Symbolic Verification of Cryptographic Protocols Protocol Analysis in the Applied Pi-Calculus

David Baelde
LSV, ENS Paris-Saclay

2018

Intruder detection

Problem

Given Φ and u, does $S \vdash u$?

Theorem
For the standard primitives, the intruder detection problem is in PTIME.

Deducibility constraints

Definition

A deducibility constraint system is either \perp or a (possibly empty) conjunction of deducibility constraints of the form

$$
T_{1} \vdash ? u_{1} \wedge \ldots \wedge T_{n} \vdash ? u_{n}
$$

such that

- $T_{1} \subseteq T_{2} \subseteq \ldots \subseteq T_{n}$ (monotonicity)
- for every $i, f v\left(T_{i}\right) \subseteq f v\left(u_{1}, \ldots, u_{i-1}\right)$ (origination)

Definition

The substitution σ is a solution of $\mathcal{C}=T_{1} \vdash^{?} u_{1} \wedge \ldots \wedge T_{n} \vdash^{?} u_{n}$ when $T_{i} \sigma \vdash u_{i} \sigma$ for all i and $\operatorname{img}(\sigma) \subseteq T_{c}(\mathcal{N})$.

Example: Needham-Schroeder

- $S_{1}:=\left\langle s k_{i}, \operatorname{pub}\left(s k_{a}\right), \operatorname{pub}\left(s k_{b}\right)\right\rangle, \operatorname{aenc}\left(\left\langle\operatorname{pub}\left(s k_{a}\right), n_{a}\right\rangle, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{1} \vdash^{?} \times$

Example: Needham-Schroeder

- $S_{1}:=\left\langle s k_{i}, \operatorname{pub}\left(s k_{a}\right), \operatorname{pub}\left(s k_{b}\right)\right\rangle, \operatorname{aenc}\left(\left\langle\operatorname{pub}\left(s k_{a}\right), n_{a}\right\rangle, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{1} \vdash ? \operatorname{aenc}\left(\left\langle x_{a}, x_{n a}\right\rangle, \operatorname{pub}\left(s k_{b}\right)\right)$

Example: Needham-Schroeder

- $S_{1}:=\left\langle s k_{i}, \operatorname{pub}\left(s k_{a}\right), \operatorname{pub}\left(s k_{b}\right)\right\rangle, \operatorname{aenc}\left(\left\langle\operatorname{pub}\left(s k_{a}\right), n_{a}\right\rangle, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{1} \vdash ? \operatorname{aenc}\left(\left\langle x_{a}, x_{n a}\right\rangle, \operatorname{pub}\left(s k_{b}\right)\right)$
- $S_{2}:=S_{1}, \operatorname{aenc}\left(\left\langle x_{n a}, n_{b}\right\rangle, x_{a}\right)$ $S_{2} \vdash ? \operatorname{aenc}\left(\left\langle n_{a}, x_{n b}\right\rangle, \operatorname{pub}\left(s k_{a}\right)\right)$

Example: Needham-Schroeder

- $S_{1}:=\left\langle s k_{i}, \operatorname{pub}\left(s k_{a}\right), \operatorname{pub}\left(s k_{b}\right)\right\rangle, \operatorname{aenc}\left(\left\langle\operatorname{pub}\left(s k_{a}\right), n_{a}\right\rangle, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{1} \vdash^{?} \operatorname{aenc}\left(\left\langle x_{a}, x_{n a}\right\rangle, \operatorname{pub}\left(s k_{b}\right)\right)$
- $S_{2}:=S_{1}, \operatorname{aenc}\left(\left\langle x_{n a}, n_{b}\right\rangle, x_{a}\right)$ $S_{2} \vdash ? \operatorname{aenc}\left(\left\langle n_{a}, x_{n b}\right\rangle, \operatorname{pub}\left(s k_{a}\right)\right)$
- $S_{3}:=S_{2}, \operatorname{aenc}\left(x_{n b}, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{3} \vdash ? \operatorname{aenc}\left(n_{b}, \operatorname{pub}\left(s k_{b}\right)\right)$

Example: Needham-Schroeder

- $S_{1}:=\left\langle s k_{i}, \operatorname{pub}\left(s k_{a}\right), \operatorname{pub}\left(s k_{b}\right)\right\rangle, \operatorname{aenc}\left(\left\langle\operatorname{pub}\left(s k_{a}\right), n_{a}\right\rangle, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{1} \vdash ? \operatorname{aenc}\left(\left\langle x_{a}, x_{n a}\right\rangle, \operatorname{pub}\left(s k_{b}\right)\right)$
- $S_{2}:=S_{1}, \operatorname{aenc}\left(\left\langle x_{n a}, n_{b}\right\rangle, x_{a}\right)$
$S_{2} \vdash ? \operatorname{aenc}\left(\left\langle n_{a}, x_{n b}\right\rangle, \operatorname{pub}\left(s k_{a}\right)\right)$
- $S_{3}:=S_{2}, \operatorname{aenc}\left(x_{n b}, \operatorname{pub}\left(s k_{i}\right)\right)$ $S_{3} \vdash ? \operatorname{aenc}\left(n_{b}, \operatorname{pub}\left(s k_{b}\right)\right)$
- $S_{4}:=S_{3}, \operatorname{senc}\left(\right.$ secret,$\left.n_{b}\right)$ and $x_{a}=\operatorname{pub}\left(s k_{a}\right)$ $S_{4} \vdash$? secret

Constraint resolution

Solved form

A system is solved if it is of the form

$$
T_{1} \vdash^{?} x_{1} \wedge \ldots \wedge T_{n} \vdash^{?} x_{n}
$$

Proposition

If \mathcal{C} is solved, then it admits a solution.

Constraint resolution

Solved form

A system is solved if it is of the form

$$
T_{1} \vdash^{?} x_{1} \wedge \ldots \wedge T_{n} \vdash^{?} x_{n}
$$

Proposition

If \mathcal{C} is solved, then it admits a solution.

Theorem

There exists a terminating relation \rightsquigarrow such that for any \mathcal{C} and θ, $\theta \in \operatorname{Sol}(\mathcal{C})$ iff there is $\mathcal{C} \rightsquigarrow_{\sigma}^{*} \mathcal{C}^{\prime}$ solved and $\theta=\sigma \theta^{\prime}$ for some $\theta^{\prime} \in \operatorname{Sol}\left(\mathcal{C}^{\prime}\right)$.

Simplification of constraint systems

Here systems are considered modulo AC of \wedge.

$$
\begin{aligned}
&\left(R_{1}\right) \quad \mathcal{C} \wedge T \vdash^{?} u \rightsquigarrow \mathcal{C} \quad \text { if } T \cup\left\{x \mid\left(T^{\prime} \vdash^{?} x\right) \in \mathcal{C}, T^{\prime} \subsetneq T\right\} \vdash u \\
&\left(R_{2}\right) \quad \mathcal{C} \wedge T \vdash^{?} u \rightsquigarrow{ }^{\prime} \mathcal{C} \sigma \wedge T \sigma \vdash^{?} u \sigma \\
& \quad \text { if } \sigma=\operatorname{mgu}(t, u), t \in \operatorname{st}(T), t \neq u, \text { and } t, u \notin \mathcal{X}
\end{aligned}
$$

$\left(R_{3}\right) \quad \mathcal{C} \wedge T \vdash^{?} u \rightsquigarrow_{\sigma} \mathcal{C} \sigma \wedge T \sigma \vdash^{?} u \sigma$

$$
\text { if } \sigma=\operatorname{mgu}\left(t_{1}, t_{2}\right), t_{1}, t_{2} \in \operatorname{st}(T), t_{1} \neq t_{2}
$$

$\left(R_{4}\right) \quad \mathcal{C} \wedge T \vdash ? u \rightsquigarrow \perp$ if $\mathrm{fv}(T \cup\{u\})=\emptyset, T \nvdash u$
$\left(R_{f}\right) \quad \mathcal{C} \wedge T \vdash ? f\left(u_{1}, \ldots, u_{n}\right) \rightsquigarrow \mathcal{C} \wedge \wedge_{i} T \vdash ? u_{i} \quad$ for $f \in \Sigma_{c}$
$\left(R_{\text {pub }}\right) \mathcal{C} \rightsquigarrow \mathcal{C}[x:=\operatorname{pub}(x)]$ if aenc $(t, x) \in T$ for some $\left(T \vdash^{?} u\right) \in \mathcal{C}$

Examples of simplifications

(1) $\operatorname{senc}(n, k) \vdash^{?} \operatorname{senc}(x, k)$
(2) $\operatorname{senc}\left(\operatorname{senc}\left(t_{1}, k\right), k\right) \vdash^{?} \operatorname{senc}(x, k)$
(3) $S \vdash^{?} x \wedge S, n \vdash^{?} y \wedge S, n, \operatorname{senc}(m, \operatorname{senc}(x, k)), \operatorname{senc}(y, k) \vdash^{?} m$
(9) $S \vdash^{?} x \wedge S \vdash^{?}\langle x, x\rangle$
(5) $n \vdash ? x \wedge n \vdash ? \operatorname{senc}(x, k)$

Constraint simplification proof (1)

Proposition (Validity)

If \mathcal{C} is a deducibility constraint system, and $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}^{\prime}$, then \mathcal{C}^{\prime} is a deducibility constraint system.

Constraint simplification proof (1)

Proposition (Validity)

If \mathcal{C} is a deducibility constraint system, and $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}^{\prime}$, then \mathcal{C}^{\prime} is a deducibility constraint system.

Proposition (Soundness)

If $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}^{\prime}$ and $\theta \in \operatorname{Sol}\left(\mathcal{C}^{\prime}\right)$ then $\sigma \theta \in \operatorname{Sol}(\mathcal{C})$.

Proposition (Termination)

Simplifications are terminating, as shown by the termination measure $(v(\mathcal{C}), p(\mathcal{C}), s(\mathcal{C}))$ where:

- $v(\mathcal{C})$ is the number of variables occurring in \mathcal{C};
- $p(\mathcal{C})$ is the number of terms of the form aenc (u, x) occurring on the left of constraints in \mathcal{C};
- $s(\mathcal{C})$ is the total size of the right-hand sides of constraints in \mathcal{C}.

Constraint simplification proof (2)

Left-minimality \& Simplicity

A derivation Π of $T_{i} \vdash u$ is left-minimal if, whenever $T_{j} \vdash u, \Pi$ is also a derivation of $T_{j} \vdash u$.
A derivation is simple it is non-repeating and all its subderivations are left-minimal.

Proposition

If $T_{i} \vdash u$, then it has a simple derivation.

Lemma

Let $\mathcal{C}=\bigwedge_{j} T_{j} \vdash^{?} u_{j}$ be a constraint system, $\theta \in \operatorname{Sol}(\mathcal{C})$, and i be such that $u_{j} \in \mathcal{X}$ for all $j<i$. If $T_{i} \theta \vdash u$ with a simple derivation starting with an axiom or a decomposition, then there is $t \in \operatorname{subterm}\left(T_{i}\right) \backslash \mathcal{X}$ such that $t \theta=u$.

Constraint simplification proof (3)

Lemma

Let $\mathcal{C}=\bigwedge_{j} T_{j} \vdash^{?} u_{j}, \sigma \in \operatorname{Sol}(\mathcal{C})$.
Let i be a minimal index such that $u_{i} \notin \mathcal{X}$.
Assume that:

- T_{i} does not contain two subterms $t_{1} \neq t_{2}$ such that $t_{1} \sigma=t_{2} \sigma$;
- T_{i} does not contain any subterm of the form aenc (t, x);
- u_{i} is a non-variable subterm of T_{i}.

Then $T_{i}^{\prime} \vdash u_{i}$, where $T_{i}^{\prime}=T_{i} \cup\left\{x \mid(T \vdash ? x) \in \mathcal{C}, T \subsetneq T_{i}\right\}$.

Constraint simplification proof (3)

Lemma

Let $\mathcal{C}=\bigwedge_{j} T_{j} \vdash^{?} u_{j}, \sigma \in \operatorname{Sol}(\mathcal{C})$.
Let i be a minimal index such that $u_{i} \notin \mathcal{X}$.
Assume that:

- T_{i} does not contain two subterms $t_{1} \neq t_{2}$ such that $t_{1} \sigma=t_{2} \sigma$;
- T_{i} does not contain any subterm of the form aenc (t, x);
- u_{i} is a non-variable subterm of T_{i}.

Then $T_{i}^{\prime} \vdash u_{i}$, where $T_{i}^{\prime}=T_{i} \cup\left\{x \mid(T \vdash ? x) \in \mathcal{C}, T \subsetneq T_{i}\right\}$.

Proposition (Completeness)

If \mathcal{C} is unsolved and $\theta \in \operatorname{Sol}(\mathcal{C})$, there is $\mathcal{C} \rightsquigarrow_{\sigma} \mathcal{C}^{\prime}$ and $\theta^{\prime} \in \operatorname{Sol}\left(\mathcal{C}^{\prime}\right)$ such that $\theta=\sigma \theta^{\prime}$.

Concluding remarks

Improvements

- A complete strategy can yield a polynomial bound, hence a small attack property
- Equalities and disequalities may be added
- Several variants and extensions may be considered: sk instead of pub, signatures, xor, etc.

We have not answered the original question yet!

- Symbolic semantics, (dis)equality constraints
- The enumeration of all interleavings is too naive

Complexity

- Deciding whether a system has a solution is NP-hard
- Reminder: for a general theory, security is undecidable

