
Provably secure compilation of side-channel countermeasures

Gilles Barthe
Benjamin Grégoire
Vincent Laporte

2018-02-07

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 0 / 29

Introduction

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 1 / 29

Side-channels

“Computers are made of stuff”

Running a program:▶ requires power, time, etc.▶ produces heat, light, sound, etc.▶ leaves traces (memory cache, branch predictor, etc.)

All these “side-channels” carry information about what is going on inside the machine.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 2 / 29

Side-channel attacks

Power Analysis
Example: modular exponentiation (𝑟 = 𝑥𝑘 (mod 𝑝)), as found in RSA

r = 1;
for(i = base - 1; 0 <= i; --i) {

r = r² mod p;
if ((k >> i) & 1) r = (r * x) mod p;

}

(Kocher et al., “Introduction to differential power analysis”, 2011)

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 3 / 29

Side-channel attacks

Cache attacks
Cache memory is shared among concurrent processes.

Many attacks, e.g.,:▶ Percival, 2005, against RSA in OpenSSL▶ Osvik, Shamir, Tromer, 2006, against AES▶ Gras, Rasavi, et al., 2017, against ASLR▶ Kocher et al., 2018, against OS-level isolation▶ …

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 4 / 29

Constant-time programming

Software-based defense against side-channel attacks:▶ control-flow (loop, if conditions)▶ memory accesses (array indices)

should not depend on secret (sensitive) values.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 5 / 29

Problem

▶ Do compilers preserve or break the constant-time property?▶ Can a secure program be written in a high-level language?

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 6 / 29

Counter-example Α: emulation of conditional-move

Before

int cmove(int x, int y, bool b) {
return x + (y − x) * b;

}

After

int cmove(int x, int y, bool b) {
if (b) {
return y;

} else {
return x;

}
}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 7 / 29

Counter-example Α: emulation of conditional-move

Before

int cmove(int x, int y, bool b) {
return x + (y − x) * b;

}

After

int cmove(int x, int y, bool b) {
if (b) {
return y;

} else {
return x;

}
}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 7 / 29

Counter-example Β: double-word multiplication

Before

long long llmul(long long x, long long y) {
return x * y;

}

After

long long llmul(long long x, long long y) {
long a = High(x);
long c = High(y);
if (a | c) {
/* … */

} else {
return Low(x) * Low(y);

}
}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 8 / 29

Counter-example Β: double-word multiplication

Before

long long llmul(long long x, long long y) {
return x * y;

}

After

long long llmul(long long x, long long y) {
long a = High(x);
long c = High(y);
if (a | c) {
/* … */

} else {
return Low(x) * Low(y);

}
}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 8 / 29

Counter-example Γ: tabulation

Before

char rot13(char x) {
return 'a' + ((x - 'a' + 13) % 26);

}

After

char rot13(char x) {
static char table[26] = ”nopqrstuvwxyzabcdefghijklm”;
return table[x - 'a'];

}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 9 / 29

Counter-example Γ: tabulation

Before

char rot13(char x) {
return 'a' + ((x - 'a' + 13) % 26);

}

After

char rot13(char x) {
static char table[26] = ”nopqrstuvwxyzabcdefghijklm”;
return table[x - 'a'];

}

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 9 / 29

Contributions

▶ Which compiler passes do preserve constant-time?▶ How to convince you that a compiler preserves constant-time?

Theorem (Constant-time preserving compiler)
compile(p) = p’ → constant-time(p) → constant-time(p’).▶ Machine-checked proofs using Coq▶ Tractable proofs▶ A generic framework▶ Illustrative instantiations on example languages and compilation passes

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 10 / 29

Compiler correctness à la Coq

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 11 / 29

Language semantics

▶ A type for programs▶ A type for execution states▶ An initial state for every program and every valuation of the input parameters▶ Result extraction from final states▶ A small-step execution (deterministic) relation between states (· → ·)

Program behavior: set of input·result pairs related by →*:

input → s₀ → s₁ → … → s → result

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 12 / 29

Proof technique: simulation diagrams

Given a relation ≈ between source and target execution states,

if initial states (for the same input values) are in relation

if related final states yield the same result

If the following diagram holds
a

α

b

β

≈ ≈

then the compiler is correct

(moreover, the ≈ relation is a relational invariant of any two related executions).

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 13 / 29

Example: While language with arrays

Syntax:▶ 𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝑎[𝑒] ∣ 𝑒 𝑜 𝑒▶ 𝑐 ∶∶= 𝑥 = 𝑒 ∣ 𝑎[𝑒] = 𝑒 ∣ if 𝑒 ⃗𝑐 ⃗𝑐 ∣ loop ⃗𝑐 𝑒 ⃗𝑐
Semantics:▶ State: { ⃗𝑐, 𝜌 }▶ Evaluation of expressions in an environment: [𝑒]𝜌▶ Execution step, depending on the first instruction:▶ { 𝑥 = 𝑒; ⃗𝑐, 𝜌 } → { ⃗𝑐, 𝜌[𝑥 ← [𝑒]𝜌] }▶ { if 𝑒 ⃗𝑐1 ⃗𝑐2; ⃗𝑐, 𝜌 } → { ⃗𝑐𝑖; ⃗𝑐, 𝜌 } where 𝑖 is 1 if [𝑒]𝜌 is true, 2 otherwise▶ { loop ⃗𝑐1 𝑒 ⃗𝑐2; ⃗𝑐, 𝜌 } → { ⃗𝑐1; if 𝑒 (⃗𝑐2; loop ⃗𝑐1 𝑒 ⃗𝑐2) 𝜖; ⃗𝑐, 𝜌 }

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 14 / 29

Example: constant-folding

▶ Replace constant sub-expressions by their values, e.g.:▶ 1 + 2 → 3▶ 0 × 𝑒 → 0▶ Simulation relation: { ⃗𝑐1, 𝜌1 } ≈ { ⃗𝑐2, 𝜌2 } when:▶ ⃗𝑐2 is the compilation of ⃗𝑐1▶ 𝜌2 = 𝜌1

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 15 / 29

Constant-time, formally

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 16 / 29

Instrumented semantics

Decorate the small-step relation with a leakage: a b
ℓ

The leakage includes:▶ Program counter (number of steps, direction of branches)▶ Memory addresses, array offsets▶ … anything you want, to model various adversaries

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 17 / 29

A relational property

Definition (Constant-time)
For every two execution prefixes

i

i
′

s0

s
′

0

ℓ0

ℓ
′

0

s1

s
′

1

ℓ1

ℓ
′

1

s2

s
′

2

ℓ2

ℓ
′

2

. . .

. . .

the leakages agree whenever the inputs agree:𝜑(𝑖, 𝑖′) ⟹ ℓ0 ⋅ ℓ1 ⋅ ℓ2 = ℓ′0 ⋅ ℓ′1 ⋅ ℓ′2

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 18 / 29

Example: leakage of the while language

Evaluation of expressions:▶ access to array cells▶ values of dividend (second arguments of divisions)

Execution of instructions:▶ leakage of the evaluated expressions▶ written array cells▶ boolean values of branching conditions

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 19 / 29

Remark

Leakage preservation entails constant-time preservation.

Corollary: focus on compilation passes which do not preserve leakage.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 20 / 29

CT-simulations

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 21 / 29

Lockstep CT-simulation
▶ Each target step is related by the simulation proof to a source step.▶ Use this relation to justify that the target leakage is benign.▶ Take two instances of the simulation diagram with equal source leakage;

and prove that target leakages are equal:

a

α

b

β

a′

α′

b′

β ′≈
≈

≈
≈

t

t

τ

τ

Use relations ≡ between states to link the two executions.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 22 / 29

Lockstep CT-simulation
▶ Each target step is related by the simulation proof to a source step.▶ Use this relation to justify that the target leakage is benign.▶ Take two instances of the simulation diagram with equal source leakage;

and prove that target leakages are equal:

a

α

b

β

a′

α′

b′

β ′≈
≈

≈
≈

t

t

τ

τ

Use relations ≡ between states to link the two executions.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 22 / 29

Example: constant folding

▶ May remove leakage: “0 × t[i]” → “0”▶ Synchronized executions (≡): the command is the same in both states.▶ Equality of source leakages implies:
1. equality of target leakages;
2. both source executions stay synchronized;
3. both target executions stay synchronized.

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 23 / 29

Many-steps simulation

▶ Some compilation passes require a more general simulation diagram

+

a

α

b

β

≈ ≈

▶ Issue: how to (universally) quantify over instances of this diagram?▶ Complying with hypotheses and conclusions is not enough▶ Explicitly state the number of target steps: use a function “𝑛 = num-steps(𝑎, 𝛼)”
and prove the simulation diagram for this number of steps

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 24 / 29

Many-steps simulation

▶ Some compilation passes require a more general simulation diagram

+

a

α

b

β

≈ ≈

+ +

a

α

b

β β ′

≈ ≈ ≈

▶ Issue: how to (universally) quantify over instances of this diagram?▶ Complying with hypotheses and conclusions is not enough

▶ Explicitly state the number of target steps: use a function “𝑛 = num-steps(𝑎, 𝛼)”
and prove the simulation diagram for this number of steps

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 24 / 29

Many-steps simulation

▶ Some compilation passes require a more general simulation diagram

n

a

α

b

β

≈ ≈

+ +

a

α

b

β β ′

≈ ≈ ≈

▶ Issue: how to (universally) quantify over instances of this diagram?▶ Complying with hypotheses and conclusions is not enough▶ Explicitly state the number of target steps: use a function “𝑛 = num-steps(𝑎, 𝛼)”
and prove the simulation diagram for this number of steps

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 24 / 29

Many-steps CT-simulation

▶ The 2-diagram then generalizes to many-steps:

a

α

b

β

a′

α′

b′

β ′

n

n
′

≈

≈

≈
≈

t

t

τ

τ

▶ NB: also works for 𝑛, 𝑛′ = 0 (the size of the source state needs to strictly decrease)

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 25 / 29

Example: constant-propagation

1. Analysis: what variables have a statically known value
2. Simplify expressions, as in constant folding, using the analysis result
3. Remove (some) trivial branches (depending on heuristics), e.g.:▶ if 1 𝑐1 𝑐2 → 𝑐1▶ loop 𝑐1 0 𝑐2 → 𝑐1
Correctness:▶ Need to remember the analysis results (e.g., with annotations in the program)

Constant-time preservation:▶ Need to remember which branches are simplified (with similar annotations)

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 26 / 29

More examples

▶ Variable spilling▶ Expression flattening▶ Loop peeling▶ Pull common instructions out of branches▶ Swap independent instructions▶ Linearization

Good news: constant-time is preserved

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 27 / 29

More examples

▶ Variable spilling▶ Expression flattening▶ Loop peeling▶ Pull common instructions out of branches▶ Swap independent instructions▶ Linearization

Good news: constant-time is preserved

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 27 / 29

Conclusion

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 28 / 29

Summary

▶ A main theorem to easily build constant-time preservation proofs on top of semantics
preservation proofs▶ A handful of illustrative examples▶ All proved using the Coq proof assistant▶ Constant-time preservation proofs are generally easier that correctness proofs

Thanks!

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 29 / 29

Summary

▶ A main theorem to easily build constant-time preservation proofs on top of semantics
preservation proofs▶ A handful of illustrative examples▶ All proved using the Coq proof assistant▶ Constant-time preservation proofs are generally easier that correctness proofs

Thanks!

Vincent Laporte et alii Provably secure compilation of side-channel countermeasures 2018-02-07 29 / 29

	Introduction
	Compiler correctness à la Coq
	Constant-time, formally
	CT-simulations
	Conclusion

