Symbolic Verification of Cryptographic Protocols Protocol Analysis in the Applied Pi-Calculus

David Baelde

LSV, ENS Paris-Saclay

2018

Intruder detection

Problem

Given Φ and u, does $S \vdash u$?

Theorem

For the standard primitives, the intruder detection problem is in PTIME.

Deducibility constraints

Definition

A deducibility constraint system is either \bot or a (possibly empty) conjunction of deducibility constraints of the form

$$T_1 \vdash^? u_1 \land \ldots \land T_n \vdash^? u_n$$

such that

- $T_1 \subseteq T_2 \subseteq ... \subseteq T_n$ (monotonicity)
- for every i, $fv(T_i) \subseteq fv(u_1, \ldots, u_{i-1})$ (origination)

Definition

The substitution σ is a solution of $\mathcal{C} = T_1 \vdash^? u_1 \land \ldots \land T_n \vdash^? u_n$ when $T_i \sigma \vdash u_i \sigma$ for all i and $\operatorname{img}(\sigma) \subseteq T_c(\mathcal{N})$.

• $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? x$

• $S_1 := \langle sk_i, \text{pub}(sk_a), \text{pub}(sk_b) \rangle$, $\text{aenc}(\langle \text{pub}(sk_a), n_a \rangle, \text{pub}(sk_i))$ $S_1 \vdash^? \text{aenc}(\langle x_a, x_{na} \rangle, \text{pub}(sk_b))$

- $S_1 := \langle sk_i, \text{pub}(sk_a), \text{pub}(sk_b) \rangle$, $\text{aenc}(\langle \text{pub}(sk_a), n_a \rangle, \text{pub}(sk_i))$ $S_1 \vdash^? \text{aenc}(\langle x_a, x_{na} \rangle, \text{pub}(sk_b))$
- $S_2 := S_1$, $\operatorname{aenc}(\langle x_{na}, n_b \rangle, x_a)$ $S_2 \vdash^? \operatorname{aenc}(\langle n_a, x_{nb} \rangle, \operatorname{pub}(sk_a))$

- $S_1 := \langle sk_i, \text{pub}(sk_a), \text{pub}(sk_b) \rangle$, $\text{aenc}(\langle \text{pub}(sk_a), n_a \rangle, \text{pub}(sk_i))$ $S_1 \vdash^? \text{aenc}(\langle x_a, x_{na} \rangle, \text{pub}(sk_b))$
- $S_2 := S_1$, $\operatorname{aenc}(\langle x_{na}, n_b \rangle, x_a)$ $S_2 \vdash^? \operatorname{aenc}(\langle n_a, x_{nb} \rangle, \operatorname{pub}(sk_a))$
- $S_3 := S_2$, $\operatorname{aenc}(x_{nb}, \operatorname{pub}(sk_i))$ $S_3 \vdash^? \operatorname{aenc}(n_b, \operatorname{pub}(sk_b))$

- $S_1 := \langle sk_i, pub(sk_a), pub(sk_b) \rangle$, $aenc(\langle pub(sk_a), n_a \rangle, pub(sk_i))$ $S_1 \vdash^? aenc(\langle x_a, x_{na} \rangle, pub(sk_b))$
- $S_2 := S_1$, $\operatorname{aenc}(\langle x_{na}, n_b \rangle, x_a)$ $S_2 \vdash^? \operatorname{aenc}(\langle n_a, x_{nb} \rangle, \operatorname{pub}(sk_a))$
- $S_3 := S_2$, $\operatorname{aenc}(x_{nb}, \operatorname{pub}(sk_i))$ $S_3 \vdash^? \operatorname{aenc}(n_b, \operatorname{pub}(sk_b))$
- $S_4 := S_3$, senc(secret, n_b) and $x_a = \text{pub}(sk_a)$ $S_4 \vdash^?$ secret

Constraint resolution

Solved form

A system is solved if it is of the form

$$T_1 \vdash^? x_1 \land \ldots \land T_n \vdash^? x_n$$

Proposition

If C is solved, then it admits a solution.

Constraint resolution

Solved form

A system is solved if it is of the form

$$T_1 \vdash^? x_1 \land \ldots \land T_n \vdash^? x_n$$

Proposition

If C is solved, then it admits a solution.

Theorem

There exists a terminating relation \leadsto such that for any $\mathcal C$ and θ , $\theta \in \mathsf{Sol}(\mathcal C)$ iff there is $\mathcal C \leadsto_\sigma^* \mathcal C'$ solved and $\theta = \sigma \theta'$ for some $\theta' \in \mathsf{Sol}(\mathcal C')$.

Simplification of constraint systems

Here systems are considered modulo AC of \wedge .

$$(R_1) \qquad \mathcal{C} \wedge T \vdash^? u \rightsquigarrow \mathcal{C} \qquad \text{if } T \cup \{x \mid (T' \vdash^? x) \in \mathcal{C}, T' \subsetneq T\} \vdash u$$

$$(R_3) \qquad \mathcal{C} \wedge \mathcal{T} \vdash^? u \rightsquigarrow_{\sigma} \mathcal{C} \sigma \wedge \mathcal{T} \sigma \vdash^? u \sigma$$
if $\sigma = \mathsf{mgu}(t_1, t_2), t_1, t_2 \in \mathsf{st}(\mathcal{T}), t_1 \neq t_2$

$$(R_4) \qquad \mathcal{C} \wedge \mathcal{T} \vdash^? u \rightsquigarrow \bot \qquad \qquad \text{if fv}(\mathcal{T} \cup \{u\}) = \emptyset, \mathcal{T} \not\vdash u$$

$$(R_f) \qquad \mathcal{C} \wedge T \vdash^? f(u_1, \dots, u_n) \implies \mathcal{C} \wedge \bigwedge_i T \vdash^? u_i \qquad \text{for } f \in \Sigma_c$$

$$(R_{\mathsf{pub}})$$
 $\mathcal{C} \leadsto \mathcal{C}[x := \mathsf{pub}(x)]$ if $\mathsf{aenc}(t, x) \in \mathcal{T}$ for some $(\mathcal{T} \vdash^? u) \in \mathcal{C}$

Examples of simplifications

- $\operatorname{senc}(n, k) \vdash^{?} \operatorname{senc}(x, k)$
- senc(senc(t_1, k), k) \vdash ? senc(x, k) (two opportunities for R_2)

Constraint simplification proof (1)

Proposition (Validity)

If $\mathcal C$ is a deducibility constraint system, and $\mathcal C \leadsto_{\sigma} \mathcal C'$, then $\mathcal C'$ is a deducibility constraint system.

Constraint simplification proof (1)

Proposition (Validity)

If $\mathcal C$ is a deducibility constraint system, and $\mathcal C \leadsto_{\sigma} \mathcal C'$, then $\mathcal C'$ is a deducibility constraint system.

Proposition (Soundness)

If $C \leadsto_{\sigma} C'$ and $\theta \in Sol(C')$ then $\sigma \theta \in Sol(C)$.

Proposition (Termination)

Simplifications are terminating, as shown by the termination measure (v(C), p(C), s(C)) where:

- v(C) is the number of variables occurring in C;
- p(C) is the number of terms of the form aenc(u, x) occurring on the left of constraints in C:
- s(C) is the total size of the right-hand sides of constraints in C.

Constraint simplification proof (2)

Left-minimality & Simplicity

A derivation Π of $T_i \vdash u$ is left-minimal if, whenever $T_j \vdash u$, Π is also a derivation of $T_i \vdash u$.

A derivation is simple it is non-repeating and all its subderivations are left-minimal.

Proposition

If $T_i \vdash u$, then it has a simple derivation.

Lemma

Let $\mathcal{C} = \bigwedge_j T_j \vdash^? u_j$ be a constraint system, $\theta \in Sol(\mathcal{C})$, and i be such that $u_j \in \mathcal{X}$ for all j < i. If $T_i\theta \vdash u$ with a simple derivation starting with an axiom or a decomposition, then there is $t \in Subterm(T_i) \setminus \mathcal{X}$ such that $t\theta = u$.

Constraint simplification proof (3)

Lemma

Let $C = \bigwedge_j T_j \vdash^? u_j$, $\sigma \in Sol(C)$.

Let i be a minimal index such that $u_i \notin \mathcal{X}$.

Assume that:

- T_i does not contain two subterms $t_1 \neq t_2$ such that $t_1 \sigma = t_2 \sigma$;
- T_i does not contain any subterm of the form aenc(t,x);
- u_i is a non-variable subterm of T_i .

Then $T_i' \vdash u_i$, where $T_i' = T_i \cup \{x \mid (T \vdash^? x) \in \mathcal{C}, T \subsetneq T_i\}$.

Constraint simplification proof (3)

Lemma

Let $C = \bigwedge_j T_j \vdash^? u_j$, $\sigma \in Sol(C)$.

Let i be a minimal index such that $u_i \notin \mathcal{X}$.

Assume that:

- T_i does not contain two subterms $t_1 \neq t_2$ such that $t_1 \sigma = t_2 \sigma$;
- T_i does not contain any subterm of the form aenc(t,x);
- u_i is a non-variable subterm of T_i .

Then $T_i' \vdash u_i$, where $T_i' = T_i \cup \{x \mid (T \vdash^? x) \in \mathcal{C}, T \subsetneq T_i\}$.

Proposition (Completeness)

If C is unsolved and $\theta \in Sol(C)$, there is $C \leadsto_{\sigma} C'$ and $\theta' \in Sol(C')$ such that $\theta = \sigma \theta'$.

Concluding remarks

Improvements

- A complete strategy can yield a polynomial bound, hence a small attack property
- Equalities and disequalities may be added
- Several variants and extensions may be considered: sk instead of pub, signatures, xor, etc.

We have not answered the original question yet!

- Symbolic semantics, (dis)equality constraints
- The enumeration of all interleavings is too naive

Complexity

- Deciding whether a system has a solution is NP-hard
- Reminder: for a general theory, security is undecidable