system is given in [12]. For the purpose of understand-
ing the rest of the paper, it is su�cient to know that the
type system computes statically the points-to information
PointsTo(n, addr ,~r) at every node n for a memory access
with an addressing mode addr and arguments ~r . Hence,
if node n contains an instruction load

&

(addr ,~r , r ,n 0) or an
instruction store

&

(addr ,~r , r ,n 0), we have a prediction, at
compile time, of the targeted memory address. In this con-
text, a so-called points-to information is one of the follow-
ing: i. Symb(S), which represents pointer values Vptr(b, �)
such that b is equal to the memory address &S of the global
variable S; ii. Stack(�), which represents the pointer value
Vptr(&SP, �).

For example, if an instruction store
&

(indexed, [r1; r2], r ,n 0)
is performed at node n when r1 contains Vptr(&S, 8) and
r2 contains the integer 16, the points-to static analysis may
safely predict PointsTo(n, addr ,~r) = Symb(S), because the
accessed pointer is Vptr(&S, 24).

Information flow type system. Next, we define an infor-
mation flow type system for constant-time. As usual, we
consider a lattice of security levels L = {Low,High} with
Low v High. Initially, the user declares a set X0

h

✓ S of high
variables.
Programs are assigned types (X

h

, T), where X
h

2 S ! L
is a global type, and T 2 N ! (N + R) ! L is a mapping
from program nodes to local types. X

h

is a flow-insensitive
global type which assigns a security level X

h

(S) for every
global variable S 2 S. T is a flow-sensitive local type which
assigns for every o↵set � 2 N the security level T [n](�) of the
stack cell at address Vptr(&SP, �) and node n, and for every
register r 2 R its security level T [n](r) at node n. Formally,
the type system manipulates judgments of the form:

X
h

` n : ⌧1) ⌧2

p(n) = op(op,~r , r ,n 0)

X
h

` n : ⌧) ⌧ [r 7! ⌧(~r)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S) ⌧(~r) = Low

X
h

` n : ⌧) ⌧ [r 7! X
h

(S)]

p(n) = load
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [r 7! ⌧(�) t · · · t ⌧(� + & � 1)]

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Symb(S)
⌧(~r) = Low ⌧(r) v X

h

(S)
X

h

` n : ⌧) ⌧

p(n) = store
&

(addr ,~r , r ,n 0)
PointsTo(n, addr ,~r) = Stack(�)

X
h

` n : ⌧) ⌧ [� 7! ⌧(r), . . . , � + & � 1 7! ⌧(r)]

p(n) = goto(n 0)

X
h

` n : ⌧) ⌧

Figure 4: Information flow rules for constant-time

where X
h

is a global type, n is a node, and ⌧1 and ⌧2 are
local types, i.e. ⌧1, ⌧2 2 (N + R) ! L. The type system
enforces a set of constraints on X0

h

, X
h

and T . Typing rules
are given in Figure 4; we note ⌧(~r) for

F
r2~r ⌧(r).

The rule for op(op,~r , r ,n 0) simply updates the security
level of r with the supremum of the security levels of ~r .
There are two rules for load

&

(addr ,~r , r ,n 0). The first one
considers the case where the value is loaded from a global
variable S. In this case, the typing rule requires that all
registers are low, i.e. ⌧(~r) = Low, as we want to forbid
memory accesses that depend on a secret. The security level
of the register r is updated with the security level X

h

(S)
of the variable. The second rule considers the case where
the value is loaded from a stack position at o↵set �. In
this case, our type system conservatively requires that the
memory access is constant (and statically predicted by the
alias type system). In this case, no information is leaked.
Note that the security level of the register r is set to the
maximum of ⌧(�), . . . , ⌧(�+ &�1). Indeed, the security level
of ⌧(�) models the level of the 8-bits value at position �; if
the load is performed with a memory chunk of size strictly
bigger than 1, several 8-bits value will be accessed. Our type
system takes care of this subtlety.
The two typing rules for store are similar to the rules for

load. If the store is performed on a global variable, we again
require ⌧(~r) = Low to make sure the dereferenced pointer
does not leak secrets. The constraint ⌧(r) ✓ X

h

(S) propa-
gates the security level of the stored value. For a store on
a stack o↵set, we again make sure to consider enough stack
o↵sets by considering the memory chunk of the instruction.

Definition 1 (Constant-time programs).
A program p is constant-time with respect to a set of vari-
ables X0

h

, written X0
h

` p, if there exists (X
h

, T) such that
for every S 2 X0

h

, X
h

(S) = High and for all nodes n and all
its successors n0, there exists ⌧ such that

X
h

` n : T (n)) ⌧ ^ ⌧ v T (n0)

points-to pre-
analysis

points-to pre-
analysis

symbolic
memory
address

instruction at
program
point p

size of the
accessed

memory block

next 
program 

point

stored
value

we forbid high
taints on address

computation

if register r is high,
global variable S

must be high
we taint each stack positionwe taint each stack position

Performing the analysis at (pre)-assembly level
Limitations

Engineering simplification

• no function call (we require full inlining)

• no dynamic allocation

Analysis precision limitation

• no array in stack (we only track constant adresses in stack)

• no fine grained struct tainting for structures in global variables 

Manual rewriting

• every local arrays must be put as global!

But the analyser

• is proved correct and extracted from Coq formalisation

• runs on three real C programs

Program LoC Analysis time

TEA 70 0.08s

SHA256 419 68.14s

Salsa20 1077 0.68s

Second approach 
Some help from higher level representations…

Improvements

• no more manual rewriting

• better performance

How?

• The Verasco static analyser transmits
strong alias informations trough the
compiler toolchain

Extensibility

• soudness of the translation is independent
of compiler optimisation passes The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

Mach

Verasco static
analyzer

Information flow
type checker

G. Barthe, S. Blazy, V. Laporte, D. Pichardie, A. Trieu.  
Lightweight, Verified Translation Validation of Static Analyses. 
CSF 2017.

The Verasco project
INRIA Celtique, Gallium, Antique, Toccata + VERIMAG + Airbus
ANR 2012-2016

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation

• Language analyzed: the CompCert subset of C

• Nontrivial abstract domains, including relational domains

• Modular architecture inspired from Astrée’s

• To prove the absence of undefined behaviors in C source programs

Slogan:

• if « CompCert ≈ 1/10th of GCC but formally verified »,

• likewise « Verasco ≈1/10th of Astrée but formally verified »

 http://verasco.imag.fr

Verasco 
A Formally-Verified C Static Analyzer

numbers

CompCert compiler

states

control flowAbstract interpreterAlarms

Numerical abstraction

Compcert C Clight C#minor Cminor RTL ASM

Memory abstraction

JH. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie.  
A Formally-Verified C Static Analyzer.  
POPL 2015.

S. Blazy, V. Laporte, D. Pichardie.  
An Abstract Memory Functor for Verified C Static Analyzers.  
ICFP 2016.

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

transforms any rel. domain
over Z into a rel. domain over
machine integers with modulo

arithmetic

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

conjunctions of linear
inequalities ∑ai xi ≤ c

[SAS’13]

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

symbolic
conditional expressions

(improve precision of  
assume commands)

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

transforms any non-rel. domain
into a (reduced) rel. domain

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

crucial to analyze the safety
of memory accesses 
 (memory alignement)

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

requires reasoning on
double-precision floating-point

numbers (IEEE754)

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

custom reduced product

numbers

Verasco
Abstract numerical domains

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

VERIMAG work

Verasco 
Implementation

34 000 lines of Coq, excluding blanks and comments

• half proof, half code & specs

• plus parts reused from CompCert

Bulk of the development: abstract domains for states and for numbers 
(involve large case analyses and difficult proofs over integer and floating
points arithmetic)

Except for the operations over polyhedra, the algorithms are implemented
directly in Coq’s specification language.

transfert function

checker

untrusted solver

= formally verified
= not verified

transfert function
External solver with verified operatorFully verified operator

How to translate Verasco results downto assembly?

The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

Mach

Verasco static
analyzer

Information flow
type checker

Translation validation of Verasco results

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

Translation validation of Verasco results

Verasco

High-Level 
Annotations

Lowering
Optimization

Low-Level 
Annotations

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

Translation validation of Verasco results

Verasco

High-Level 
Annotations

?

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

CompCert

Defensive
C#minor

Translation validation of Verasco results

Verasco

High-Level 
Annotations

?

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

CompCert

Defensive
C#minor

Defensive RTL

Translation validation of Verasco results

Verasco

High-Level 
Annotations

?

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

CompCert

Defensive
C#minor

Defensive RTL

Translation validation of Verasco results

Verasco

High-Level 
Annotations

?

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

Verasco

Safety 
proof

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

CompCert

Defensive
C#minor

Defensive RTL

Translation validation of Verasco results

Verasco

High-Level 
Annotations

?

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

Verasco

Safety 
proof

RTL

Safety 
proof

CompCert

C source

C#minor

Annotated
RTL

Annotated
Asm

Lowering
Optimization

CompCert

Defensive
C#minor

Defensive RTL

relative-safety 
checker

Translation validation of Verasco results

Verasco

High-Level 
Annotations

Lowering
Optimization

Low-Level 
Annotations

Annotation
correctness

proof

Annotation
correctness

proof

Equivalence 
proof

Verasco

Safety 
proof

RTL

Safety 
proof

Third approach 
Constant-time analysis at source level

Improvements

• Inform the programmer at source level

•Deeper interaction with Verasco

 
How?

•We mix Verasco memory abstract domain
with fine-grained tainting

The Coq proof assistant

Cminor

RTL

Compcert C

x86

LTL

Mach

Verasco static
analyzer + tainting

Sandrine Blazy, David Pichardie, Alix Trieu. 
Verifying Constant-Time Implementations by Abstract Interpretation.  
ESORICS 2017.

Constant-time analysis at source level

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

taints

Constant-time analysis at source level

We design an abstract functor

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domain

taints

Constant-time analysis at source level

We design an abstract functor
• takes as input an abstract memory
domain 
 
 
 
 
 

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domainJeK] : M] ! V]
Jx ! eK] : M] !M]

J⇤e1 ! e2K] : M] !M]
Jx ! ⇤eK] : M] !M]
assert(e)] : M] !M]
concretize

] : V] ! P(L)

taints

Constant-time analysis at source level

We design an abstract functor
• takes as input an abstract memory
domain 
 
 
 
 
 

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domainJeK] : M] ! V]
Jx ! eK] : M] !M]

J⇤e1 ! e2K] : M] !M]
Jx ! ⇤eK] : M] !M]
assert(e)] : M] !M]
concretize

] : V] ! P(L)

abstract memory abstract value

set of concrete
memory locations

taints

Constant-time analysis at source level

We design an abstract functor
• takes as input an abstract memory
domain 
 
 
 
 
 

• returns an abstract domain that
taints every memory cells

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domainJeK] : M] ! V]
Jx ! eK] : M] !M]

J⇤e1 ! e2K] : M] !M]
Jx ! ⇤eK] : M] !M]
assert(e)] : M] !M]
concretize

] : V] ! P(L)

T JeK] : M]taint ! V
]
taint

T Jx ! eK] : M] !M]taint !M
]
taint

T J⇤e1 ! e2K] : M] !M]taint !M
]
taint

T Jx ! ⇤eK] : M] !M]taint !M
]
taint

abstract memory abstract value

set of concrete
memory locations

taints

Constant-time analysis at source level

We design an abstract functor
• takes as input an abstract memory
domain 
 
 
 
 
 

• returns an abstract domain that
taints every memory cells

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domainJeK] : M] ! V]
Jx ! eK] : M] !M]

J⇤e1 ! e2K] : M] !M]
Jx ! ⇤eK] : M] !M]
assert(e)] : M] !M]
concretize

] : V] ! P(L)

T JeK] : M]taint ! V
]
taint

T Jx ! eK] : M] !M]taint !M
]
taint

T J⇤e1 ! e2K] : M] !M]taint !M
]
taint

T Jx ! ⇤eK] : M] !M]taint !M
]
taint

abstract memory abstract value

set of concrete
memory locations

tainting of each memory cell

value taints 
{MustBeLow, MayBeHigh}

taints

Constant-time analysis at source level

We design an abstract functor
• takes as input an abstract memory
domain 
 
 
 
 
 

• returns an abstract domain that
taints every memory cells

states

numbers

control flow

CompCert  
compilerC#minor… ...

Memory & value domain

Numerical domain

Abstract interpreter

Taint domainJeK] : M] ! V]
Jx ! eK] : M] !M]

J⇤e1 ! e2K] : M] !M]
Jx ! ⇤eK] : M] !M]
assert(e)] : M] !M]
concretize

] : V] ! P(L)

T JeK] : M]taint ! V
]
taint

T Jx ! eK] : M] !M]taint !M
]
taint

T J⇤e1 ! e2K] : M] !M]taint !M
]
taint

T Jx ! ⇤eK] : M] !M]taint !M
]
taint

abstract memory abstract value

set of concrete
memory locations

tainting of each memory cell

value taints 
{MustBeLow, MayBeHigh}

T J⇤e1 ! e2K](m], t]) = t]
⇥
l 7! T Je2K]

⇤
Example:

8l 2 concretize

] � Je1K](m])

Experiments at source level (ESORICS’17)

Verifying Constant-Time Implementations by Abstract Interpretation 13

4.2 Cryptographic Algorithms

We report in Table 1 our results on a set of cryptographic algorithms, all executions
times reported were obtained on a 3.1GHz Intel i7 with 16GB of RAM. Sizes are
reported in terms of numbers of C#minor statements (i.e., close to C statements),
lines of code are measured with cloc and execution times are reported in seconds.

Example Size Loc Time
aes 1171 1399 41.39
curve25519-donna 1210 608 586.20
des 229 436 2.28
rlwe_sample 145 1142 30.76
salsa20 341 652 0.04
sha3 531 251 57.62
snow 871 460 3.37
tea 121 109 3.47
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 0.04
nacl_sha512 437 314 1.02
mbedtls_sha1 544 354 0.19
mbedtls_sha256 346 346 0.38
nbedtls_sha512 310 399 0.26
mee-cbc 1959 939 933.37

Table 1: Verification of cryptographic primitives

The first block of lines gathers test cases for the implementations of a
representative set of cryptographic primitives including TEA [36], an imple-
mentation of sampling in a discrete Gaussian distribution by Bos et al. [10]
(rlwe_sample) taken from the Open Quantum Safe library [30], an implemen-
tation of elliptic curve arithmetic operations over Curve25519 [6] by Lang-
ley [16](curve25519-donna), and various primitives such as AES, DES, etc.
The second block reports on different implementations from the NaCl library [7].
The third block reports on implementations from the mbedTLS [26] library.
Finally, the last result corresponds to an implementation of MAC-then-Encode-
then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES. Our
prototype rightfully reports memory accesses depending on secrets, so these two
programs are not constant time. Similarly to [2], rlwe_sample is only proven
constant time, provided that the core random generator is also constant time,
thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC con-
struction using low-level primitives taken from the NaCl library. Our prototype is
able to verify the constant-time property of this example, showing that it scales
to large code bases (939 loc).

Experiments at source level (ESORICS’17)

Verifying Constant-Time Implementations by Abstract Interpretation 13

4.2 Cryptographic Algorithms

We report in Table 1 our results on a set of cryptographic algorithms, all executions
times reported were obtained on a 3.1GHz Intel i7 with 16GB of RAM. Sizes are
reported in terms of numbers of C#minor statements (i.e., close to C statements),
lines of code are measured with cloc and execution times are reported in seconds.

Example Size Loc Time
aes 1171 1399 41.39
curve25519-donna 1210 608 586.20
des 229 436 2.28
rlwe_sample 145 1142 30.76
salsa20 341 652 0.04
sha3 531 251 57.62
snow 871 460 3.37
tea 121 109 3.47
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 0.04
nacl_sha512 437 314 1.02
mbedtls_sha1 544 354 0.19
mbedtls_sha256 346 346 0.38
nbedtls_sha512 310 399 0.26
mee-cbc 1959 939 933.37

Table 1: Verification of cryptographic primitives

The first block of lines gathers test cases for the implementations of a
representative set of cryptographic primitives including TEA [36], an imple-
mentation of sampling in a discrete Gaussian distribution by Bos et al. [10]
(rlwe_sample) taken from the Open Quantum Safe library [30], an implemen-
tation of elliptic curve arithmetic operations over Curve25519 [6] by Lang-
ley [16](curve25519-donna), and various primitives such as AES, DES, etc.
The second block reports on different implementations from the NaCl library [7].
The third block reports on implementations from the mbedTLS [26] library.
Finally, the last result corresponds to an implementation of MAC-then-Encode-
then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES. Our
prototype rightfully reports memory accesses depending on secrets, so these two
programs are not constant time. Similarly to [2], rlwe_sample is only proven
constant time, provided that the core random generator is also constant time,
thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC con-
struction using low-level primitives taken from the NaCl library. Our prototype is
able to verify the constant-time property of this example, showing that it scales
to large code bases (939 loc).

Not handled by Almeida et
al. because LLVM alias

analysis limitations

Same benchmarks than
Almeida et al.

J.B. Almeida, M. Barbosa, G. Barthe,  
 F. Dupressoir and M.Emmi.
Verifying Constant-Time Implementations.
USENIX Security Symposium 2016.

Comparing the three approaches

Approach Pro Cons Current state of proof
mechanization

Direct analysis at  
pre-assembly level

property established at the
expected level

engineering a static
analysis at assembly level
is hard

fully verified in Coq

Translation of Verasco
results

the translation mechanism
may be useful outside
security analysis

the validation technique
may be incomplete with
respect to state-of-the-art
compiler optimizations

only the annotation
validation is currently
verified

Analysis at source level
1) reuse the Verasco effort

2) feedback for crypto

programmers

we need to trust (or prove)
that the compiler will not
break the security property

only a paper proof

Conclusions

Constant-time

• simpler than full non-interference but still challenging security

property

• hard to obtain at assembly level without control on the compiler

• further work: cover more side-channels (e.g. floating point

computations)

 
Verified C compiler toolchain for security

• strong soundness guaranties

• allow experimentation with real crypto programs

• further work: enforce other folklore protections

